Method of Fracture Characterization and Productivity Prediction of 19⁃6 Buried⁃Hill Fractured Reservoirs, Bohai Bay Basin
-
摘要: 由于渤中19⁃6气田潜山裂缝性储层的储集空间多样、非均质性很强,且制约产能的主控因素认识不清,从而造成潜山裂缝性储层的产能预测困难. 为了解决这一难题,综合岩心、测井、地质等资料分析了潜山裂缝性储层的特征,并基于CT扫描实验定量表征裂缝,研究裂缝微观特征,形成了以裂缝渗透率为核心的一系列裂缝参数的计算方法,建立了潜山裂缝性储层的产能预测模型,大幅提高了潜山裂缝性储层的产能预测精度. 研究结果表明,潜山裂缝性储层的裂缝渗透率主要由裂缝的长度、宽度及连通性控制,与孔隙度的大小无明显关系,可以通过斯通利波反演的总渗透率与基质渗透率之差计算得到,其中基质渗透率计算的相对误差为28.50%,总渗透率计算的相对误差为15.56%;综合考虑潜山裂缝性储层的裂缝渗透率、裂缝纵向连通性和有效厚度,建立了渤中19⁃6气田潜山裂缝性储层的产能预测模型,其中裂缝渗透率计算结果的准确性决定了潜山裂缝性储层产能预测结果的可靠性.Abstract: In Bozhong 19⁃6 gas field, due to the different types of reservoir spaces, strong heterogeneity, and unclear of main controlling factor of productivity of buried⁃hill fractured reservoirs, which makes it difficult to predict the productivity. In order to solve this problem, the characteristics of buried⁃hill fractured reservoirs are analyzed based on core, logging, geological and other data. Additionally, based on the CT scan experiment, the fractures can be quantitatively characterized and a series of calculation methods of fracture parameters including fracture permeability are formed. As a result, the productivity prediction model for buried⁃hill fractured reservoirs is established and the problem of productivity prediction of buried⁃hill fractured reservoirs is solved. The research results show that the fracture permeability of buried⁃hill fractured reservoirs is mainly controlled by the length, width and connectivity of the fractures, and has no obvious relationship with the porosity. Then, the fracture permeability can be calculated from the difference between the total permeability obtained by Stoneley wave inversion and the matrix permeability. The relative errors of matrix permeability and total permeability calculations are respectively 28.50% and 15.56%. Based on the fracture permeability, fracture longitudinal connectivity and effective thickness of buried⁃hill fractured reservoirs, the productivity prediction model for buried⁃hill fractured reservoirs can be established in Bozhong 19⁃6 gas field. The accuracy of fracture permeability calculation result determines the reliability of productivity prediction result of buried⁃hill fractured reservoirs.
-
表 1 A井1号岩心样品中的裂缝参数
Table 1. Fracture parameters of No.1 core sample of well A
裂缝序号 裂缝长度(mm) 裂缝宽度(mm) 裂缝面积(mm2) 裂缝体积(mm3) 1 0.09 0.02 0.01 0.000 05 2 18.45 3.32 102.00 2.850 00 3 0.19 0.08 0.04 0.000 43 4 0.49 0.12 0.19 0.002 46 5 3.94 0.61 6.44 0.129 00 6 0.60 0.12 0.24 0.004 05 7 0.04 0.02 0.00 0.000 01 8 0.20 0.07 0.03 0.000 26 9 0.82 0.15 0.41 0.006 65 10 0.44 0.13 0.20 0.004 33 11 0.29 0.09 0.07 0.000 86 12 0.07 0.05 0.01 0.000 04 13 0.09 0.04 0.01 0.000 06 14 0.17 0.07 0.02 0.000 18 15 0.08 0.03 0.01 0.000 04 表 2 B井1号岩心样品中的裂缝参数
Table 2. Fracture parameters of No.1 core sample of well B
裂缝序号 裂缝长度(mm) 裂缝宽度(mm) 裂缝面积(mm2) 裂缝体积(mm3) 1 7.35 2.29 38.10 0.904 69 2 10.81 3.90 80.48 6.433 83 3 6.20 1.93 33.72 1.856 04 表 3 A、B井岩心样品的裂缝参数
Table 3. Fracture parameters of core samples of well A and B
样品号 总面孔率 裂缝面孔率 孔隙面孔率 裂缝占总面孔率百分比 裂缝总长度(mm) 裂缝总宽度(mm) 裂缝总面积(mm2) 裂缝总体积(mm3) 渗透率(mD) A井1号样品 4.33% 0.17% 4.16% 3.93% 25.96 4.92 109.68 3.00 0.10 B井1号样品 5.34% 1.10% 4.23% 20.60% 24.36 8.12 152.30 9.19 0.73 表 4 渤中19⁃6气田5口井潜山裂缝性储层的孔隙、裂缝介质的孔隙度和渗透率
