Key Technologies in Geology-Engineering Integration Volumetric Fracturing for Deep Shale Gas Wells
-
摘要: 针对深层页岩气埋深大、两向水平应力差大、垂向应力差小、岩石塑性特征强等地质特征,以地质工程一体化为设计理念,建立了包括测井曲线、页岩总有机碳含量、孔隙度、全烃、关键录井元素、矿物组分、过量硅、矿物脆性、岩石力学参数等评价方法,开展沿水平井段的地质工程双甜点研究,实现地质与工程一体化优选甜点段和最优甜点段准确识别,为深层页岩气水平井压裂改造提供依据.然后,基于高导流的立体缝网为体积压裂的目标函数,开展深层页岩气窄压力窗口下的体积压裂注入模式及工艺参数优化研究,包括迂回双暂堵工艺优化,支撑剂在复杂缝网下的动态运移规律与导流能力研究,以及一体化变黏度高降阻滑溜水研发等.研究成果在现场的应用结果表明,上述基于地质工程一体化的体积压裂技术,压后测试产量较邻井能提高30%~50%以上,可大幅度提高深层页岩气的经济开发效果,对今后垂深超过4 500 m的超深层页岩气的经济有效勘探与开发,也同样具有重要的指导和借鉴意义.Abstract: According to the geological characteristics of deep shale gas, such as large horizontal stress difference, small vertical stress difference and strong rock plastic characteristics, evaluation methods were established for the logging curve, total organic carbon, porosity, all gas hydrocarbon, key logging elements, silicon, mineral brittleness, rock mechanics parameters, etc.. And the geology-engineering double sweet spot study along the horizontal wellbore was carried out based on the design concept of geology-engineering integration, so as to accurately identify optimal geological & engineering sweet spot, providing guidance for horizontal well fracturing in deep shale gas play. Then, based on three-dimensional fracture network with high fracture conductivity as the objective function, the volume fracturing pump mode and key parameter optimizations were studied for deep shale gas well under narrow pressure window, i.e., circuitous temporary plugging fracturing technology optimization, the dynamic movement of proppant in complex fracture network and test of fracture conductivity, and research and development for integrated variable viscosity slick water, etc.. Field applications demonstrate that the geology-engineering integration volumetric fracturing technology could improve post-frac gas production by more than 30%-50% compared with adjacent wells. The technology can greatly improve the economic development of deep shale gas wells, and it also has important guiding significance for shale gas wells with vertical depth more than 4 500 m as well.
-
表 1 示例井多尺度裂缝参数协同优化结果
Table 1. Collaborative optimization results of multi-scale fracture parameters for a case well
序号 参数 优化结果 1 主裂缝半长(m) 260~320 2 支裂缝半长(m) 10~15 3 微裂缝半长(m) 0.5~1.0 4 主裂缝导流(μm2∙cm) 1~3 5 支裂缝导流(μm2∙cm) 0.2~0.8 6 微裂缝导流(μm2∙cm) 0.05~0.20 7 主裂缝比例(%) 60~65 8 支裂缝比例(%) 20~25 9 微裂缝比例(%) 10~15 10 段间距(m) 15~20 表 2 一体化变黏度高降阻降阻剂主要性能指标
Table 2. The main performance index of the integrated variable viscosity high resistance reducing agent
项目 测定结果 室内小样 中试生产 市场现有 溶胀时间(s) 10 10 20 分子量(104) 1 200 1 400 ≤1 000 基液表观黏度(mPa·s)(0.1%) 2.3 3.5 3.0 降阻率(%)(室内) 80.3 83 75 剪切时间(min) 120 120 120 尾黏(mPa∙s) 50 60 40 测试温度(℃) 160 160 140 表 3 不同一体化变黏度高降阻降阻剂质量分数下的黏度
Table 3. The viscosity of different mass fractions of the integrated variable viscosity high resistance reducing agent
降阻剂浓度(%) 研发样品黏度
(mPa∙s)市售样品黏度
(mPa∙s)0.1 3 5.4 0.2 24 12.6 0.3 44 24 0.4 62 33 0.5 80 48 0.6 95 60 0.7 100 72 0.8 120 87 0.9 135 99 1.0 150 105 表 4 多尺度裂缝立体缝网指数与无阻流量的对应关系
Table 4. The relationship between the three-dimensional network index of multi-scale fractures and open flow capacity
井名 水平段长
(m)排量
(m3/min)单段液量
(m3)延伸多尺度裂缝液量
(m3)多尺度裂缝半缝长
(m)多尺度裂缝数量
(条)FCI-1
只考虑主裂缝、支裂缝FCI
