• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    高温高压装置研制和技术创新的发展现状与趋势

    巫翔 高春晓 王超

    巫翔, 高春晓, 王超, 2022. 高温高压装置研制和技术创新的发展现状与趋势. 地球科学, 47(8): 2757-2764. doi: 10.3799/dqkx.2022.300
    引用本文: 巫翔, 高春晓, 王超, 2022. 高温高压装置研制和技术创新的发展现状与趋势. 地球科学, 47(8): 2757-2764. doi: 10.3799/dqkx.2022.300
    Wu Xiang, Gao Chunxiao, Wang Chao, 2022. Progress and Outlook of State⁃of⁃Art High⁃Temperature⁃Pressure Apparatus and Characterization Technology. Earth Science, 47(8): 2757-2764. doi: 10.3799/dqkx.2022.300
    Citation: Wu Xiang, Gao Chunxiao, Wang Chao, 2022. Progress and Outlook of State⁃of⁃Art High⁃Temperature⁃Pressure Apparatus and Characterization Technology. Earth Science, 47(8): 2757-2764. doi: 10.3799/dqkx.2022.300

    高温高压装置研制和技术创新的发展现状与趋势

    doi: 10.3799/dqkx.2022.300
    基金项目: 

    国家自然科学基金 41827802

    详细信息
      作者简介:

      巫翔(1978-),男,教授,高压矿物学相关专业. E-mail:wuxiang@cug.edu.cn

    • 中图分类号: P599

    Progress and Outlook of State⁃of⁃Art High⁃Temperature⁃Pressure Apparatus and Characterization Technology

    • 摘要: 现代化的高温高压实验装置与表征技术是研究地球深部物质的赋存状态、属性及效应的关键手段. 近20年,国内很多科研单位先后建立了高水平高温高压实验平台,具有覆盖地表至地心温压环境的各类装置以及多种可进行原位/非原位观测的技术,在高压矿物物理、实验岩石学和地球化学等领域取得重要进展. 装置和技术的创新发展是当前我国“三深一系统(深地深海深空、地球系统科学)”科技战略领域中基础理论创新的驱动力之一.简要综述了高温高压装置研制、技术发展和面临的主要挑战,在此基础上展望了未来的发展方向.

       

    • 图  1  (a) 不同压缩模式下物质的密度与压强的关系示意图;(b)不同压缩模式获得压强峰值纪录与年份关系

      修改自Duffy and Smith(2019); 等温压缩主要采用多面砧压机与金刚石压腔;绝热压缩主要采用轻气炮和激光加载的动高压装置;等熵压缩主要采用磁驱动压缩技术和斜坡发生器

      Fig.  1.  (a) Schematic diagram of the relationship between the density and pressure of substances under different compression modes; (b) Relationship between peak pressure records obtained by different compression modes and years

      图  2  (a)多面砧压机中碳化钨作为二级压砧已达到最大温压范围; (b)河南精钻1英寸烧结金刚石作为二级压砧实现最高压力

      Zk01F是中国河源正信的产品,TJS01和TF05是日本Fujiloy产品,它们都采用了锥形化压砧设计,修改自Shang et al.(2020);图b据中科院地化所翟双猛提供未发表的资料

      Fig.  2.  (a) Tungsten carbide has reached the maximum temperature and pressure range as a two⁃stage anvil in the multi anvil press; (b) Henan precision drilling 1⁃inch sintered diamond as a two⁃stage anvil to achieve the highest pressure

      图  3  (a) 吉林大学6万t单缸液压机;(b)中国地质大学(武汉)5 000 t多功能大压机;(c)中国地质大学(武汉)改造Kawai型1 000 t多面砧压机

      Fig.  3.  (a) 60 000 ton single cylinder hydraulic press of Jilin University; (b) China University of Geosciences (Wuhan) 5 000 ton multi⁃functional press; (c) China University of Geosciences (Wuhan) transformed Kawai type 1 000 ton multi anvil press

