• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    实验地球科学的前沿与发展战略

    许文良 任建国 章军锋

    许文良, 任建国, 章军锋, 2022. 实验地球科学的前沿与发展战略. 地球科学, 47(8): 2667-2678. doi: 10.3799/dqkx.2022.302
    引用本文: 许文良, 任建国, 章军锋, 2022. 实验地球科学的前沿与发展战略. 地球科学, 47(8): 2667-2678. doi: 10.3799/dqkx.2022.302
    Xu Wenliang, Ren Jianguo, Zhang Junfeng, 2022. Frontiers and Development Strategies of Experimental Geoscience. Earth Science, 47(8): 2667-2678. doi: 10.3799/dqkx.2022.302
    Citation: Xu Wenliang, Ren Jianguo, Zhang Junfeng, 2022. Frontiers and Development Strategies of Experimental Geoscience. Earth Science, 47(8): 2667-2678. doi: 10.3799/dqkx.2022.302

    实验地球科学的前沿与发展战略

    doi: 10.3799/dqkx.2022.302
    基金项目: 

    国家自然科学基金项目 42042007

    详细信息
      作者简介:

      许文良(1959-),男,教授,主要从事火成岩成因和岩石圈动力学方面的教学和科研工作. ORCID:0000-0002-5129-8586. E‐mail:xuwl@jlu.edu.cn

    • 中图分类号: P5

    Frontiers and Development Strategies of Experimental Geoscience

    • 摘要: 实验地球科学是利用实验装置和技术模拟地球内部的高温高压条件,开展地球内部物质的物理和化学属性与地球内部过程研究. 我国的实验地球科学在过去10年得到了快速发展,已成为国际高温高压实验领域的一支重要研究力量. 主要介绍了实验地球科学的定义与战略价值,简述了我国实验地球科学的发展现状与薄弱环节,提出了未来学科发展的思路和重要举措,并展望了学科未来的优先发展方向.

       

