• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    实验流变学的发展现状与趋势

    章军锋 周永胜 宋茂双

    章军锋, 周永胜, 宋茂双, 2022. 实验流变学的发展现状与趋势. 地球科学, 47(8): 2744-2756. doi: 10.3799/dqkx.2022.301
    引用本文: 章军锋, 周永胜, 宋茂双, 2022. 实验流变学的发展现状与趋势. 地球科学, 47(8): 2744-2756. doi: 10.3799/dqkx.2022.301
    Zhang Junfeng, Zhou Yongsheng, Song Maoshuang, 2022. Development Status and Trends of Experimental Rheology. Earth Science, 47(8): 2744-2756. doi: 10.3799/dqkx.2022.301
    Citation: Zhang Junfeng, Zhou Yongsheng, Song Maoshuang, 2022. Development Status and Trends of Experimental Rheology. Earth Science, 47(8): 2744-2756. doi: 10.3799/dqkx.2022.301

    实验流变学的发展现状与趋势

    doi: 10.3799/dqkx.2022.301
    基金项目: 

    国家自然科学基金项目 42172250

    国家自然科学基金项目 42042007

    详细信息
      作者简介:

      章军锋(1977-),男,教授,主要从事壳幔岩石流变和地震成因物理机制方面的教学和科研工作. ORCID:0000-0002-2834-2833. E-mail:jfzhang@cug.edu.cn

    • 中图分类号: O37

    Development Status and Trends of Experimental Rheology

    • 摘要: 实验流变学是通过高温高压实验手段研究地球内部主要组成物质在差应力的作用下发生变形和流动的学科. 伴随着流变实验技术的不断发展,实验流变学在过去30年中得到了快速发展,研究范畴和研究对象不断扩大,在地球和行星科学的研究领域发挥着重要的作用.主要简要介绍了实验流变学技术的发展历史,围绕岩石圈、软流圈、转换带和下地幔流变学实验研究和中深源地震机制的研究总结了实验流变学领域的主要研究进展与存在问题,提出由物质成分和热结构控制的地球不同圈层流变学性质的三维结构是当前实验流变学研究需要解决的核心科学问题,并在此基础上展望了实验流变学未来的优先发展方向.

       

    • 图  1  常见高温高压流变仪设备能实现的温压范围

      Paterson. Paterson流变仪;Griggs. Griggs流变仪;MultiAnvil. 多面砧压机

      Fig.  1.  Temperature and pressure range of common high temperature and high pressure deformation apparatus

      图  2  典型岩石圈流变结构

      据Kohlstedt et al.(1995

      Fig.  2.  Typical lithosphere rheological structure

      图  3  俯冲板片地震分布特征

      据Zhan(2020);a. 中深源地震发震数量(1964~2017年)随深度的变化,汤加-克马德里俯冲带深源地震(> 300 km)约占全球深源地震的3/4;b. 俯冲板片中中深源地震分布示意