    • [1] Borchert, M., Wilke, M., Schmidt, C., et al., 2010. Partitioning of Ba, La, Yb and Y between Haplogranitic Melts and Aqueous Solutions: an Experimental Study. Chemical Geology, 276(3/4): 225-240. https://doi.org/10.1016/j.chemgeo.2010.06.009
      [2] Chou, I. M., Wang, R. H., Fang, J., 2021. In Situ Redox Control and Raman Spectroscopic Characterization of Solutions below 300 ℃. Geochemical Perspectives Letters, 20: 1-5.
      [3] Dewaele, A., Loubeyre, P., Occelli, F., et al., 2018. Toroidal Diamond Anvil Cell for Detailed Measurements under Extreme Static Pressures. Nature Communications, 9: 2913. https://doi.org/10.1038/s41467⁃018⁃05294⁃2
      [4] Dubrovinskaia, N., Dubrovinsky, L., Solopova, N. A., et al., 2016. Terapascal Static Pressure Generation with Ultrahigh Yield Strength Nanodiamond. Science Advances, 2(7): e1600341. https://doi.org/10.1126/sciadv.1600341
      [5] Dubrovinsky, L., Dubrovinskaia, N., Prakapenka, V. B., et al., 2012. Implementation of Micro⁃Ball Nanodiamond Anvils for High⁃Pressure Studies above 6 Mbar. Nature Communications, 3: 1163. https://doi.org/10.1038/ncomms2160
      [6] Duffy, T. S., Smith, R. F., 2019. Ultra⁃High Pressure Dynamic Compression of Geological Materials. Frontiers in Earth Science, 7: 23. doi: 10.3389/feart.2019.00023
      [7] Eyles, V. A., 1961. Sir James Hall (1761⁃1832). Endeavour, 20: 210-213.
      [8] Huang, H. J., Fei, Y. W., Cai, L. C., et al., 2011. Evidence for an Oxygen⁃Depleted Liquid Outer Core of the Earth. Nature, 479(7374): 513-516. https://doi.org/10.1038/nature10621
      [9] Huang, Q., Yu, D. L., Xu, B., et al., 2014. Nanotwinned Diamond with Unprecedented Hardness and Stability. Nature, 510(7504): 250-253. https://doi.org/10.1038/nature13381
      [10] Huang, S. X., Wu, X., Qin, S, 2016. Research Progress on in Situ Experimental and Theoretical Simulations of Element Partitioning under High Temperature and High Pressure. Rock and Mineral Analysis, 35(2): 117-126(in Chinese with English abstract).
      [11] Ishii, T., Shi, L., Huang, R., et al., 2016. Generation of Pressures over 40 GPa Using Kawai⁃Type Multi⁃Anvil Press with Tungsten Carbide Anvils. The Review of Scientific Instruments, 87(2): 024501. https://doi.org/10.1063/1.4941716
      [12] Jenei, Z., O'Bannon, E. F., Weir, S. T., et al., 2018. Single Crystal Toroidal Diamond Anvils for High Pressure Experiments beyond 5 Megabar. Nature Communications, 9: 3563. https://doi.org/10.1038/s41467⁃018⁃06071⁃x
      [13] Jiang, D., Gao, Y., Cao, M., et al., 2021. Diamond anvil cell with Double Coaxial Cchambers. Review of Scientific Instruments. 92: 123901.
      [14] Kunimoto, T. and Irifune, T., 2010. Pressure Generation to 125 GPa Using a 6⁃8⁃2 Type Multianvil Apparatus with nano⁃Polycrystalline diamond anvils. Journal of Physics: Conference Series, 215: 012190. doi: 10.1088/1742-6596/215/1/012190
      [15] Li, B., Ji, C., Yang, W. G., et al., 2018. Diamond Anvil Cell Behavior up to 4 Mbar. Proceedings of the National Academy of Sciences of the United States of America, 115(8): 1713-1717. https://doi.org/10.1073/pnas.1721425115
      [16] Li, X. D., Yuan, Q. x., Xu, W., et al., 2020. Introduction of Fourth⁃Generation High Energy Photon Source HEPS and the Beamlines for High⁃Pressure Research. Chinese Journal of High Pressure Physics, 34(5): 1-13(in Chinese).
      [17] Liu, J., Hu, Q. Y., Young Kim, D., et al., 2017. Hydrogen⁃Bearing Iron Peroxide and the Origin of Ultralow⁃Velocity Zones. Nature, 551(7681): 494-497. https://doi.org/10.1038/nature24461
      [18] Liu, Z. D., Irifune, T., Nishi, M., et al., 2016. Phase Relations in the System MgSiO3⁃Al2O3 up to 52 GPa and 2 000 K. Physics of the Earth and Planetary Interiors, 257: 18-27. https://doi.org/10.1016/j.pepi.2016.05.006
      [19] Mao, H. K., Hu, Q. Y., Yang, L. X., et al., 2017. When Water Meets Iron at Earth's Core⁃Mantle Boundary. National Science Review, 4(6): 870-878. https://doi.org/10.1093/nsr/nwx109
      [20] O'Bannon, E. F., Jenei, Z., Cynn, H., et al., 2018. Contributed Review: Culet Diameter and the Achievable Pressure of a Diamond Anvil Cell: Implications for the Upper Pressure Limit of a Diamond Anvil Cell. The Review of Scientific Instruments, 89(11): 111501. https://doi.org/10.1063/1.5049720