    • [1] Badro, J., Fiquet, G., Guyot, F., et al., 2007. Effect of Light Elements on the Sound Velocities in Solid Iron: Implications for the Composition of Earth's Core. Earth and Planetary Science Letters, 254(1/2): 233-238. https://doi.org/10.1016/j.epsl.2006.11.025
      [2] Badro, J., Fiquet, G., Guyot, F., et al., 2003. Iron Partitioning in Earth's Mantle: Toward a Deep Lower Mantle Discontinuity. Science, 300(5620): 789-791. https://doi.org/10.1126/science.1081311
      [3] Bekaert, D. V., Turner, S. J., Broadley, M. W., et al., 2020. Subduction‐Driven Volatile Recycling: A Global Mass Balance. Annual Review of Earth and Planetary Sciences, 49(1): 37-70. https://doi.org/10.1146/annurev‐earth‐071620‐055024
      [4] Bell, D. R., Rossman, G. R., 1992. Water in Earth's Mantle: The Role of Nominally Anhydrous Minerals. Science, 255(5050): 1391-1397. https://doi.org/10.1126/science.255.5050.1391
      [5] Beyer, C., Klemme, S., Wiedenbeck, M., et al., 2012. Fluorine in Nominally Fluorine‐Free Mantle Minerals: Experimental Partitioning of F between Olivine, Orthopyroxene and Silicate Melts with Implications for Magmatic Processes. Earth and Planetary Science Letters, 337-338(4): 1-9. https://doi.org/10.1016/j.epsl.2012.05.003
      [6] Bodnar, R.J., Azbej, T., Cannatelli, C., et al., 2013. Whole Earth Geohydrologic Cycle, from the Clouds to the Core: the Distribution of Water in the Dynamic Earth System. Geological Society of America, 500: 431-461.
      [7] Bowen, N. L., 1928. The Evolution of the Igneous Rocks. Princeton University Press, Princeton.
      [8] Cannaò, E., Tiepolo, M., Bebout, G. E., et al., 2020. Into the Deep and Beyond: Carbon and Nitrogen Subduction Recycling in Secondary Peridotites. Earth and Planetary Science Letters, 543(19): 116328. https://doi.org/10.1016/j.epsl.2020.116328
      [9] Chen, L., Ai, Y. S., 2009. Discontinuity Structure of the Mantle Transition Zone beneath the North China Craton from Receiver Function Migration. Journal of Geophysical Research, 114(B6): 307. https://doi.org/10.1029/2008jb006221
      [10] Dong, S.W., Chen, X.H., 2018. Deep Earth Exploration: the Research Frontier of Earth and Natural Resources Science. Frontier Science, 12(3): 84-87(in Chinese).
      [11] Dorfman, S. M., Badro, J., Nabiei, F., et al., 2018. Carbonate Stability in the Reduced Lower Mantle. Earth and Planetary Science Letters, 489: 84-91. https://doi.org/10.1016/j.epsl.2018.02.035
      [12] Duan, Y. F., Sun, N. Y., Wang, S. H., et al., 2018. Corrigendum to "Phase Stability and Thermal Equation of State of Δ‐AlOOH: Implication for Water Transportation to the Deep Lower Mantle". Earth and Planetary Science Letters, 527: 115812. https://doi.org/10.1016/j.epsl.2018.05.003
      [13] Goes, S., Agrusta, R., van Hunen, J., et al., 2017. Subduction‐Transition Zone Interaction: A Review. Geosphere, 13(3): 644-664. https://doi.org/10.1130/ges01476.1
      [14] Guo, X. Z., Yoshino, T., 2014. Pressure‐Induced Enhancement of Proton Conduction in Brucite. Geophysical Research Letters, 41(3): 813-819. https://doi.org/10.1002/2013gl058627
      [15] Hernlund, J. W., Thomas, C., Tackley, P. J., 2005. A Doubling of the Post‐Perovskite Phase Boundary and Structure of the Earth's Lowermost Mantle. Nature, 434(7035): 882-886. https://doi.org/10.1038/nature03472
      [16] Hilton, D. R., Fischer, T. P., Marty, B., 2002. Noble Gases and Volatile Recycling at Subduction Zones. Reviews in Mineralogy and Geochemistry, 47(1): 319-370. https://doi.org/10.2138/rmg.2002.47.9