Table 4. Porosity and permeability of pore and fracture of buried⁃hill fractured reservoirs of 5 wells in Bozhong 19⁃6 gas field
井号 孔隙度 裂缝孔隙度 总渗透率(mD) 裂缝渗透率(mD) A井 3.00% 0.50% 1.40 1.04 B井 3.30% 0.20% 0.30 0.20 C井 4.20% 0.50% 1.70 1.20 D井 5.60% 0.50% 2.60 2.30 E井 8.30% 0.60% 2.30 2.00 表 5 渤中19⁃6气田5口井潜山裂缝性储层的孔隙度、渗透率、有效厚度和净毛比
Table 5. Porosity, permeability, effective thickness and net⁃to⁃gross ratio of buried⁃hill fractured reservoirs of 5 wells in Bozhong 19⁃6 gas field
类型 井号 顶深(m) 底深(m) 孔隙度 基质渗透率(mD) 总渗透率(mD) 裂缝渗透率(mD) 有效厚度(m) 净毛比 模型井 A井 4 534.00 5 079.00 3.00% 0.36 1.40 1.04 135.20 0.25 B井 4 624.00 5 367.00 3.30% 0.10 0.30 0.20 106.80 0.14 C井 4 578.60 4 817.00 4.20% 0.50 1.70 1.20 84.70 0.36 D井 4 411.00 4 499.80 5.60% 0.30 2.60 2.30 87.10 0.98 E井 3 879.00 3 998.70 8.30% 0.30 2.30 2.00 93.00 0.78 表 6 渤中19⁃6气田2口新钻井潜山裂缝性储层的孔隙度、渗透率、有效厚度和净毛比
Table 6. Porosity, permeability, effective thickness and net-to-gross ratio of buried⁃hill fractured reservoirs of 2 new wells in Bozhong 19⁃6 gas field
类型 井号 顶深(m) 底深(m) 孔隙度 基质渗透率(mD) 总渗透率(mD) 裂缝渗透率(mD) 有效厚度(m) 净毛比 预测井 F井 4 828.00 5 656.00 3.20% 0.20 0.70 0.50 164.00 0.20 G井 4 639.35 5 013.00 4.30% 0.23 0.30 0.07 24.80 0.07 -
[1] Ahriche, I., Tiab, D., 2011. The Effect of Fracture Conductivity and Fracture Storativity on Relative Permeability in Dual Porosity Reservoir. SPE71088. [2] Cheng, M. L., Leal, M. A., McNaughton, D., 1999. Productivity Prediction from Well Logs in Variable Grain Size Reservoir Cretaceous Qishn Formation, Republic of Yemen. Log Analyst, 40(1): 24-32. [3] Chen, G., Pan, B. Z., 2010. Inversion Method of Permeability Using Stoneley Wave. Journal of Jilin University (Earth Science Edition), 40(S1): 77-81(in Chinese with English abstract). [4] Fan, T. E., Niu, T., Fan, H. J., et al., 2021. Geological Model and Development Strategy of Archean Burilled Hill Reservoir in BZ19⁃6 Condensate Field. China Offshore Oil and Gas, 33(3): 85-92(in Chinese with English abstract). [5] Herron, M. M., 1987. Estimating the Intrinsic Permeability of Clasic Sediments from Geochemical Data. SPWLA 28th Annual Logging Symposium, London. [6] Hou, L. H., Lin, C. Y., Wang, J. H., et al., 2003. A Method for Predicting Oil Productivity of Oil⁃Bearing Bed in Exploration Period. Journal of China University of Petroleum (Edition of Natural Science), 27(1): 11-13(in Chinese with English abstract). doi: 10.3321/j.issn:1000-5870.2003.01.005 [7] Huang, J. X., Peng, S. M., Wang, X. J., et al., 2006. Applications of Imaging Logging Data in the Research of Fracture and Ground Stress. Acta Petrolei Sinica, 27(6): 65-69(in Chinese with English abstract). doi: 10.3321/j.issn:0253-2697.2006.06.014 [8] Hou, M. C., Cao, H. Y., Li, H. Y., et al., 2019. Characteristics and Controlling Factors of Deep Buried⁃Hill Reservoirs in the BZ19⁃6 Structural Belt, Bohai Sea Area. Natural Gas Industry B, 6(4): 305-316. https://doi.org/10.1016/j.ngib.2019.01.011 [9] Jamiolahmady, M., Mahdiyar, H., Ghahri, P., et al., 2011. A New Method for Productivity Calculation of Perforated Wells in Gas Condensate Reservoirs. Journal of Petroleum