考虑主裂缝、支裂缝、微裂缝无阻流量(104m3/d) F1井 1 008 10~12 1 331 260.0 12.5(支裂缝)
3.2(微裂缝)6(支裂缝)
18(微裂缝)0.132 0.293 16.74 F2井 1 003 12~14 1 545 312.6 12.7(支裂缝)
2.6(微裂缝)8(支裂缝)
23(微裂缝)0.145 0.436 21.18 -
[1] Bian, X. B., Hou, L., Jiang, T. X., et al., 2019. Influencing Factors of Fracture Geometry in Deep Shale Gas Wells. Lithologic Reservoirs, 31(6): 161-168 (in Chinese with English abstract). https://www.hindawi.com/journals/geofluids/2017/7818346/ [2] Bian, X. B., Jiang, T. X., Jia, C. G., et al., 2016. A New Post-Fracturing Evaluation Method for Shale Gas Wells Based on Fracturing Curves. Natural Gas Industry, 36(2): 60-65 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S2352854016300286 [3] Chen, G. H., Lu, S. F., Liu, K. Y., et al., 2020. Occurrence State and Micro Mechanisms of Shale Gas on Pore Walls. Earth Science, 45(5): 1782-1790 (in Chinese with English abstract). [4] Guo, J. C., Zhao, Z. H., Lu, Q. L., et al., 2021. Research Progress in Key Mechanical Theories of Deep Shale Network Fracturing. Natural Gas Industry, 41(1): 102-117 (in Chinese with English abstract). [5] He, X. P., 2021. Sweet Spot Evaluation System and Enrichment and High Yield Influential Factors of Shale Gas in Nanchuan Area of Eastern Sichuan Basin. Natural Gas Industry, 41(1): 59-71 (in Chinese with English abstract). [6] He, Z. L., Nie, H. K., Hu, D. F., et al., 2020. Geological Problems in the Effective Development of Deep Shale Gas: A Case Study of Upper Ordovician Wufeng-Lower Silurian Longmaxi Formations in Sichuan Basin and Its Periphery. Acta Petrolei Sinica, 41(4): 379-391 (in Chinese with English abstract). [7] Jiang, T. X., Bian, X. B., Wang, H. T., et al., 2017. Volume Fracturing of Deep Shale Gas Horizontal Wells. Natural Gas Industry, 37(1): 90-96 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S2352854017300827 [8] Jiang, T. X., Bian, X. B., Yuan, K., et al., 2014. A New Method in Staged Fracturing Design Optimization for Shale Gas Horizontal Wells. Petroleum Drilling Techniques, 42(2): 1-6 (in Chinese with English abstract). [9] Jiang, T. X., Lu, B. P., Zuo, L., et al., 2022. Research and Applications on Shale Gas Geologic-Engineering Fracness Evaluation Method. Natural Gas and Oil, 40(4): 68-74 (in Chinese with English abstract). [10] Jiang, T. X., Wang, H. T., Bian, X. B., et al., 2018. Volume Fracturing Technology for Horizontal Well and Its Application. Lithologic Reservoirs, 30(3): 1-11 (in Chinese with English abstract). [11] Li, S. G., Xu, T. J., Lü, Q. B., et al., 2019. Seismic Prediction Technology with Double "Desert" Parameters for Deep Shale Gas. Natural Gas Industry, 39(S1): 113-117 (in Chinese). [12] Liao, D. L., Lu, B. P., Chen, Y. J., 2019. An Evaluation Method of Geological Sweet Spots of Shale Gas Reservoir: A Case Study of the Jiaoshiba Gas Field, Sichuan Basin. Acta Petrolei Sinica, 40(2): 144-151 (in Chinese with English abstract). [13] Nie, H. K., He, Z. L., Liu, G. X., et al., 2020a. Status and Direction of Shale Gas Exploration and Development in China. Journal of China University of Mining & Technology, 49(1): 13-35 (in Chinese with English abstract). [14] Nie, H. K., He, Z. L., Liu, G. X., et al., 2020b. Genetic Mechanism of High-Quality Shale Gas Reservoirs in the Wufeng-Longmaxi Fms in the Sichuan Basin. Natural Gas Industry, 