      [17] Hirose, K., Wood, B., Vočadlo, L., 2021. Light Elements in the Earth's Core. Nature Reviews Earth & Environment, 2(9): 645-658. https://doi.org/10.1038/s43017‐021‐00203‐6
      [18] Holland, H.D., Turekian, K. K., 2014. Treatise on Geochemistry. Elsevier, Oxford.
      [19] Hou, M. Q., He, Y., Jang, B. G., et al., 2021. Superionic Iron Oxide‐Hydroxide in Earth's Deep Mantle. Nature Geoscience, 14(3): 174-178. https://doi.org/10.1038/s41561‐021‐00696‐2
      [20] Hou, Z. Q., Wang, R., 2019. Fingerprinting Metal Transfer from Mantle. Nature Communications, 10(1): 3510. https://doi.org/10.1038/s41467‐019‐11445‐w
      [21] Hu, Q. Y., Kim, D. Y., Yang, W. G., et al., 2016. FeO2 and FeOOH under Deep Lower‐Mantle Conditions and Earth's Oxygen‐Hydrogen Cycles. Nature, 534(7606): 241-244. https://doi.org/10.1038/nature18018
      [22] Hu, Q. Y., Liu, J., Chen, J., et al., 2021. Mineralogy of the Deep Lower Mantle in the Presence of H2O. National Science Review, 8(4): 98. https://doi.org/10.1093/nsr/nwaa098
      [23] Hu, Q., Kim, D. Y., Liu, J., et al., 2017. Dehydrogenation of Goethite in Earth's Deep Lower Mantle. Proceedings of the National Academy of Sciences, 114(7): 1498-1501. https://doi.org/10.1073/pnas.1620644114
      [24] Huang, H. J., Fei, Y. W., Cai, L. C., et al., 2011. Evidence for an Oxygen‐Depleted Liquid Outer Core of the Earth. Nature, 479(7374): 513-516. https://doi.org/10.1038/nature10621
      [25] Huang, J. L., Zhao, D. P., 2006. High‐Resolution Mantle Tomography of China and Surrounding Regions. Journal of Geophysical Research, 111(B9): 305. https://doi.org/10.1029/2005jb004066
      [26] Huppert, H. E., Woods, A. W., 2002. The Role of Volatiles in Magma Chamber Dynamics. Nature, 420(6915): 493-495. https://doi.org/10.1038/nature01211
      [27] Irifune, T., Nishiyama, N., Kuroda, K., et al., 1998. The Postspinel Phase Boundary in Mg2SiO4 Determined by in Situ X‐Ray Diffraction. Science, 279: 1698-1700. doi: 10.1126/science.279.5357.1698
      [28] Isshiki, M., Irifune, T., Hirose, K., et al., 2004. Stability of Magnesite and its High‐Pressure Form in the Lowermost Mantle. Nature, 427(6969): 60-63. https://doi.org/10.1038/nature02181
      [29] Karato, S. I., 2011. Water Distribution Across the Mantle Transition Zone and its Implications for Global Material Circulation. Earth and Planetary Science Letters, 301(3/4): 413-423. https://doi.org/10.1016/j.epsl.2010.11.038
      [30] Karato, S., 2013. Physics and Chemistry of the Deep Earth. Wiley‐Blackwell, New York.
      [31] Keppler, H., 2013. Volatiles under High Pressure. In: Karato, S.I., ed., Physics and Chemistry of the Deep Earth, Wiley‐Blackwell, New York, 1-37.
      [32] Kohlstedt, D. L., Keppler, H., Rubie, D. C., 1996. Solubility of Water in the Α, β and γ Phases of (Mg, Fe)2SiO4. Contributions to Mineralogy and Petrology, 123(4): 345-357. https://doi.org/10.1007/s004100050161
      [33] Korenaga, J., Planavsky, N. J., Evans, D. A. D., 2017. Global Water Cycle and the Coevolution of the Earth's Interior and Surface Environment. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 375(2094): 20150393. https://doi.org/10.1098/rsta.2015.0393
      [34] Kuchner, M. J., 2003. Volatile‐Rich Earth‐Mass Planets in the Habitable Zone. The Astrophysical Journal, 596(1): L105-L108. https://doi.org/10.1086/378397
      [35] Kuritani, T., Ohtani, E., Kimura, J. I., 2011. Intensive Hydration of the Mantle Transition Zone beneath China Caused by Ancient Slab Stagnation. Nature Geoscience, 4(10): 713-716. https://doi.org/10.1038/ngeo1250
      [36] Lay, T., Hernlund, J., Garnero, E. J., et al., 2006. A Post‐Perovskite Lens and D'' Heat Flux Beneath the Central Pacific. Science, 314: 1272-1276. doi: 10.1126/science.1133280