      Fig.  3.  Seismic distribution characteristics of a subducting slab

      图  4  镁锗橄榄石相变致裂实验声发射信号分析

      据Wang et al.(2017

      Fig.  4.  Acoustic emission signal analysis of a faulting experiment on Mg2GeO4

      图  5  地幔粘度随深部的变化

      据Faccenda and Dal Zilio(2017

      Fig.  5.  Variation of mantle viscosity with depth

    • [1] Barcheck, C. G., Wiens, D. A., van Keken, P. E., et al., 2012. The Relationship of Intermediate⁃ and Deep⁃Focus Seismicity to the Hydration and Dehydration of Subducting Slabs. Earth and Planetary Science Letters, 349/350: 153-160. https://doi.org/10.1016/j.epsl.2012.06.055
      [2] Brantut, N., Baud, P., Heap, M. J., et al., 2012. Micromechanics of Brittle Creep in Rocks. Journal of Geophysical Research: Solid Earth, 117: B08412. https://www.researchgate.net/publication/258662402_Micromechanics_of_Brittle_Creep_in_Rocks
      [3] Brantut, N., Schubnel, A., Corvisier, J., et al., 2010. Thermochemical Pressurization of Faults during Coseismic Slip. Journal of Geophysical Research: Solid Earth, 115: B05314.
      [4] Brudzinski, M. R., Thurber, C. H., Hacker, B. R., et al., 2007. Global Prevalence of Double Benioff Zones. Science, 316(5830): 1472-1474. https://doi.org/10.1126/science.1139204
      [5] Bürgmann, R., Dresen, G, 2008. Rheology of the Lower Crust and Upper Mantle: Evidence from Rock Mechanics, Geodesy, and Field Observations. Annual Review of Earth and Planetary Sciences, 36: 531-567. https://doi.org/10.1146/ANNUREV.EARTH.36.031207.124326
      [6] Burnley, P. C., Green, H. W., Prior, D. J., 1991. Faulting Associated with the Olivine to Spinel Transformation in Mg2GeO4 and Its Implications for Deep‐Focus Earthquakes. Journal of Geophysical Research: Solid Earth, 96: 425-443. doi: 10.1029/90JB01937
      [7] Byerlee, J., Brace, W, 1968. Stick Slip, Stable Sliding, and Earthquakes⁃Effect of Rock Type, Pressure, Strain Rate, and Stiffness. Journal of Geophysical Research, 73: 6031-6037. https://doi.org/10.1029/JB073I018P06031
      [8] Chen, J., Jin, Z. M., Liu, W. L., et al., 2021. Rheology of Dry K⁃Feldspar Aggregates at High Temperature and High Pressure: an Experimental Study. Tectonophysics, 817: 229072. https://doi.org/10.1016/j.tecto.2021.229072
      [9] Chernak, L. J., Hirth, G, 2010. Deformation of Antigorite Serpentinite at High Temperature and Pressure. Earth and Planetary Science Letters, 296(1/2): 23-33. https://doi.org/10.1016/j.epsl.2010.04.035
      [10] Chernak, L., Hirth, G, 2011. Syndeformational Antigorite Dehydration Produces Stable Fault Slip. Geology, 39: 847-850. https://doi.org/10.1130/G31919.1
      [11] Cooper, R. F., Kohlstedt, D. L., 1986. Rheology and Structure of OLivine⁃Basalt Partial Melts. Journal of Geophysical Research: Solid Earth, 91: 9315-9323. doi: 10.1029/JB091iB09p09315
      [12] Dobson, D. P., Meredith, P. G., Boon, S. A, 2002. Simulation of Subduction Zone Seismicity by Dehydration of Serpentine. Science, 298(5597): 1407-1410. https://doi.org/10.1126/science.1075390
      [13] Dorbath, C., Gerbault, M., Carlier, G., et al., 2008. Double Seismic Zone of the Nazca Plate in Northern Chile: High‐Resolution Velocity Structure, Petrological Implications, and Thermomechanical Modeling. Geochemistry, Geophysics, Geosystems, 9: Q07006.
      [14] Durham, W. B., Weidner, D. J., Karato, S. I., et al., 2002. New Developments in Deformation Experiments at High Pressure. Reviews in Mineralogy and Geochemistry, 51: 21-49. doi: 10.2138/gsrmg.51.1.21
      [15] Faccenda, M., dal Zilio, L, 2017. The Role of Solid⁃Solid Phase Transitions in Mantle Convection. Lithos, 268/269/270/271: 198-224. https://doi.org/10.1016/j.lithos.2016.11.007