Science and Engineering, 77(3/4): 263-273. https://doi.org/10.1016/j.petrol.2011.03.005 [10] Kang, K., Zhao, L., Luo, X. B., et al., 2021. A New Productivity Evaluation Method for Fractured Buried Hill Gas Reservoirs and Its Application. China Offshore Oil and Gas, 33(3): 100-106(in Chinese with English abstract). [11] Liu, R. L., Xie, F., Xiao, C. W., et al., 2017. Extracting Fracture⁃Vug Plane Porosity from Electrical Imaging Logging Data Using Dissection of Wavelet⁃Transform⁃Based Image. Chinese Journal of Geophysics, 60(12): 4945-4955(in Chinese with English abstract). doi: 10.6038/cjg20171233 [12] Li, N., Wang, K. W., Liu, P., et al., 2021. Experimental Study on Attenuation of Stoneley Wave under Different Fracture Factors. Petroleum Exploration and Development, 48(2): 299-307. https://doi.org/10.1016/S1876-3804(21)60024-1 [13] Liu, M. X., Hao, F., Wang, Q., et al., 2021. Light Hydrocarbon Geochemical Characteristics and Geological Significance of Buried Hill Condensate Oil in Bozhong 19⁃6 Structural Belt. Earth Science, 46(10): 3645-3656(in Chinese with English abstract). [14] Mao, Z. Q., Li, J. F., 2000. Method and Models for Productivity Prediction of Hydrocarbon Reservoirs. Acta Petrolei Sinica, 21(5): 58-61, 3(in Chinese with English abstract). doi: 10.3321/j.issn:0253-2697.2000.05.012 [15] Nian, T., Wang, G. W., Xiao, C. W., et al., 2016. Determination of In⁃Situ Stress Orientation and Subsurface Fracture Analysis from Image⁃Core Integration: an Example from Ultra⁃Deep Tight Sandstone (BSJQK Formation) in the Kelasu Belt, Tarim Basin. Journal of Petroleum Science and Engineering, 147: 495-503. https://doi.org/10.1016/j.petrol.2016.09.020 [16] Nian, T., Jiang, Z. X., Song, H. Y., 2018. Borehole Image Electrofacies with a Comparative Carbonate Petrography Analysis: an Outcrop Well Study Associated with Reservoir Application in the Ordovician Tarim Basin. Interpretation, 6(3): T723-T737. https://doi.org/10.1190/int-2018-0027.1 [17] Nian, T., Wang, G. W., Tan, C. Q., et al., 2021. Hydraulic Apertures of Barren Fractures in Tight⁃Gas Sandstones at Depth: Image⁃Core Calibration in the Lower Cretaceous Bashijiqike Formation, Tarim Basin. Journal of Petroleum Science and Engineering, 196: 108016. https://doi.org/10.1016/j.petrol.2020.108016 [18] Nian, T., Wang, G. W., Fan, X. Q., et al., 2021. Advances in Fracture and Vug Interpretation Using Microresistivity Imaging Logs. Geological Review, 67(2): 476-488(in Chinese with English abstract). [19] Pan, B. Z., Fang, C. H., Guo, Y. H., et al., 2018. Logging Evaluation and Productivity Prediction of Sulige Tight Sandstone Reservoirs Based on Petrophysics Transformation Models. Chinese Journal of Geophysics, 61(12): 5115-5124(in Chinese with English abstract). doi: 10.6038/cjg2018L0724 [20] Qin, R. B., Zhang, L., Zhou, G. Y., 2015. A New Logging Method for Evaluating Fracture Porosity and Permeability in Buried Hill Oilfields. China Offshore Oil and Gas, 27(3): 31-37, 78(in Chinese with English abstract). [21] Qu, H. Z., Zhang, F. X., Wang, Z. Y., et al., 2016. Quantitative Fracture Evaluation Method Based on Core⁃Image Logging: a Case Study of Cretaceous Bashijiqike Formation