      [37] Li, J. K., Liu, Y. C., Zhao, Z., et al., 2018. Roles of Carbonate/CO2 in the Formation of Quartz‐Vein Wolframite Deposits: Insight from the Crystallization Experiments of Huebnerite in Alkali‐Carbonate Aqueous Solutions in a Hydrothermal Diamond‐Anvil Cell. Ore Geology Reviews, 95(7): 40-48. https://doi.org/10.1016/j.oregeorev.2018.02.024
      [38] Li, J. L., Gao, J., John, T., et al., 2013a. Fluid‐Mediated Metal Transport in Subduction Zones and its Link to Arc‐Related Giant Ore Deposits: Constraints from a Sulfide‐Bearing HP Vein in Lawsonite Eclogite (Tianshan, China). Geochimica et Cosmochimica Acta, 120(47): 326-362. https://doi.org/10.1016/j.gca.2013.06.023
      [39] Li, J., Wang, X., Wang, X. J., et al., 2013b. P and SH Velocity Structure in the Upper Mantle beneath Northeast China: Evidence for a Stagnant Slab in Hydrous Mantle Transition Zone. Earth and Planetary Science Letters, 367(6): 71-81. https://doi.org/10.1016/j.epsl.2013.02.026
      [40] Li, S. G., Yang, W., Ke, S., et al., 2016. Deep Carbon Cycles Constrained by a Large‐Scale Mantle Mg Isotope Anomaly in Eastern China. National Science Review, 4(1): 111-120. https://doi.org/10.1093/nsr/nww070
      [41] Li, S. W., Weng, A. H., Li, J. P., et al., 2020. Deep Origin of Cenozoic Volcanoes in Northeast China Revealed by 3‐D Electrical Structure. Science China Earth Sciences, 63(4): 533-547. https://doi.org/10.1007/s11430‐018‐9537‐2
      [42] Li, Z. X., Li, X. H., 2007. Formation of the 1 300‐km‐Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat‐Slab Subduction Model. Geology, 35(2): 179. https://doi.org/10.1130/g23193a.1
      [43] Lin, J. F., Struzhkin, V.V., Jacobsen, S.D., et al., 2005. Spin Transition of Iron in Magnesiowustite in the Earth's Lower Mantle. Nature, 436: 377-380. doi: 10.1038/nature03825
      [44] Liu, H. Y., Zhang, K., Ingrin, J., et al., 2021a. Electrical Conductivity of Omphacite and Garnet Indicates Limited Deep Water Recycling by Crust Subduction. Earth and Planetary Science Letters, 559: 116784. https://doi.org/10.1016/j.epsl.2021.116784
      [45] Liu, J., Hu, Q. Y., Bi, W. L., et al., 2019. Altered Chemistry of Oxygen and Iron under Deep Earth Conditions. Nature Communications, 10(1): 153. https://doi.org/10.1038/s41467‐018‐08071‐3
      [46] Liu, J., Hu, Q. Y., Young Kim, D., et al., 2017a. Hydrogen‐Bearing Iron Peroxide and the Origin of Ultralow‐Velocity Zones. Nature, 551(7681): 494-497. https://doi.org/10.1038/nature24461
      [47] Liu, J., Xia, Q. K., Kuritani, T., et al., 2017b. Mantle Hydration and the Role of Water in the Generation of Large Igneous Provinces. Nature Communications, 8(1): 1824. https://doi.org/10.1038/s41467‐017‐01940‐3
      [48] Liu, J., Wang, C. X., Lv, C., et al., 2021b. Evidence for Oxygenation of Fe‐Mg Oxides at Mid‐Mantle Conditions and the Rise of Deep Oxygen. National Science Review, 8(4): 96. https://doi.org/10.1093/nsr/nwaa096
      [49] Liu, Y. N., Brenan, J., 2015. Partitioning of Platinum‐Group Elements (PGE) and Chalcogens (Se, Te, As, Sb, Bi) between Monosulfide‐Solid Solution (MSS), Intermediate Solid Solution (ISS) and Sulfide Liquid at Controlled fO2fS2 Conditions. Geochimica et Cosmochimica Acta, 159(5): 139-161. https://doi.org/10.1016/j.gca.2015.03.021
      [50] Liu, Y.S., Chen, C.F., He, D.T., et al., 2019. Deep Carbon Cycle in Subduction Zones. Scientia Sinica (Terrae), 49(12): 1982-2003(in Chinese).
      [51] Liu, Z., Park, J., Karato, S. I., 2016. Seismological Detection of Low‐Velocity Anomalies Surrounding the Mantle Transition Zone in Japan Subduction Zone. Geophysical Research Letters, 43(6): 2480-2487. https://doi.org/10.1002/2015gl067097
