Hydrocarbon Accumulation Factors and Favorable Exploration of Carbonate Reservoirs in the 3rd⁃4th Members of Ordovician Yingshan Formation of Tazhong Low Salient
-
摘要: 碳酸盐岩是塔里木盆地塔中低凸起古生界油气勘探的主要目的层,G70井在北斜坡奥陶系深层鹰四段测试获高产工业气流,展示了奥陶系深层广阔的勘探潜力,可以作为塔中低凸起碳酸盐岩下一步的接替领域;围绕油源断裂寻找优质储层仍是奥陶系深层勘探及目标优选的首选,但油源断裂的分布及优质储层展布还需进一步明确.基于塔中三维地震资料、结合单井录井、测井、油气物理性质开展油源断裂分析、储层预测及其主控因素分析. 研究结果表明:塔中Ⅰ号断裂东西两端、塔中10号逆断裂西段及编号F1~F16的北东向走滑断裂是奥陶系油气成藏可靠的油源断裂;古岩溶地貌相对稳定区,大面积及长时间的水-岩接触,利于岩溶洞穴储层的发育;后期走滑断裂的活动,导致岩溶作用增强或优化储层性能,在断裂与古岩溶地貌稳定区的叠合区更利于发育优质的岩溶洞穴储层. 在此基础上,结合区域盖层展布、油源断裂展布及优质储层展布特征开展成藏有利区综合评价,优选出11个Ⅰ类有利区带,指明了塔中隆起奥陶系深层下步有利勘探方向.Abstract: Carbonate rock is the major target horizon for Paleogene oil/gas exploration in the Tazhong area of the Tazhong Low Salient, Well G70 in the north slope of Tazhong obtained high⁃yield industrial gas flow in the test of the fourth member of Yingshan Formation of Lower Ordovician, and the deep layer of Ordovician in the northern slope of Tazhong Low Salient showed broad exploration potential and can be used as the next important replacement domain of carbonate rocks in Tazhong uplift. Searching for high⁃quality reservoirs around oil source fracture is still the first choice for deep ordovician exploration target and target selection, but the distribution of o oil source fracture and distribution of high⁃quality reservoirs need to be further clarified. Based on 3D seismic data of Tazhong, combined with single well logging, well logging and physical properties of oil and gas, we analyzed oil source fracture characteristics, reservoir prediction and property controlling factors. It is found that the East and West ends of Tazhong No 1 fault, the west section of thrust fault in Tazhong No.10 fault belt and the numbered F1⁃F16 of NE strike slip fault have long⁃term effect of transporting oil and gas, which are the main oil source faults of Ordovician oil and gas accumulation in Tazhong Low Salient; In the relatively stable area of paleokarst landform, large⁃area and long⁃term water rock contact is conducive to the development of karst cave reservoirs; The late fault activity not only transformed the reservoir performance, but also enhanced the karstification, in the superposition area of fault and paleokarst landform stability area, it is more conducive to the development of high⁃quality karst cave reservoirs.Based on the above work, a comprehensive evaluation of reservoir formation was carried out based on regional seal distribution, high⁃quality reservoir distribution and fault distribution, and eleven Class Ⅰ favorable areas selected, to direct future exploration.