      [16] Fei, H. Z., Wiedenbeck, M., Yamazaki, D., et al., 2013. Small Effect of Water on Upper⁃Mantle Rheology Based on Silicon Self⁃Diffusion Coefficients. Nature, 498(7453): 213-215. https://doi.org/10.1038/nature12193
      [17] Ferrand, T. P., Hilairet, N., Incel, S., et al., 2017. Dehydration⁃Driven Stress Transfer Triggers Intermediate⁃Depth Earthquakes. Nature Communications, 8: 15247. https://doi.org/10.1038/ncomms15247
      [18] Florez, M., Prieto, G, 2019. Controlling Factors of Seismicity and Geometry in Double Seismic Zones. Geophysical Research Letters, 46: 4174-4181. https://doi.org/10.1029/2018GL081168
      [19] Frohlich, C., 2006. Deep earthquakes. Cambridge University Press, Cambridge.
      [20] Garnero, E. J., McNamara, A. K., Shim, S. H, 2016. Continent⁃Sized Anomalous Zones with Low Seismic Velocity at the Base of Earth's Mantle. Nature Geoscience, 9(7): 481-489. https://doi.org/10.1038/ngeo2733
      [21] Gasc, J., Schubnel, A., Brunet, F., et al., 2011. Simultaneous Acoustic Emissions Monitoring and Synchrotron X⁃Ray Diffraction at High Pressure and Temperature: Calibration and Application to Serpentinite Dehydration. Physics of the Earth and Planetary Interiors, 189(3/4): 121-133. https://doi.org/10.1016/j.pepi.2011.08.003
      [22] Gerya, T. V., Stern, R. J., Baes, M., et al., 2015. Plate Tectonics on the Earth Triggered by Plume⁃Induced Subduction Initiation. Nature, 527(7577): 221-225. https://doi.org/10.1038/nature15752
      [23] Girard, J., Amulele, G., Farla, R., et al., 2016. Shear Deformation of Bridgmanite and Magnesiowüstite Aggregates at Lower Mantle Conditions. Science, 351(6269): 144-147. https://doi.org/10.1126/science.aad3113
      [24] Goes, S., Agrusta, R., van Hunen, J., et al., 2017. Subduction⁃Transition Zone Interaction: a Review. Geosphere, 13: 644-664. doi: 10.1130/GES01476.1
      [25] Green, H. W., Chen, W. P., Brudzinski, M. R, 2010. Seismic Evidence of Negligible Water Carried below 400 km Depth in Subducting Lithosphere. Nature, 467(7317): 828-831. https://doi.org/10.1038/nature09401
      [26] Green, H. W. II, Zhou, Y, 1996. Transformation⁃Induced Faulting Requires an Exothermic Reaction and Explains the Cessation of Earthquakes at the Base of the Mantle Transition Zone. Tectonophysics, 256(1/2/3/4): 39-56. https://doi.org/10.1016/0040⁃1951(95)00164⁃6
      [27] Green, H. W., Young, T. E., Walker, D., et al., 1990. Anticrack⁃Associated Faulting at very High Pressure in Natural Olivine. Nature, 348(6303): 720-722. https://doi.org/10.1038/348720a0
      [28] Green, H. W., Marone, C., 2002. Instability of Deformation. Reviews in Mineralogy and Geochemistry, 51: 181-199. doi: 10.2138/gsrmg.51.1.181
      [29] Griggs, D., Miller, W. B, 1951. Deformation of Yule Marble: Part I: Compression and Extension Experiments on Dry Yule Marble at 10, 000 Atmospheres Confining Pressure, Room Temperature. Geological Society of America Bulletin, 62: 853-862. https://doi.org/10.1130/0016⁃7606%281951%2962%5B853%3ADOYMPI%5D2.0.CO%3B2
      [30] Hacker, B., Peacock, S., Abers, G., et al., 2003. Subduction Factory 2. are Intermediate\u2010depth Earthquakes in Subducting Slabs Linked to Metamorphic Dehydration Reactions? Journal of Geophysical Research, 108: 2030. https://doi.org/10.1029/2001JB001129
      [31] Hasegawa, A., Nakajima, J, 2017. Seismic Imaging of Slab Metamorphism and Genesis of Intermediate⁃Depth Intraslab Earthquakes. Progress in Earth and Planetary Science, 4: 1-31. https://doi.org/10.1186/s40645⁃017⁃0126⁃9
      [32] Hayes, G. P., Moore, G. L., Portner, D. E., et al., 2018. Slab2, a Comprehensive Subduction Zone Geometry Model. Science, 362(6410): 58-61. https://doi.org/10.1126/science.aat4723