in Ks2 Well Area, Kuqa Depression, Tarim Basin, NW China. Petroleum Exploration and Development, 43(3): 465-473(in Chinese with English abstract). doi: 10.1016/S1876-3804(16)30054-4 [22] Qin, R. B., Cao, J. J., Li, X. Y., et al., 2021. Acoustic Logging Evaluation Method for Fractures in Metamorphic Buried Hill Reservoir and Its Application in BZ19⁃6 Gas Field. China Offshore Oil and Gas, 33(3): 77-84(in Chinese with English abstract). [23] Shi, X. L., Cui, Y. J., Xu, W. K., et al., 2020. Formation Permeability Evaluation and Productivity Prediction Based on Mobility from Pressure Measurement while Drilling. Petroleum Exploration and Development, 47(1): 146-153(in Chinese with English abstract). doi: 10.1016/S1876-3804(20)60013-1 [24] Tan, T. D., 1986. Exploration of the Productivity Prediction Method for Fractured Oil and Gas Reservoirs. Well Logging Technology, 10(4): 1-9(in Chinese with English abstract). [25] Wei, J., Li, J. P., Yang, X. B., et al., 2021. Quantitative Evaluation for Reservoir Identification of Vug Fractured Reservoir in Right Bank of Amu Darya Basin. Well Logging Technology, 45(2): 156-161(in Chinese with English abstract). [26] Xu, C. G., Yu, H. B., Wang, J., et al., 2019. Formation Conditions and Accumulation Characteristics of Bozhong 19⁃6 Large Condensate Gas Field in Offshore Bohai Bay Basin. Petroleum Exploration and Development, 46(1): 27-40. https://doi.org/10.1016/S1876-3804(19)30003-5 [27] Yang, F., Zhu, C. Q., Wang, X. H., et al., 2013. A Capacity Prediction Model for the Low Porosity Fractured Reservoirs in the Kuqa Foreland Basin, NW China. Petroleum Exploration and Development, 40(3): 367-371. https://doi.org/10.1016/S1876-3804(13)60044-0 [28] Yang, B., Zhang, C. G., Cai, M., et al., 2019. Research on Evaluation Method of Fracture Permeability Based on Stoneley Wave EnergyAttenuation. Progress in Geophysics, 34(3): 1127-1131(in Chinese with English abstract). [29] Zheng, X. R., Li, X. B., Li, X. L., 2015. New Prediction Method for Fracture Reservoir Productivity. Fault-Block Oil & Gas Field, 22(6): 744-746, 751(in Chinese with English abstract). [30] Zhang, Z. H., Du, S. K., Chen, H. Y., et al., 2018. Quantitative Characterization of Volcanic Fracture Distribution Based on Electrical Imaging Logging: A Case Study of Carboniferous in Dixi Area, Junggar Basin. Acta Petrolei Sinica, 39(10): 1130-1140(in Chinese with English abstract). doi: 10.7623/syxb201810005 [31] Zhuang, C. X., Li, Y. H., Kong, F. T., et al., 2019. Formation Permeability Estimation Using Stoneley Waves from Logging while Drilling: Theory, Method, and Application. Chinese Journal of Geophysics, 62(11): 4482-4492(in Chinese with English abstract). doi: 10.6038/cjg2019N0122 [32] Zhou, X. H., Wang, Q. B., Feng, C., et al., 2022. Formation Conditions and Geological Significance of Large Archean Buried Hill Reservoirs in Bohai Sea. Earth Science, 47(5): 1534-1548(in Chinese with English abstract). [33] 陈刚, 潘保芝, 2010. 利用斯通利波反演地层渗透率. 吉林大学学报(自然科学版), 40(S): 77-81. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ2010S1021.htm [34] 范廷恩, 牛涛, 范洪军, 等, 2021. 渤中19⁃6凝析气田太古界潜山储层地质模式及开发策略. 中国海上油气, 33(3): 85-92. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202103009.htm [35] 侯连华, 林承焰, 王京红, 等, 2003. 含油层早期产能预测方法. 中国石油大学学报(自然科学版), 27(1): 11-13. doi: 10.3321/j.issn:1000-5870.2003.01.005 [36] 黄继新, 彭仕宓, 王小军, 等, 2006. 成像测井资料在裂缝和地应力研究中的应用. 石油学报, 27(6): 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200606013.htm [37] 侯明才, 曹海洋, 李慧勇, 等, 2019. 渤海海域渤中19⁃6构造带深层潜山储层特征及其控制因素. 天然气工业, 39(1): 33-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201901005.htm [38] 康凯, 赵林, 罗宪波, 等, 2021. 裂缝性潜山气藏产能评价新方法及其应用. 中国海上油气, 33(3): 100-106. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202103011.htm [39] 刘瑞林, 谢芳, 肖承文, 等, 2017. 基于小波变换图像分割技术的电成像测井资料裂缝、孔洞面孔率提取方法. 地球物理学报, 60(12): 4945-4955. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201712033.htm [40] 李宁, 王克文, 刘鹏, 等, 2021. 不同裂缝条件下斯通利波幅度衰减实验. 石油勘探与开发, 48(2): 258-265. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202102004.htm [41] 刘梦醒, 郝芳, 王奇, 等, 2021. 渤中19⁃6潜山构造带凝析油中轻烃地球化学特征及意义. 地球科学, 46(10): 3645-3656. doi: 10.3799/dqkx.2021.033 [42] 毛志强, 李进福, 2000. 油气层产能预测方法及模型. 石油学报, 21(5): 58-61. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200005016.htm [43] 年涛, 王贵文, 范旭强, 等, 2021. 成像测井缝洞解释评价研究进展. 地质论评, 67(2): 476-488. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202102019.htm [44] 潘保芝, 房春慧, 郭宇航, 等, 2018. 基于岩石物理转换模型的苏里格致密砂岩储层测井评价与产能预测. 地球物理学报, 61(12): 5115-5124. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201812035.htm [45] 秦瑞宝, 张磊, 周改英, 2015. 潜山油田裂缝孔隙度和渗透率测井评价新方法. 中国海上油气, 27(3): 31-37, 78. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201503005.htm [46] 屈海洲, 张福祥, 王振宇, 等, 2016. 基于岩心-电成像测井的裂缝定量表征方法——以库车坳陷ks2区块白垩系巴什基奇克组砂岩为例. 石油勘探与开发, 43(3): 425-432. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201603015.htm [47] 秦瑞宝, 曹景记, 李雄炎, 等, 2021. 变质岩潜山储层裂缝声波测井评价方法及其在渤中19⁃6气田的应用. 中国海上油气, 33(3): 77-84. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202103008.htm [48] 时新磊, 崔云江, 许万坤, 等, 2020. 基于随钻测压流度的地层渗透率评价方法及产能预测. 石油勘探与开发, 47(1): 140-147. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001015.htm [49] 谭廷栋, 1986. 裂缝性油气层产能预测方法的探索. 测井技术, 10(4): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS198604000.htm [50] 魏娇, 李剑平, 杨雪冰, 等, 2021. 阿姆河右岸缝洞储层识别多尺度定量评价方法. 测井技术, 45(2): 156-161. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS202102012.htm [51] 徐长贵, 于海波, 王军, 等, 2019. 渤海海域渤中19⁃6大型凝析气田形成条件与成藏特征. 石油勘探与开发, 46(1): 25-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901003.htm [52] 杨锋, 朱春启, 王新海, 等, 2013. 库车前陆盆地低孔裂缝性砂岩产能预测模型. 石油勘探与开发, 40(3): 341-345. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201303013.htm [53] 杨博, 章成广, 蔡明, 等, 2019. 基于斯通利波能量衰减的裂缝渗透性评价方法研究. 地球物理学进展, 34(3): 1127-1131. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201903033.htm [54] 郑学锐, 李贤兵, 李香玲, 2015. 一种裂缝性油藏产能预测新方法. 断块油气田, 22(6): 744-746, 751. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201506013.htm [55] 张兆辉, 杜社宽, 陈华勇, 等, 2018. 基于电成像测井的火山岩裂缝分布定量表征——以准噶尔盆地滴西地区石炭系为例. 石油学报, 39(10): 1130-1140. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201810005.htm [56] 庄春喜, 李杨虎, 孔凡童, 等, 2019. 随钻斯通利波测井反演地层渗透率的理论、方法及应用. 地球物理学报, 62(11): 4482-4492. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201911040.htm [57] 周心怀, 王清斌, 冯冲, 等, 2022. 渤海海域大型太古界潜山储层形成条件及地质意义. 地球科学, 47(5): 1534-1548. doi: 10.3799/dqkx.2021.249