-
图 3 塔中低凸起逆冲断层(a)与走滑断层(b)典型地震剖面
剖面位置见图 1
Fig. 3. Typical seismic profiles of thrust fault (a) and strike⁃slip fault (b) in Tazhong Uplift
图 4 塔中低凸起奥陶系油气产能、气油比、原油密度分布图及单井原油物性统计柱状图
a. 塔中低凸起奥陶系单井油气累产当量分布;b. 塔中低凸起奥陶系单井气油比及原油密度分布;c. 北东向相邻走滑断裂之间单井累计油气当量变化柱状图(连井线位置见图4a);d. 北东向相邻走滑断裂之间单井气油比及原油密度变化柱状图(连井线位置见图4b);e. 北东向相邻走滑断裂之间部分单井原油含蜡量及原油饱和烃/芳烃比值变化柱状图
Fig. 4. Distribution chart of Ordovician oil and gas productivity, gas oil ratio, crude oil density and single well statistical histogram in Tazhong uplift
图 5 塔中低凸起奥陶系鹰山组三、四段岩石类型及储集空间类型
a. 塔中低凸起鹰山组三、四段储层岩性分布;b. 溶蚀孔洞,亮晶砂屑灰岩,G46⁃3H井,5 586~5 594 m;c. 晶间溶孔和晶间孔,孔隙呈不规则状,细晶白云岩,G46⁃3H井,5 587.76 m,岩心样品,铸体薄片,单偏光;d. 自形、半自形及他形细晶白云石沿构造溶蚀缝分布,G46⁃3H井,5 586.56 m,裂缝有效缝0.01~0.02 mm,宽岩心样品,铸体薄片,单偏光;e. 自形白云石沿压溶缝分布,G46⁃3H井,5 594.85 m,岩心样品,铸体薄片,单偏光;f. 他形细晶白云石沿构造溶蚀缝分布,G46⁃3H井,5 595.84 m,裂缝有效缝0.01~0.02 mm,岩心样品,铸体薄片,单偏光;g. 裂缝和溶蚀孔洞,裂缝呈黑色的正弦曲线,溶蚀孔洞呈暗色斑点状,G46⁃3H井,5 585~5 589 m,电阻率成像测井;h. 裂缝,一组高角度裂缝,G60井,6 680~6 683.5 m,电阻率成像测井;i. 溶蚀洞穴,成深色大块状,G60井,6 439.5~6 442.5 m,电阻率成像测井;j. 溶蚀孔洞,呈暗色斑点状,G60井,6 490~6 493 m,电阻率成像测井
Fig. 5. Rock types and reservoir space types of the 3rd⁃4thmembers of the Yingshan Formation in Tazhong uplift
-
[1] Fan, Q., Fan, T. L., Li, Y. F., et al., 2020. Paleo-Environments and Development Pattern of High-Quality Marine Source Rocks of the Early Cambrian, Northern Tarim Platform. Earth Science, 45(1): 285-302 (in Chinese with English abstract). [2] Han, J. F., Zhang, H. Z., Yu, H. F., et al., 2012. Hydrocarbon Accumulation Characteristic and Exploration on Large Marine Carbonate Condensate Field in Tazhong Uplift. Acta Petrologica Sinica, 28(3): 769-782 (in Chinese with English abstract). [3] Jia, C. Z. . 1997. Tectonic Characteristics and Petroleum, Tarim Basin, China. Petroleum Industry Press, Beijing (in Chinese). [4] Jiang, T. W., Han, J. F., Wu, G. H., et al., 2020. Differences and Controlling Factors of Composite Hydrocarbon Accumulations in the Tazhong Uplift, Tarim Basin, NW China. Petroleum Exploration and Development, 47(2): 213-224 (in Chinese with English abstract). [5] Jing, X. C., Du, P. D., Zhang, F., et al., 2007. A Preliminary Study on the Ordovician Conodont Biostratigraphy at the Yakrik Section, Northwestern Margin of the Tarim Basin, Xinjiang. Geological Review, 53(2): 242-249 (in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2007.02.012 [6] Li, C. X., Wang, X. F., Li, B. L., et al., 2013. Paleozoic Fault Systems of the Tazhong Uplift, Tarim Basin, China. Marine and Petroleum Geology, 39(1): 48-58. https://doi.org/10.1016/j.marpetgeo.2012.09.010 [7] Li, S. M., Pang, X. Q., Yang H. J., et al., 2010. Generation, Migration and Accumulation Model for the Marine Oils in the Tarim Basin. Earth Science, 35(4): 663-673 (in Chinese with English abstract). [8] Loucks, R. G., 1999. Paleocave Carbonate Reservoirs: Origins, Burial-Depth Modifications, Spatial Complexity, and Reservoir Implications. AAPG Bulletin, 83(11): 1795-1834. https://doi.org/10.1306/e4fd426f-1732-11d7-8645000102c1865d [9] Lü, X. X., Yang, N., Zhou, X. Y., et al., 2008. Influence of Ordovician Carbonate Reservoir Beds in Tarim Basin by Faulting. Science China(Seri. D): Earth Sciences, 38(Suppl. 