      [33] He, C. R., Zhou, Y. S., Sang, Z. N, 2003. An Experimental Study on Semi⁃Brittle and Plastic Rheology of Panzhihua Gabbro. Science in China (Series D: Earth Sciences), 46(7): 730-742(in Chinese with English abstract). doi: 10.1360/03yd9064
      [34] Hustoft, J., Amulele, G., Ando, J. I., et al., 2013. Plastic Deformation Experiments to High Strain on Mantle Transition Zone Minerals Wadsleyite and Ringwoodite in the Rotational Drickamer Apparatus. Earth and Planetary Science Letters, 361: 7-15. https://doi.org/10.1016/j.epsl.2012.11.028
      [35] Incel, S., Hilairet, N., Labrousse, L., et al., 2017. Laboratory Earthquakes Triggered during Eclogitization of Lawsonite⁃Bearing Blueschist. Earth and Planetary Science Letters, 459: 320-331. https://doi.org/10.1016/j.epsl.2016.11.047
      [36] Irifune, T., Ringwood, A., 1987. Phase Transformations in Primitive MORB and Pyrolite Compositions to 25 GPa and Some Geophysical Implications. In: Manghnani, M. H., Syono, Y., eds., High Pressure Research in Mineral Physics. American Geophysical Union, Washington, 235-246.
      [37] Isacks, B., Molnar, P., 1969. Mantle Earthquake Mechanisms and the Sinking of the Lithosphere. Nature, 223(5211): 1121-1124. https://doi.org/10.1038/2231121a0
      [38] Jiang, G. M., Zhao, D. P, 2011. Metastable Olivine Wedge in the Subducting Pacific Slab and Its Relation to Deep Earthquakes. Journal of Asian Earth Sciences, 42(6): 1411-1423. https://doi.org/10.1016/j.jseaes.2011.08.005
      [39] Jin, Z. M., Zhang, J., Green, H. W., et al., 2001. Eclogite Rheology: Implications for Subducted Lithosphere. Geology, 29: 667-670.
      [40] John, T., Medvedev, S., Rüpke, L. H., et al., 2009. Generation of Intermediate⁃Depth Earthquakes by Self⁃Localizing Thermal Runaway. Nature Geoscience, 2: 137-140. doi: 10.1038/ngeo419
      [41] Jung, H., Fei, Y. W., Silver, P. G., et al., 2009. Frictional Sliding in Serpentine at very High Pressure. Earth and Planetary Science Letters, 277(1/2): 273-279. https://doi.org/10.1016/j.epsl.2008.10.019
      [42] Jung, H., Green, H. W, 2004. Experimental Faulting of Serpentinite during Dehydration: Implications for Earthquakes, Seismic Low⁃Velocity Zones, and Anomalous Hypocenter Distributions in Subduction Zones. International Geology Review, 46(12): 1089-1102. https://doi.org/10.2747/0020⁃6814.46.12.1089
      [43] Jung, H., Karato, S, 2001. Water⁃Induced Fabric Transitions in Olivine. Science, 293(5534): 1460-1463. https://doi.org/10.1126/science.1062235
      [44] Karato, S. I, 2012. On the Origin of the Asthenosphere. Earth and Planetary Science Letters, 321/322: 95-103. https://doi.org/10.1016/j.epsl.2012.01.001
      [45] Karato, S. I., Riedel, M. R., Yuen, D. A, 2001. Rheological Structure and Deformation of Subducted Slabs in the Mantle Transition Zone: Implications for Mantle Circulation and Deep Earthquakes. Physics of the Earth and Planetary Interiors, 127(1/2/3/4): 83-108. https://doi.org/10.1016/S0031⁃9201(01)00223⁃0
      [46] Karato, S., Rubie, D, 1997. Toward an Experimental Study of Deep Mantle Rheology: a New Multianvil Sample Assembly for Deformation Studies under High Pressures and Temperatures. Journal of Geophysical Research, 102: 20111-20122. https://doi.org/10.1029/97JB01732
      [47] Karato, S. I., 2008. Deformation of Earth Materials: An Introduction to the Rheology of Solid Earth. Cambridge University Press, Cambridge.
      [48] Kawakatsu, H., Yoshioka, S, 2011. Metastable Olivine Wedge and Deep Dry Cold Slab beneath Southwest Japan. Earth and Planetary Science Letters, 303(1/2): 1-10. https://doi.org/10.1016/j.epsl.2011.01.008