40(6): 31-41 (in Chinese with English abstract). [15] Nie, H. K., Li, P., Dang, W., et al., 2022. Enrichment Characteristics and Exploration Directions of Deep Shale Gas of Ordovician-Silurian in the Sichuan Basin and Its Surrounding Areas, China. Petroleum Exploration and Development, 49(4): 648-659 (in Chinese with English abstract). [16] Ren, W. X., Zhou, Y., Guo, J. C., et al., 2022. High- Pressure Adsorption Model for Middle-Deep and Deep Shale Gas. Earth Science, 47(5): 1865-1875 (in Chinese with English abstract). [17] Shen, C., Xie, J., Zhao, J. Z., et al., 2021. Whole-Life Cycle Countermeasures to Improve the Stimulation Effect of Network Fracturing in Deep Shale Gas Reservoirs of the Southern Sichuan Basin. Natural Gas Industry, 41(1): 169-177 (in Chinese with English abstract). [18] Sun, C. X., Nie, H. K., Liu, G. X., et al., 2019. Quartz Type and Its Control on Shale Gas Enrichment and Production: A Case Study of the Wufeng-Longmaxi Formations in the Sichuan Basin and Its Surrounding Areas, China. Earth Science, 44(11): 3692-3704 (in Chinese with English abstract). [19] Wu, Q., Liang, X., Xian, C. G., et al., 2015. Geoscience-to-Production Integration Ensures Effective and Efficient South China Marine Shale Gas Development. China Petroleum Exploration, 20(4): 1-23 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2015.04.001 [20] Xian, C. G., Zhang, J. H., Chen, X., et al., 2017. Application of Geomechanics in Geology-Engineering Integration. China Petroleum Exploration, 22(1): 75-88 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2017.01.010 [21] Yao, C. P., Fu, H. J., Ma, Y. Z., et al., 2022. Development Characteristics of Deep Shale Fractured Veins and Vein Forming Fluid Activities in Luzhou Block. Earth Science, 47(5): 1684-1693 (in Chinese with English abstract). [22] Zhang, L. H., He, X., Li, X. G., et al., 2021. Shale Gas Exploration and Development in the Sichuan Basin: Progress, Challenge and Countermeasures. Natural Gas Industry, 41(8): 143-152 (in Chinese with English abstract). [23] Zhang, J. C., Tao, J., Li, Z., et al., 2021. Prospect of Deep Shale Gas Resources in China. Natural Gas Industry, 41(1): 15-28 (in Chinese with English abstract). [24] Zhao, J. Z., Ren, L., Shen, C., et al., 2018. Latest Research Progresses in Network Fracturing Theories and Technologies for Shale Gas Reservoirs. Natural Gas Industry, 38(3): 1-14 (in Chinese with English abstract). [25] Zeng, B., Wang, X. H., Huang, H. Y., et al., 2020. Key Technology of Volumetric Fracturing in Deep Shale Gas Horizontal Wells in Southern Sichuan. Petroleum Drilling Techniques, 48(5): 77-84 (in Chinese with English abstract). [26] Zeng, Y. J., 2019. Progress in Engineering Technologies for the Development of Deep Shale Gas. Petroleum Science Bulletin, 4(3): 233-241 (in Chinese with English abstract). [27] Zou, C. N., Zhao, Q., Cong, L. Z., et al., 2021. Development Progress, Potential and Prospect of Shale Gas in China. Natural Gas Industry, 41(1): 1-14 (in Chinese with English abstract). [28] 卞晓冰, 侯磊, 蒋廷学, 等, 2019. 深层页岩裂缝形态影响因素. 岩性油气藏, 31(6): 161-168. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201906018.htm [29] 卞晓冰, 蒋延学, 贾长贵, 等, 2016. 基于施工曲线的页岩气井压后评估新方法. 天然气工业, 36(2): 60-65. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201602011.htm [30] 陈国辉, 卢双舫, 刘可禹, 等, 2020. 页岩气在孔隙表面的赋存状态及其微观作用机理. 地球科学, 45(5): 1782-1790. doi: 10.3799/dqkx.2019.194 [31] 郭建春, 赵志红, 路千里, 等, 2021. 深层页岩缝网压裂关键力学理论研究进展. 天然气工业, 41(1): 102-117. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101015.htm [32] 何希鹏, 2021. 四川盆地东部页岩气甜点评价体系与富集高产影响因素. 天然气工业, 41(1): 59-71. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101007.htm [33] 何治亮, 聂海宽, 胡东风, 等, 2020. 深层页岩气有效开发中的地质问题——以四川盆地及其周缘五峰组‒龙马溪组为例. 石油学报, 41(4): 379-391. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004003.htm [34] 蒋廷学, 卞晓冰, 王海涛, 等, 2017. 深层页岩气水平井体积压裂技术. 天然气工业, 37(1): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201701018.htm [35] 蒋廷学, 卞晓冰, 袁凯, 等, 2014. 页岩气水平井分段压裂优化设计新方法. 石油钻探技术, 42(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201402001.htm [36] 蒋廷学, 路保平, 左罗, 等, 2022. 页岩气地质工程可压度评价方法研究及应用. 天然气与石油, 40(4): 68-74. https://www.cnki.com.cn/Article/CJFDTOTAL-TRYS202204009.htm [37] 蒋廷学, 王海涛, 卞晓冰, 等, 2018. 水平井体积压裂技术研究与应用. 岩性油气藏, 30(3): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201803001.htm [38] 李曙光, 徐天吉, 吕其彪, 等, 2019. 深层页岩气双"甜点"参数地震预测技术. 天然气工业, 39(S1): 113-117. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG2019S1020.htm [39] 廖东良, 路保平, 陈延军, 2019. 页岩气地质甜点评价方法——以四川盆地焦石坝页岩气田为例. 石油学报, 40(2): 144-151. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201902002.htm [40] 聂海宽, 何治亮, 刘光祥, 等, 2020a. 中国页岩气勘探开发现状与优选方向. 中国矿业大学学报, 49(1): 13-35. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202001002.htm [41] 聂海宽, 何治亮, 刘光祥, 等, 2020b. 四川盆地五峰组‒龙马溪组页岩气优质储层成因机制. 天然气工业, 40(6): 31-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202006004.htm [42] 聂海宽, 李沛, 党伟, 等, 2022. 四川盆地及周缘奥陶系‒志留系深层页岩气富集特征与勘探方向. 石油勘探与开发, 49(4): 648-659. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202204003.htm [43] 任文希, 周玉, 郭建春, 等, 2022. 适用于中深层‒深层页岩气的高压吸附模型. 地球科学, 47(5): 1865-1875. doi: 10.3799/dqkx.2022.014 [44] 沈骋, 谢军, 赵金洲, 等, 2021. 提升川南地区深层页岩气储层压裂缝网改造效果的全生命周期对策. 天然气工业, 41(1): 169-177. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101025.htm [45] 孙川翔, 聂海宽, 刘光祥, 等, 2019. 石英矿物类型及其对页岩气富集开采的控制: 以四川盆地及其周缘五峰组‒龙马溪组为例. 地球科学, 44(11): 3692-3704. doi: 10.3799/dqkx.2019.203 [46] 吴奇, 梁兴, 鲜成钢, 等, 2015. 地质工程一体化高效开发中国南方海相页岩气. 中国石油勘探, 20(4): 1-23. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201504001.htm [47] 鲜成钢, 张介辉, 陈欣, 等, 2017. 地质力学在地质工程一体化中的应用. 中国石油勘探, 22(1): 75-88. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201701010.htm [48] 姚程鹏, 伏海蛟, 马英哲, 等, 2022. 泸州区块深层页岩裂缝脉体发育特征及成脉流体活动. 地球科学, 47(5): 1684-1693. doi: 10.3799/dqkx.2022.021 [49] 张烈辉, 何骁, 李小刚, 等, 2021. 四川盆地页岩气勘探开发进展、挑战及对策. 天然气工业, 41(8): 143-152. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202108019.htm [50] 张金川, 陶佳, 李振, 等, 2021. 中国深层页岩气资源前景和勘探潜力. 天然气工业, 41(1): 15-28. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101003.htm [51] 赵金洲, 任岚, 沈骋, 等, 2018. 页岩气储层缝网压裂理论与技术研究新进展. 天然气工业, 38(3): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201803001.htm [52] 曾波, 王星皓, 黄浩勇, 等, 2020. 川南深层页岩气水平井体积压裂关键技术. 石油钻探技术, 48(5): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT202005013.htm [53] 曾义金, 2019. 深层页岩气开发工程技术进展. 石油科学通报, 4(3): 233-241. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201903002.htm [54] 邹才能, 赵群, 丛连铸, 等, 2021. 中国页岩气开发进展、潜力及前景. 天然气工业, 41(1): 1-14.15 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101002.htm