1): 48-54 (in Chinese with English abstract). [10] Lu, Z., Y., Chen, H. H., Feng, Y., ong, et al., 2015. Evidences of Multi-Episodically Paleo-Fluid Flow and Its Significance in Ordovician of Guchengxu Uplift, Tarim Basin. Earth Science, 40(9): 1529-1537 (in Chinese with English abstract). [11] Ma, A. L., Jin, Z. J., Li, H. L., et al., 2020. Secondary Alteration and Preservation of Ultra-Deep Ordovician Oil Reservoirs of North Shuntuoguole Area of Tarim Basin, NW China. Earth Science, 45(5): 1737-1753 (in Chinese with English abstract). [12] Su, A. G., Zhang, S. C., Han, D. X., et al., 2004. Behavior of Chain Alkane Molecular Components in PVT Fractionation Experiment. Acta Sedimentologica Sinica, 22(2): 354-358 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0550.2004.02.024 [13] Wang, B. W., Zhang, S. D., Ji, R., et al., 2017. Application of Microscope High Resolution LWD Resistivity Image Logging in Carbonate Reservoirs in Sichuan Basin. Well Logging Technology, 41(3): 358-363 (in Chinese with English abstract). [14] Wang, Y. Y., Chen, J. F., Pang, X. Q., et al., 2018. Ordovician Hydrocarbon Charging Characteristics and Migration Direction in Tazhong Area. Acta Petrolei Sinica, 39(1): 54-68 (in Chinese with English abstract). [15] Wang, Z. M., Xie, H. W., Chen, Y. Q., et al., 2014. Discovery and Exploration of Cambrian Subsalt Dolomite Original Hydrocarbon Reservoir at Zhongshen-1 Well in Tarim Basin. China Petroleum Exploration, 19(2): 1-13 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2014.02.001 [16] Wei, G. Q., Zhu, Y. J., Zheng, J. F., et al., 2021. Tectonic-Lithofacies Paleogeography, Large-Scale Source-Reservoir Distribution and Exploration Zones of Cambrian Subsalt Formation, Tarim Basin, NW China. Petroleum Exploration and Development, 48(6): 1114-1126 (in Chinese with English abstract). [17] Wu, G. H., Pang, X. Q., Li, Q. M., et al., 2016. Structural Characteristics in Cratonic Carbonate Rocks and Its Implication for Oil/Gas Accumulation: A Case Study in the Tarim Basin, China. Chinese Science Press, Beijing (in Chinese with English abstract). [18] Wu, G. H., Wang, H., Chen, Z. Y., et al., 2010. Characteristics of the Complex Ordovician Carbonate Reservoirs in the Tarim Basin. Oil & Gas Geology, 31(6): 763-769 (in Chinese with English abstract). [19] Wu, G. H., Yang, H. J., He, S., et al., 2016. Effects of structural segmentation and faulting on carbonate reservoir properties: A case study from the Central Uplift of the Tarim Basin, China. Marine and Petroleum Geology, 71: 183-197 (in Chinese with English