      [49] Kawazoe, T., Nishihara, Y., Ohuchi, T., et al., 2016. Creep Strength of Ringwoodite Measured at Pressure⁃Temperature Conditions of the Lower Part of the Mantle Transition Zone Using a Deformation⁃DIA Apparatus. Earth and Planetary Science Letters, 454: 10-19. https://doi.org/10.1016/j.epsl.2016.08.011
      [50] Kelemen, P. B., Hirth, G, 2007. A Periodic Shear⁃Heating Mechanism for Intermediate⁃Depth Earthquakes in the Mantle. Nature, 446(7137): 787-790. https://doi.org/10.1038/nature05717
      [51] Kie, T. T., Quan, S. Z., Hai, Y. Z., et al., 1989. Dilatancy, Creep and Relaxation of Brittle Rocks Measured with the 8000 kN Multipurpose Triaxial Apparatus. Physics of the Earth and Planetary Interiors, 55(3/4): 335-352. https://doi.org/10.1016/0031⁃9201(89)90081⁃2
      [52] Kirby, S., Stein, S., Okal, E., et al., 1996. Metastable Mantle Phase Transformations and Deep Earthquakes in Subducting Oceanic Lithosphere. Reviews of Geophysics, 34: 261-306. https://doi.org/10.1029/96RG01050
      [53] Kohlstedt, D., Holtzman, B, 2009. Shearing Melt out of the Earth: an Experimentalist's Perspective on the Influence of Deformation on Melt Extraction. Annual Review of Earth and Planetary Sciences, 37: 561-593. https://doi.org/10.1146/ANNUREV.EARTH.031208.100104
      [54] Kohlstedt, D. L., Evans, B., Mackwell, S. J., 1995. Strength of the Lithosphere: Constraints Imposed by Laboratory Experiments. Journal of Geophysical Research: Solid Earth, 100(B9): 17587-17602. doi: 10.1029/95JB01460
      [55] Li, J., Shao, T., Song, M., et al., 2021. Low⁃Temperature plasticity and Dislocation Creep of Fangshan Dolomite. Journal of Geophysical Research: Solid Earth, 126: e2020JB021439. https://doi.org/10.1029/2020JB021439.
      [56] Li, L., Weidner, D., Raterron, P., et al., 2006. Deformation of Olivine at Mantle Pressure Using the D⁃DIA. European Journal of Mineralogy, 18: 7-19. doi: 10.1127/0935-1221/2006/0018-0007
      [57] Lidaka, T., Suetsugu, D, 1992. Seismological Evidence for Metastable Olivine Inside a Subducting Slab. Nature, 356(6370): 593-595. https://doi.org/10.1038/356593a0
      [58] Liu, G., Zhou, Y. S., Shi, Y. L., et al., 2017. Strength Variation and Deformational Behavior in Anisotropic Granitic Mylonites under High⁃Temperature and ⁃Pressure Conditions: an Experimental Study. Journal of Structural Geology, 96: 21-34. https://doi.org/10.1016/j.jsg.2017.01.003
      [59] Liu, G., Zhou, Y., He, C., et al., 2016. An Experimental Study on Effect of Pre⁃Existing Fabric to Deformation of Foliated Mylonite under High Temperature and Pressure. Geological Journal, 51(1): 92-112. doi: 10.1002/gj.2611
      [60] Lockner, D., Byerlee, J, 1977. Acoustic Emission and Creep in Rock at High Confining Pressure and Differential Stress. Bulletin of the Seismological Society of America, 67: 247-258. https://doi.org/10.1016/0148⁃9062%2878%2991004⁃5
      [61] Mei, S., Kohlstedt, D., 2000. Influence of Water on Plastic Deformation of Olivine Aggregates: 1. Diffusion Creep Regime. Journal of Geophysical Research: Solid Earth, 105: 21457-21469. doi: 10.1029/2000JB900179
      [62] Mei, S., Suzuki, A. M., Kohlstedt, D. L., et al., 2010. Experimental Constraints on the Strength of the Lithospheric Mantle. Journal of Geophysical Research: Solid Earth, 115: B08204.
      [63] Merkel, S., Wenk, H. R., Shu, J., et al., 2002. Deformation of Polycrystalline MgO at Pressures of the Lower Mantle. Journal of Geophysical Research: Solid Earth, 107: 2271.
      [64] Mierdel, K., Keppler, H., Smyth, J. R., et al., 2007. Water Solubility in Aluminous Orthopyroxene and the Origin of Earth's Asthenosphere. Science, 315(5810): 364-368. https://doi.org/10.1126/science.1135422