      [21] Shang, F. C., 2010. Research on Ultra High Pressure Hydraulic System of 5 GPa High Temperature and High Pressure Rheometer(Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      [22] Shang, Y. C., Shen, F. R., Hou, X. Y., et al., 2020. Pressure Generation above 35 GPa in a Walker⁃Type Large⁃Volume Press. Chinese Physics Letters, 37(8): 30-35.
      [23] Shu, J. F, 2020. Space, Earth, Ocean: Mineralogical Studies under Extreme Conditions. Earth Science Frontiers, 27(3): 133-153. (in Chinese with English abstract).
      [24] Wu, X., Lin, J. F., Kaercher, P., et al., 2017. Seismic Anisotropy of the D″ Layer Induced by (001) Deformation of Post⁃Perovskite. Nature Communications, 8: 14669. https://doi.org/10.1038/ncomms14669
      [25] Xie, H. S., 2015. Explore the Way to the Deep Part of the Earth. Seismological Press, Beijing(in Chinese).
      [26] Xie, L., Chanyshev, A., Ishii, T., et al., 2021. Simultaneous Generation of Ultrahigh Pressure and Temperature to 50 GPa and 3 300 K in Multi⁃Anvil Apparatus. Review of Scientific Instruments, 92: 103902. doi: 10.1063/5.0059279
      [27] Xu, J., Bi, Y, 2012. Application of Synchrotron Radiation X⁃Ray Sources in High Pressure Research. Physics, 41(4): 218-226 (in Chinese with English abstract).
      [28] Yang, K., Jiang, S., Yan, S., et al., 2020. Application of Shanghai Synchrotron Radiation Source in High Pressure Research. Chinese Journal of High Pressure Physics, 34(5): 16-28(in Chinese with English abstract).
      [29] Yang, X. Z., 2015. A Brief Introduction of High Temperature and High Pressure Experimental Geosciences: Methods and Advances. Bulletin of Mineralogy, Petrology and Geochemistry, 34(3): 509-525(in Chinese with English abstract).
      [30] Yue, D., Gao, Y., Zhao, L., et al., 2019. In Situ Thermal Conductivity Measurement in Diamond Anvil Cell. Japanese Journal of Applied Physics, 58: 040906. doi: 10.7567/1347-4065/ab01f1
      [31] Yue, D., Ji, T., Qin, T., et al., 2018. Accurate Temperature Measurement by Temperature Field Analysis in Diamond Anvil Cell for Thermal Transport Study of Matter under High Pressure. Applied Physics Letters. 112: 081901. doi: 10.1063/1.5010726
      [32] Zhang, J. F., Ni, H. W., Yang, X. Z., et al., 2021. Progress and Perspective of Experimental Geoscience in China (2011⁃2020). Bulletin of Mineralogy, Petrology and Geochemistry, 40(3): 597-609, 777(in Chinese with English abstract).
      [33] Zhang, Y. J., Hou, M. Q., Liu, G. T., et al., 2020. Reconciliation of Experiments and Theory on Transport Properties of Iron and the Geodynamo. Physical Review Letters, 125(7): 078501. https://doi.org/10.1103/PhysRevLett.125.078501
      [34] Zhou, C. Y., Jin, Z. M, 2014. The "Bright Lamp" into the Deep Earth: Experiments at High Pressure and High Temperature. Chinese Journal of Nature, 36(2): 79-88(in Chinese with English abstract).
      [35] Zhou, X. F., Ma, D. J., Wang, L. F., et al., 2020. Large⁃Volume Cubic Press Produces High Temperatures above 4 000 Kelvin for Study of the Refractory Materials at Pressures. The Review of Scientific Instruments, 91(1): 015118. https://doi.org/10.1063/1.5128190
      [36] 黄圣轩, 巫翔, 秦善, 2016. 高温高压下元素配分的原位实验与计算模拟研究进展. 岩矿测试, 35(2): 117-126. https://www.cnki.com.cn/Article/CJFDTOTAL-YKCS201602002.htm
      [37] 李晓东, 袁清习, 徐伟, 等, 2020. 第四代高能同步辐射光源HEPS及高压相关线站建设. 高压物理学报, 34(5): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL202005001.htm
      [38] 尚付成, 2010. 5 GPa高温高压流变仪超高压液压系统的研究(硕士学位论文). 武汉: 中国地质大学(武汉).
      [39] 束今赋, 2020. 上天、入地、下海: 极端条件下矿物学研究. 地学前缘, 27(3): 133-153. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202003011.htm
      [40] 谢鸿森, 2015. 探索地球深部之路. 北京: 地震出版社.
      [41] 徐济安, 毕延, 2012. 同步辐射X射线光源在高压科学研究中的应用. 物理, 41(4): 218-226. https://www.cnki.com.cn/Article/CJFDTOTAL-WLZZ201204005.htm
      [42] 杨科, 蒋升, 闫帅, 等, 2020. 上海同步辐射光源高压相关线站概述. 高压物理学报, 34(5): 16-28. https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL202005002.htm
      [43] 杨晓志, 2015. 浅谈高温高压实验地球科学: 方法和应用. 矿物岩石地球化学通报, 34(3): 509-525. doi: 10.3969/j.issn.1007-2802.2015.03.007
      [44] 章军锋, 倪怀玮, 杨晓志, 等, 2021. 中国实验地球科学研究进展与展望(2011~2020). 矿物岩石地球化学通报, 40(3): 597-609, 777. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202103005.htm
      [45] 周春银, 金振民, 2014. 照亮地球深部的"明灯": 高温高压实验. 自然杂志, 36(2): 79-88. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201402002.htm
    • 加载中
    图(3)
    计量
    • 文章访问数:  399
    • HTML全文浏览量:  132
    • PDF下载量:  171
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-06-22
    • 刊出日期:  2022-09-25

    目录

      /

      返回文章
      返回