      [52] Mao, H. K., Hu, Q. Y., et al., 2017. When Water Meets Iron at Earth's Core‐Mantle Boundary. National Science Review, 4(6): 870-878. https://doi.org/10.1093/nsr/nwx109
      [53] Mao, H. K., Mao, W. L., 2020. Key Problems of the Four‐Dimensional Earth System. Matter and Radiation at Extremes, 5(3): 038102. https://doi.org/10.1063/1.5139023
      [54] Marty, B., 2012. The Origins and Concentrations of Water, Carbon, Nitrogen and Noble Gases on Earth. Earth and Planetary Science Letters, 313-314(7348): 56-66. https://doi.org/10.1016/j.epsl.2011.10.040
      [55] Miller, S. L., 1953. A Production of Amino Acids under Possible Primitive Earth Conditions. Science, 117(3046): 528-529. https://doi.org/10.1126/science.117.3046.528
      [56] Murakami, M., Hirose, K., Kawamura, K., et al., 2004. Post‐Perovskite Phase Transition in MgSiO3. Science, 304(5672): 855-858. https://doi.org/10.1126/science.1095932
      [57] Nakagawa, T., Iwamori, H., 2017. Long‐Term Stability of Plate‐Like Behavior Caused by Hydrous Mantle Convection and Water Absorption in the Deep Mantle. Journal of Geophysical Research: Solid Earth, 122(10): 8431-8445. https://doi.org/10.1002/2017jb014052
      [58] Nishi, M., Irifune, T., Tsuchiya, J., et al., 2014. Stability of Hydrous Silicate at High Pressures and Water Transport to the Deep Lower Mantle. Nature Geoscience, 7(3): 224-227. https://doi.org/10.1038/ngeo2074
      [59] Ohtani, E., 2020. Hydration and Dehydration in Earth's Interior. Annual Review of Earth and Planetary Sciences, 49(1): 253-278. https://doi.org/10.1146/annurev‐earth‐080320‐062509
      [60] Pamato, M. G., Myhill, R., Boffa Ballaran, T., et al., 2015. Lower‐Mantle Water Reservoir Implied by the Extreme Stability of a Hydrous Aluminosilicate. Nature Geoscience, 8(1): 75-79. https://doi.org/10.1038/ngeo2306
      [61] Pearson, D. G., Brenker, F. E., Nestola, F., et al., 2014. Hydrous Mantle Transition Zone Indicated by Ringwoodite Included within Diamond. Nature, 507(7491): 221-224. https://doi.org/10.1038/nature13080
      [62] Plank, T., Manning, C. E., 2019. Subducting Carbon. Nature, 574(7778): 343-352. https://doi.org/10.1038/s41586‐019‐1643‐z
      [63] Poirier, J. P., 1994. Light Elements in the Earth's Outer Core: A Critical Review. Physics of the Earth and Planetary Interiors, 85(3/4): 319-337. https://doi.org/10.1016/0031‐9201(94)90120‐1
      [64] Richard, G., Bercovici, D., Karato, S. I., 2006. Slab Dehydration in the Earth's Mantle Transition Zone. Earth and Planetary Science Letters, 251(1/2): 156-167. https://doi.org/10.1016/j.epsl.2006.09.006
      [65] Ringwood, A.E., 1959. The Olivine‐Spinel Inversion in Fayalite. American Mineralogist, 44: 659-661.
      [66] Ringwood, A.E., 1975. Composition and Petrology of the Earth's Mantle. McGraw‐Hill, New York.
      [67] Santos, S. S. M., Marcondes, M. L., Justo, J. F., et al., 2019. Stability of Calcium and Magnesium Carbonates at Earth's Lower Mantle Thermodynamic Conditions. Earth and Planetary Science Letters, 506(4): 1-7. https://doi.org/10.1016/j.epsl.2018.10.030
      [68] Schmandt, B., Jacobsen, S. D., Becker, T. W., et al., 2014. Dehydration Melting at the Top of the Lower Mantle. Science, 344(6189): 1265-1268. https://doi.org/10.1126/science.1253358
      [69] Shcheka, S. S., Keppler, H., 2012. The Origin of the Terrestrial Noble‐Gas Signature. Nature, 490(7421): 531-534. https://doi.org/10.1038/nature11506