      [65] Miyazaki, T., Sueyoshi, K., Hiraga, T, 2013. Olivine Crystals Align during Diffusion Creep of Earth's Upper Mantle. Nature, 502(7471): 321-326. https://doi.org/10.1038/nature12570
      [66] Mohiuddin, A., Karato, S. I., Girard, J, 2020. Slab Weakening during the Olivine to Ringwoodite Transition in the Mantle. Nature Geoscience, 13(2): 170-174. https://doi.org/10.1038/s41561⁃019⁃0523⁃3
      [67] Nakajima, J., Tsuji, Y., Hasegawa, A., et al., 2009. Tomographic Imaging of Hydrated Crust and Mantle in the Subducting Pacific Slab beneath Hokkaido, Japan: Evidence for Dehydration Embrittlement as a Cause of Intraslab Earthquakes. Gondwana Research, 16(3/4): 470-481. https://doi.org/10.1016/j.gr.2008.12.010
      [68] Okazaki, K., Hirth, G, 2016. Dehydration of Lawsonite could Directly Trigger Earthquakes in Subducting Oceanic Crust. Nature, 530(7588): 81-84. https://doi.org/10.1038/nature16501
      [69] Omori, S., Komabayashi, T., Maruyama, S, 2004. Dehydration and Earthquakes in the Subducting Slab: Empirical Link in Intermediate and Deep Seismic Zones. Physics of the Earth and Planetary Interiors, 146(1/2): 297-311. https://doi.org/10.1016/j.pepi.2003.08.014
      [70] Paterson, M. S, 1970. A High⁃Pressure, High⁃Temperature Apparatus for Rock Deformation. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 7(5): 517-526. https://doi.org/10.1016/0148⁃9062(70)90004⁃5
      [71] Paterson, M., 1990. Rock Deformation Experimentation. In: Duba, A. G., Durham, W. B., Handin, J. W., eds., The Brittle‐Ductile Transition in Rocks, American Geophysical Union, Washington, 187-194.
      [72] Peacock, S, 2001. Are the Lower Planes of Double Seismic Zones Caused by Serpentine Dehydration in Subducting Oceanic Mantle. Geology, 29: 299-302. https://doi.org/10.1130/0091⁃7613%282001%29029%3C0299%3AATLPOD%3E2.0.CO%3B2
      [73] Plümper, O., Botan, A., Los, C., et al., 2017. Fluid-Driven Metamorphism of the Continental Crust Governed by Nanoscale Fluid Flow. Nature Geoscience, 10(9): 685-690. https://doi.org/10.1038/ngeo3009
      [74] Poirier, J. P., 1985. Creep of Crystals: High⁃Temperature Deformation Processes in Metals, Ceramics and Minerals. Cambridge University Press, Cambridge.
      [75] Prieto, G. A., Florez, M., Barrett, S. A., et al., 2013. Seismic Evidence for Thermal Runaway during Intermediate‐Depth Earthquake Rupture. Geophysical Research Letters, 40: 6064-6068. doi: 10.1002/2013GL058109
      [76] Proctor, B., Hirth, G, 2015. Role of Pore Fluid Pressure on Transient Strength Changes and Fabric Development during Serpentine Dehydration at Mantle Conditions: Implications for Subduction⁃Zone Seismicity. Earth and Planetary Science Letters, 421: 1-12. https://doi.org/10.1016/j.epsl.2015.03.040
      [77] Reali, R., van Orman, J. A., Pigott, J. S., et al., 2019. The Role of Diffusion⁃Driven Pure Climb Creep on the Rheology of Bridgmanite under Lower Mantle Conditions. Scientific Reports, 9: 2053. https://doi.org/10.1038/s41598⁃018⁃38449⁃8
      [78] Reynard, B., Nakajima, J., Kawakatsu, H, 2010. Earthquakes and Plastic Deformation of Anhydrous Slab Mantle in Double Wadat⁃Benioff Zones. Geophysical Research Letters, 37: L24309.
      [79] Schubnel, A., Brunet, F., Hilairet, N., et al., 2013. Deep⁃Focus Earthquake Analogs Recorded at High Pressure and Temperature in the Laboratory. Science, 341(6152): 1377-1380. https://doi.org/10.1126/science.1240206
      [80] Shen, Z., Zhan, Z., 2020. Metastable Olivine Wedge beneath the Japan Sea Imaged by Seismic Interferometry. Geophysical Research Letters, 47: e2019GL085665.