abstract). doi: 10.1016/j.marpetgeo.2015.12.008 [20] Wu, G. H., Yang, H. J., Qu, T. L., et al., 2012. The Fault System Characteristics and Its Controlling Roles on Marine carbonate Hydrocarbon in the Central Uplift, Tarim Basin. Acta Petrologica Sinica, 28(3): 793-805 (in Chinese with English abstract). [21] Xiang, C. F., Wang, J. Z., Pang, X. Q., et al., 2009. Differential Hydrocarbon Migration and Entrapment in the Karstified Carbonate Reservoir: a Case Study of Well TZ83 Block of the Central Tarim Uplift Zone. Earth Science Frontiers, 16(6): 349-358(in Chinese with English abstract). doi: 10.1016/S1872-5791(08)60115-3 [22] Yang, Y., Wang, B., Cao, Z. C., et al., 2021. Genesis and Formation Time of Calcite Veins of Middle-Lower Ordovician Reservoirs in Northern Shuntuoguole Low-Uplift, Tarim Basin. Earth Science, 46(6): 2246-2257 (in Chinese with English abstract). [23] Zeng, H. L., Wang, G. Z., Janson, X., et al., 2011. Characterizing Seismic Bright Spots in Deeply Buried, Ordovician Paleokarst Strata, Central Tabei Uplift, Tarim Basin, Western China. Geophysics, 76(4): B127-B137. https://doi.org/10.1190/1.3581199 [24] Zhai, G. M., He, W. Y., 2004. An Important Petroleum Exploration Region in Tarim Basin. Acta Petrolei Sinica, 25(1): 1-7(in Chinese with English abstract). [25] Zhang, M., Zhang, Z. H., Xiong, Y. X., et al., 2020. Formation Mechanism and Distribution of Carbonate Reservoirs in the 3rd-4th Members of Ordovician Yingshan Formation on the Northern Slope of Tazhong Uplift. Natural Gas Geoscience, 31(5): 636-646 (in Chinese with English abstract). [26] Zhang, S. C., Gao, Z. Y., Li, J. J., et al., 2012. Identification and Distribution of Marine Hydrocarbon Source Rocks in the Ordovicianand Cambrian of the Tarim Basin. Petroleum Exploration and Development, 39(3): 285-294 (in Chinese with English abstract). doi: 10.1016/S1876-3804(12)60044-5 [27] Zhao, J. Z., 2001. Evoluation on the Cambrian-Ordovician Marine Source Rocks from the North Tarim Basin. Acta Sedimentologica Sinica, 19(1): 117-124 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0550.2001.01.020 [28] Zhong, G. F., Liu, R. L., Liu, J. H., et al., 2004. Identifying the Paleocaves in Ordovician in Tabei Uplift by Electro Imaging Logs. Natural Gas Industry, 24(6): 57-60 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-0976.2004.06.017 [29] Zhu, G. Y., Chen, F. R., Wang, M., et al., 2018. Discovery of the Lower Cambrian High-Quality Source Rocks and Deep Oil and Gas Exploration Potential in the Tarim Basin, China. AAPG Bulletin, 102(10): 2123-2151. https://doi.org/10.1306/03141817183 [30] Zhu, G. Y., Zhang, B. T., Yang, H. J., et al., 2014. Origin of Deep Strata Gas of Tazhong in Tarim Basin, China. Organic Geochemistry, 74: 85-97. https://doi.org/10.1016/j.orggeochem.2014.03.003 [31] 樊奇, 樊太亮, 李一凡, 等, 2020. 塔里木地台北缘早寒武世古海洋氧化-还原环境与优质海相烃源岩发育模式. 