      [70] Shcheka, S. S., Wiedenbeck, M., Frost, D. J., et al., 2006. Carbon Solubility in Mantle Minerals. Earth and Planetary Science Letters, 245(3/4): 730-742. https://doi.org/10.1016/j.epsl.2006.03.036
      [71] Shen, X. Z., Yuan, X. H., Li, X. Q., 2014. A Ubiquitous Low‐Velocity Layer at the Base of the Mantle Transition Zone. Geophysical Research Letters, 41(3): 836-842. https://doi.org/10.1002/2013gl058918
      [72] Smyth, J. R., 1987. The Beta ‐Mg2SiO4: a Potential Host for Water in the Mantle? American Mineralogist, 72: 1051-1055.
      [73] Stevenson, D. S., Blake, S., 1998. Modelling the Dynamics and Thermodynamics of Volcanic Degassing. Bulletin of Volcanology, 60(4): 307-317. https://doi.org/10.1007/s004450050234
      [74] Sun, W. D., Ding, X., Ling, M.X., et al., 2015. Subduction and Ore Deposits. International Geology Review, 57(9/10): ⅲ-ⅵ. https://doi.org/10.1080/00206814.2015.1029543
      [75] Tauzin, B., Kim, S., Kennett, B. L. N., 2017. Pervasive Seismic Low‐Velocity Zones within Stagnant Plates in the Mantle Transition Zone: Thermal or Compositional Origin?. Earth and Planetary Science Letters, 477(1): 1-13. https://doi.org/10.1016/j.epsl.2017.08.006
      [76] Tian, Y., Zhu, H. X., Zhao, D. P., et al., 2016. Mantle Transition Zone Structure beneath the Changbai Volcano: Insight into Deep Slab Dehydration and Hot Upwelling near the 410 km Discontinuity. Journal of Geophysical Research: Solid Earth, 121(8): 5794-5808. https://doi.org/10.1002/2016jb012959
      [77] Tschauner, O., Huang, S., Greenberg, E., et al., 2018. Ice‐Ⅶ Inclusions in Diamonds: Evidence for Aqueous Fluid in Earth's Deep Mantle. Science, 359(6380): 1136-1139. https://doi.org/10.1126/science.aao3030
      [78] Wallace, P. J., 2005. Volatiles in Subduction Zone Magmas: Concentrations and Fluxes Based on Melt Inclusion and Volcanic Gas Data. Journal of Volcanology and Geothermal Research, 140(1/2/3): 217-240. https://doi.org/10.1016/j.jvolgeores.2004.07.023
      [79] Wallace, P.J., Plank, T., Edmonds, M., et al., 2015. Volatiles in Magmas. In: Houghton, S. H., McNutt, B., Hazel, R. S., Stix, J., eds., The Encyclopedia of Volcanoes, Academic Press, Amsterdam, 163-183.
      [80] Wang, C. G., Lo Cascio, M., Liang, Y., et al., 2020a. An Experimental Study of Peridotite Dissolution in Eclogite‐Derived Melts: Implications for Styles of Melt‐Rock Interaction in Lithospheric Mantle beneath the North China Craton. Geochimica et Cosmochimica Acta, 278: 157-176. https://doi.org/10.1016/j.gca.2019.09.022
      [81] Wang, W. Z., Xu, Y. H., Sun, D. Y., et al., 2020b. Velocity and Density Characteristics of Subducted Oceanic Crust and the Origin of Lower‐Mantle Heterogeneities. Nature Communications, 11(1): 64. https://doi.org/10.1038/s41467‐019‐13720‐2
      [82] Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30. https://doi.org/10.1016/j.jseaes.2010.11.014
      [83] Wu, F. Y., Yang, J. H., Xu, Y. G., et al., 2019. Destruction of the North China Craton in the Mesozoic. Annual Review of Earth and Planetary Sciences, 47(1): 173-195. https://doi.org/10.1146/annurev‐earth‐053018‐060342
      [84] Xia, Q. K., Liu, J., Kovács, I., et al., 2017. Water in the Upper Mantle and Deep Crust of Eastern China: Concentration, Distribution and Implications. National Science Review, 6(1): 125-144. https://doi.org/10.1093/nsr/nwx016
      [85] Xu, L. L., Mei, S. H., Dixon, N., et al., 2013. Effect of Water on Rheological Properties of Garnet at High Temperatures and Pressures. Earth and Planetary Science Letters, 379: 158-165. https://doi.org/10.1016/j.epsl.2013.08.002