      [81] Shao, T., Song, M., Li, J., et al., 2022a. Mechanical beHaviors of Intact Antigorite as Functions of Temperature: Faulting, Slow Stick⁃Slip and Stable Sliding. Journal of Structural Geology, 158: 104579. https://doi.org/10.1016/j.jsg.2022.104579
      [82] Shao, T., Song, M., Ma, X., et al., 2022b. Potential Link between Antigorite Sehydration and Shallow Intermediate⁃Depth Earthquakes in Hot Subduction Zones. American Mineralogist. https://doi.org/102138/am⁃2021⁃8271
      [83] Shao, T., Zhou, Y., Song, M., et al., 2021. Deformation of Antigorite and Its Geological Implications. Journal of Geophysical Research: Solid Earth, 126. https://doi.org/101029/2021JB021650.
      [84] Shi, F., Wang, Y., Yu, T., et al., 2018. Lower⁃Crustal Earthquakes in Southern Tibet are Linked to Eclogitization of Dry Metastable Granulite. Nature Communications, 9: 3483. doi: 10.1038/s41467-018-05964-1
      [85] Shi, F., Zhang, J., Xia, G., et al., 2015. Rheology of Mg2GeO4 Olivine and Spinel Harzburgite: Implications for Earth's Mantle Transition Zone. Geophysical Research Letters, 42: 2212-2218. https://doi.org/10.1002/2015GL063316
      [86] Shi, Z. Q., Yu, Z. H., 1986. Development of 800t High Temperature and High Pressure Servo Triaxial Rheometer. Proceedings of the First Symposium on High Temperature and High Pressure Rock Mechanics, China Society of Rock Mechanics and Engineering, Beijing(in Chinese).
      [87] Shiina, T., Nakajima, J., Matsuzawa, T., 2013. Seismic Evidence for High Pore Pressures in the Oceanic Crust: Implications for Fluid‐Related Embrittlement. Geophysical Research Letters, 40: 2006-2010. doi: 10.1002/grl.50468
      [88] Sun, T. Z., 1989. Development of Solid Pressure Transmission Triaxial Rheometer. Abstracts of Papers of Institute of Geophysics, Chinese Academy of Sciences and Institute of Geophysics, Beijing(in Chinese).
      [89] Song, M., Shao, T., Li, J., et al., 2014. Experimental Study of Deformation of Carrara Marble at High Pressure and High Temperature. Acta Petrologica Sinica, 30(2): 589-586.
      [90] Tingle, T. N., Green, H. W., Young, T. E., et al., 1993. Improvements to Griggs⁃Type Apparatus for Mechanical Testing at High Pressures and Temperatures. Pure and Applied Geophysics, 141(2/3/4): 523-543. https://doi.org/10.1007/BF00998344
      [91] Trampert, J., van Heijst, H. J, 2002. Global Azimuthal Anisotropy in the Transition Zone. Science, 296(5571): 1297-1299. https://doi.org/10.1126/science.1070264
      [92] Tsuji, T., Iturrino, G. J, 2008. Velocity⁃Porosity Relationships in Oceanic Basalt from Eastern Flank of the Juan de Fuca Ridge: The Effect of Crack Closure on Seismic Velocity. Exploration Geophysics, 39(1): 41-51. https://doi.org/10.1071/EG08001
      [93] Tsujino, N., Nishihara, Y., Yamazaki, D., et al., 2016. Mantle Dynamics Inferred from the Crystallographic Preferred Orientation of Bridgmanite. Nature, 539: 81-84. doi: 10.1038/nature19777
      [94] Wang, Y. B., Durham, W., Getting, I. C., et al., 2003. The Deformation⁃DIA: a New Apparatus for High Temperature Triaxial Deformation to Pressures up to 15 GPa. Review of Scientific Instruments, 74: 3002-3011. https://doi.org/10.1063/1.1570948
      [95] Wang, Y. B., Hilairet, N., Dera, P, 2010. Recent Advances in High Pressure and Temperature Rheological Studies. Journal of Earth Science, 21(5): 495-516. https://doi.org/10.1007/s12583⁃010⁃0124⁃y
      [96] Wang, Y. B., Zhu, L. P., Shi, F., et al., 2017. A Laboratory Nanoseismological Study on Deep⁃Focus Earthquake Micromechanics. Science Advances, 3(7): e1601896. https://doi.org/10.1126/sciadv.1601896
      [97] Wang, Y. F., Zhang, J. F., Jin, Z. M., et al., 2012. Mafic Granulite Rheology: Implications for a Weak Continental Lower Crust. Earth and Planetary Science Letters, 353/354: 99-107. https://doi.org/10.1016/j.epsl.2012.08.004