地球科学, 45(1): 285-302. doi: 10.3799/dqkx.2018.128 [32] 韩剑发, 张海祖, 于红枫, 等, 2012. 塔中隆起海相碳酸盐岩大型凝析气田成藏特征与勘探. 岩石学报, 28(3): 769-782. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203007.htm [33] 贾承造, 1997. 中国塔里木盆地构造特征与油气. 北京: 石油工业出版社. [34] 江同文, 韩建发, 邬光辉, 等, 2020. 塔里木盆地塔中隆起断控复式油气聚集的差异性及主控因素. 石油勘探与开发, 47(2): 213-224. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002002.htm [35] 景秀春, 杜品德, 张放, 等, 2007. 塔里木盆地亚科瑞克剖面奥陶系牙形石生物地层初步研究. 地质论评, 53(2): 242-249. doi: 10.3321/j.issn:0371-5736.2007.02.012 [36] 李素梅, 庞雄奇, 杨海军, 等, 2010. 塔里木盆地海相油气源与混源成藏模式. 地球科学, 35(4): 663-673. doi: 10.3799/dqkx.2010.081 [37] 鲁子野, 陈红汉, 丰勇, 等, 2015. 塔里木盆地古城墟隆起奥陶系多期古流体活动证据及意义. 地球科学, 40(9): 1529-1537. doi: 10.3799/dqkx.2015.137 [38] 吕修祥, 杨宁, 周新源, 等, 2008. 塔里木盆地断裂活动对奥陶系碳酸盐岩储层的影响. 中国科学(D辑): 地球科学, 38(增刊1): 48-54. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2008S1006.htm [39] 马安来, 金之钧, 李慧莉, 等, 2020. 塔里木盆地顺北地区奥陶系超深层油藏蚀变作用及保存. 地球科学, 45(5): 1737-1753. doi: 10.3799/dqkx.2019.157 [40] 苏爱国, 张水昌, 韩德馨, 等, 2004. PVT分馏实验中链状烷烃分子的行为. 沉积学报, 22(2): 354-358. doi: 10.3969/j.issn.1000-0550.2004.02.024 [41] 王邦伟, 张树东, 吉人, 等, 2017. 高分辨率随钻电阻率成像测井在四川盆地碳酸盐岩储层的应用. 测井技术, 41(3): 358-363. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201703023.htm [42] 王阳洋, 陈践发, 庞雄奇, 等, 2018. 塔中地区奥陶系油气充注特征及运移方向. 石油学报, 39(1): 54-68. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201801005.htm [43] 王招明, 谢会文, 陈永权, 等, 2014. 塔里木盆地中深1井寒武系盐下白云岩原生油气藏的发现与勘探意义. 中国石油勘探, 19(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201402001.htm [44] 魏国齐, 朱永进, 郑剑锋, 等, 2021. 塔里木盆地寒武系盐下构造-岩相古地理、规模源储分布与勘探区带评价. 石油勘探与开发, 48(6): 1114-1126. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202106005.htm [45] 邬光辉, 庞雄奇, 李启明, 等, 2016. 克拉通碳酸盐岩构造与油气: 以塔里木盆地为例. 北京: 科学出版社. [46] 邬光辉, 汪海, 陈志勇, 等, 2010. 塔里木盆地奥陶系碳酸盐岩复杂油气藏的特性. 石油与天然气地质, 31(6): 763-769. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201006012.htm [47] 邬光辉, 杨海军, 屈泰来, 等, 2012. 塔里木盆地塔中隆起断裂系统特征及其对海相碳酸盐岩油气的控制作用. 岩石学报, 28(3): 793-805. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201203009.htm [48] 向才富, 王建忠, 庞雄奇, 等, 2009. 塔中83井区表生岩溶缝洞体系中油气的差异运聚作用. 地学前缘, 16(6): 349-358. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200906045.htm [49] 杨毅, 王斌, 曹自成, 等, 2021. 塔里木盆地顺托果勒低隆起北部中下奥陶统储层方解石脉成因及形成时间. 地球科学, 46(6): 2246-2257. doi: 10.3799/dqkx.2020.200 [50] 翟光明, 何文渊, 2004. 塔里木盆地石油勘探实现突破的重要方向. 石油学报, 25(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200401000.htm [51] 张敏, 张正红, 熊益学, 等, 2020. 塔中北斜坡奥陶系鹰山组三、四段碳酸盐岩优质储层形成机制及分布规律. 天然气地球科学, 31(5): 636-646. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202005005.htm [52] 张水昌, 高志勇, 李建军, 等, 2012. 塔里木盆地寒武系-奥陶系海相烃源岩识别与分布预测. 石油勘探与开发, 39(3): 285-294. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201203005.htm [53] 赵靖舟, 2001. 塔里木盆地北部寒武-奥陶系海相烃源岩重新认识. 沉积学报, 19(1): 117-124. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200101020.htm [54] 钟广法, 刘瑞林, 柳建华, 等, 2004. 塔北隆起奥陶系古岩溶的电成像测井识别. 天然气工业, 24(6): 57-60.