      [86] Xu, W. L., Chen, J. H., Weng, A. H., et al., 2020. Stagnant Slab Front within the Mantle Transition Zone Controls the Formation of Cenozoic Intracontinental High‐Mg Andesites in Northeast Asia. Geology, 49(1): 19-24. https://doi.org/10.1130/g47917.1
      [87] Xu, Y. G., Li, H. Y., Hong, L. B., et al., 2018. Generation of Cenozoic Intraplate Basalts in the Big Mantle Wedge under Eastern Asia. Science China Earth Sciences, 61(7): 869-886. https://doi.org/10.1007/s11430‐017‐9192‐y
      [88] Yang, J. F., Faccenda, M., 2020. Intraplate Volcanism Originating from Upwelling Hydrous Mantle Transition Zone. Nature, 579(7797): 88-91. https://doi.org/10.1038/s41586‐020‐2045‐y
      [89] Yang, X., Keppler, H., Li, Y., 2016. Molecular Hydrogen in Mantle Minerals. Geochemical Perspectives Letters, 2: 160-168. https://doi.org/10.7185/geochemlet.1616
      [90] Ye, L. L., Li, J., Tseng, T. L., et al., 2011. A Stagnant Slab in a Water‐Bearing Mantle Transition Zone beneath Northeast China: Implications from Regional SH Waveform Modelling. Geophysical Journal International, 186(2): 706-710. https://doi.org/10.1111/j.1365‐246x.2011.05063.x
      [91] Yoshioka, T., Wiedenbeck, M., Shcheka, S., et al., 2018. Nitrogen Solubility in the Deep Mantle and the Origin of Earth's Primordial Nitrogen Budget. Earth and Planetary Science Letters, 488: 134-143. https://doi.org/10.1016/j.epsl.2018.02.021
      [92] Zhang, J.F., Ni, H.W., Yang, X.Z., et al., 2021. Progress and Perspective of Experimental Geoscience in China (2011‐2020). Bulletin of Mineralogy, Petrology and Geochemistry, 40(3): 597-609, 777(in Chinese with English abstract).
      [93] Zhang, Z., Mao, Z., Liu, X., et al., 2018. Stability and Reactions of CaCO3 Polymorphs in the Earth's Deep Mantle. Journal of Geophysical Research, 123: 6491-6500. https://doi.org/10.1029/2018jb015654
      [94] Zhao, D. P., 2017. Big Mantle Wedge, Anisotropy, Slabs and Earthquakes beneath the Japan Sea. Physics of the Earth and Planetary Interiors, 270: 9-28. https://doi.org/10.1016/j.pepi.2017.06.009
      [95] Zhao, D. P., Tian, Y., Lei, J. S., et al., 2009. Seismic Image and Origin of the Changbai Intraplate Volcano in East Asia: Role of Big Mantle Wedge above the Stagnant Pacific Slab. Physics of the Earth and Planetary Interiors, 173(3/4): 197-206. https://doi.org/10.1016/j.pepi.2008.11.009
      [96] Zheng, Y. F., Mao, J. W., Chen, Y. J., et al., 2019. Hydrothermal Ore Deposits in Collisional Orogens. Science Bulletin, 64(3): 205-212. https://doi.org/10.1016/j.scib.2019.01.007
      [97] Zheng, Y. F., Xu, Z., Zhao, Z. F., et al., 2018. Mesozoic Mafic Magmatism in North China: Implications for Thinning and Destruction of Cratonic Lithosphere. Science China Earth Sciences, 61(4): 353-385. https://doi.org/10.1007/s11430‐017‐9160‐3
      [98] Zheng, Y. F., 2020. Plate Tectonics. In: Alderton, D., Elias, S., eds., Encyclopedia of Geology. Elesvier, Amsterdam.
      [99] Zhu, R. X., Xu, Y. G., Zhu, G., et al., 2012. Destruction of the North China Craton. Science China Earth Sciences, 55(10): 1565-1587. https://doi.org/10.1007/s11430‐012‐4516‐y
      [100] 董树文, 陈宣华, 2018. 深地探测: 地球和自然资源科学的研究前沿. 前沿科学, 12(3): 84-87. doi: 10.3969/j.issn.1673-8128.2018.03.028
      [101] 刘勇胜, 陈春飞, 何德涛, 等, 2019. 俯冲带地球深部碳循环作用. 中国科学: 地球科学, 49(12): 1982-2003. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201912009.htm
      [102] 章军锋, 倪怀玮, 杨晓志, 等, 2021. 中国实验地球科学研究进展与展望(2011—2020). 矿物岩石地球化学通报, 40(3): 597-609, 777. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202103005.htm
    • 加载中
    计量
    • 文章访问数:  757
    • HTML全文浏览量:  416
    • PDF下载量:  240
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-07-30
    • 刊出日期:  2022-08-25

    目录

      /

      返回文章
      返回