      [98] Weidner, D. J., 1998. Rheological Studies at High Pressure. Reviews in Mineralogy and Geochemistry, 37: 493-524.
      [99] Wen, D. P., Wang, Y. F., Zhang, J. F., et al., 2021. Rheology of Felsic Granulite at High Temperature and High Pressure. Journal of Geophysical Research: Solid Earth, 126: e2020JB020966.
      [100] Wenk, H. R., Matthies, S., Hemley, R. J., et al., 2000. The Plastic Deformation of Iron at Pressures of the Earth's Inner Core. Nature, 405(6790): 1044-1047. https://doi.org/10.1038/35016558
      [101] Wu, X., Lin, J. F., Kaercher, P., et al., 2017. Seismic Anisotropy of the D″ Layer Induced by (001) Deformation of Post⁃Perovskite. Nature Communications, 8: 14669. https://doi.org/10.1038/ncomms14669
      [102] Xu, L. L., Mei, S. H., Dixon, N., et al., 2013. Effect of Water on Rheological Properties of Garnet at High Temperatures and Pressures. Earth and Planetary Science Letters, 379: 158-165. https://doi.org/10.1016/j.epsl.2013.08.002
      [103] Zhan, Z., 2020. Mechanisms and Implications of Deep Earthquakes. Annual Review of Earth and Planetary Sciences, 48: 147-174. doi: 10.1146/annurev-earth-053018-060314
      [104] Zhang, G., Mei, S., Song, M., 2020. Effect of Water on the Dislocation Creep of Enstatite Aggregates at 300 MPa. Geophysical Research Letters, 47: e2019GL085895.
      [105] Zhang, G., Mei, S., Song, M., et al., 2017. Diffusion Creep of Enstatite at High Pressures under Hydrous Conditions. Journal of Geophysical Research: Solid Earth, 122: 7718-7728. doi: 10.1002/2017JB014400
      [106] Zhang, J. F., Green, H. W. II, Bozhilov, K. N, 2006. Rheology of Omphacite at High Temperature and Pressure and Significance of Its Lattice Preferred Orientations. Earth and Planetary Science Letters, 246(3/4): 432-443. https://doi.org/10.1016/j.epsl.2006.04.006
      [107] Zhang, J. F., Green, H. W., Bozhilov, K., et al., 2004. Faulting Induced by Precipitation of Water at Grain Boundaries in Hot Subducting Oceanic Crust. Nature, 428(6983): 633-636. https://doi.org/10.1038/nature02475
      [108] Zhang, J. F., Jin, Z. M., 2013. Experimental Study on High Temperature and High Pressure Rheology under Deep Earth Conditions. In: Ding, Z. L., ed., Research Methods of Solid Earth Science. Scinece Press, Beijing, 995-1013(in Chinese).
      [109] Zhang, J. F., Ni, H. W., Yang, X. Z., et al., 2021. Progress and Perspective of Experimental Geoscience in China (2011-2020). Bulletin of Mineralogy, Petrology and Geochemistry, 40(3): 597-609, 777(in Chinese with English abstract).
      [110] Zhou, Y. S., Zhang, H. T., Yao, W. M., et al., 2017. An Experimental Study on Creep of Partially Molten Granulite under High Temperature and Wet Conditions. Journal of Asian Earth Sciences, 139: 15-29. https://doi.org/10.1016/j.jseaes.2016.10.011
      [111] Zhou, Y., Rybacki, E., Wirth, R., et al., 2012. Creep of Partially Molten Fine⁃Grained Gabbro under Dry Conditions. Journal of Geophysical Research: Solid Earth, 117: B05204. https://doi.org/10.1029/2011JB008646.
      [112] 石泽全, 于智海, 1986. 800t高温高压伺服三轴流变仪的研制. 北京: 中国岩石力学与工程学会, 第一届高温高压岩石力学学术讨论会论文集.
      [113] 孙天泽, 1989. 固体传压三轴流变仪的研制. 北京: 中国科学院地球物理研究所, 中国科学院地球物理研究所论文摘要集.
      [114] 章军锋, 金振民, 2013. 地球深部条件下的高温高压流变学实验研究. 见: 丁仲礼, 编, 固体地球科学研究方法. 北京: 科学出版社, 995-1013.
      [115] 章军锋, 倪怀玮, 杨晓志, 等, 2021. 中国实验地球科学研究进展与展望(2011-2020). 矿物岩石地球化学通报, 40(3): 597-609, 777. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202103005.htm
    • 加载中
    图(5)
    计量
    • 文章访问数:  380
    • HTML全文浏览量:  132
    • PDF下载量:  131
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-07-22
    • 刊出日期:  2022-09-25

    目录

      /

      返回文章
      返回