Real-Time Generation Technology of Vector Geological Profile Based on 3D Geological Model
-
摘要: 为了解决目前剖面图生成的实时性、鲁棒性和准确性的问题,本研究提出从图像空间出发,利用双模板缓冲技术解决剖切问题的计算瓶颈,同时借助RTT(Render to Texture)相机技术和高分辨率技术实现任意直线切割下的剖面图高精度输出,最后将剖面图矢量化以获得带有属性的矢量图.实验证明,本研究提出的基于三维地质模型的矢量地质剖面图实时生成技术具有可实现性.通过与传统剖切对比,证明我们的方法在剖切效率上有高达99.9%的提升,实现了剖面图生成的实时性且输出的矢量剖面图地质界线一致且清晰.为地质行业进入三维化时代提供了一种基于三维地质模型的实时剖面图生成的新思路,对剖面图实时生成具有一定的参考意义.Abstract: In order to solve the problems of real-time, robustness and accuracy of the current profile generation, in this paper it proposes to solve the calculation bottleneck of the cutting problem from the perspective of image space by using the double stencil buffer technology. With the help of Render To Texture camera technology and high-resolution technology, the high-precision output of the profile under arbitrary route cutting is realized. Finally, the profile is vectorized to obtain the vector geological profile with attributes. Experiments show that the real-time generation technology of vector geological profile based on three-dimensional geological model is feasible. Compared with the traditional cutting, it is proved that our method has greatly improved the cutting efficiency, realizing the real-time generation of the profile and the exquisite and beautiful output of the vector profile. It provides a new idea for real-time profile generation based on three-dimensional geological model under the background of geological industry entering the era of three-dimensionalization, and achieves a multiplier effect.
-
Key words:
- 3D geological model /
- double stencil buffer /
- RTT camera /
- real-time cutting /
- engineering geology
-
表 1 单次剖切效率比较
Table 1. Single cut efficiency comparison
三角面片数(万个) 普通剖切剖面生成时间(ms) 基于双模板缓冲剖面生成时间(ms) 缩减时间(ms) 提高效率(%) 8.69 2 207.06 0.34 2 206.72 99.98 14.98 2 212.10 1.13 2 210.97 99.95 19.92 2 214.17 1.18 2 212.99 99.95 25.88 2 215.33 1.40 2 213.93 99.94 29.79 2 217.88 1.70 2 216.18 99.92 -
[1] Bowden, R.A., 2004. Building Confidence in Geological Models. Geological Society, London, Special Publications, 239(1): 157-173. doi: 10.1144/GSL.SP.2004.239.01.11 [2] Chen, G.L., Liu, X.G., Shang, J.G., et al., 2007. Three-Dimensional Geological Structure Model Cutting Analysis Techniques and Methods. Computer Engineering, 33(20): 184-186 (in Chinese with English abstract). [3] Chen, J.Z., Hou, K.P., 2005. Study on Three-Dimension Rock Body Cutting Method Using OpenGL. Yunnan Metallurgy, 34(1): 12-15, 20 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-0308.2005.01.002 [4] Deng, L., Wang, H., Li, K.J., 2022. Analysis of Deformational Mechanism and Stability Evaluation of Lacustrine Deposit within the Corridor of Sichuan-Tibet Railway: An Example from an Outcrop at Songzong Town. Earth Science, 47(3): 959-973 (in Chinese with English abstract). [5] Duan, Y.X., Li, N.N., Sun, Q.F., et al., 2018. A Method of Vectorization of Oil Reservoir Geological Profile. Computer Technology and Development, 28(8): 170-174 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-629X.2018.08.036 [6] Fang, S.M., Wu, C.L., Liu, G., et al., 2004. The Design and Realization of Computer-Aided Production System for the Cutting Section of a Geological Map. Coal Geology & Exploration, 32(1): 11-13 (in Chinese). doi: 10.3969/j.issn.1001-1986.2004.01.005 [7] Fang, Y., Li, M., Hu, Y.J., 2003. Three-Dimensional Visualization of Stratified Geological Objects. Journal of Jiaozuo Institute of Technology (Natural Science), 22(6): 441-444 (in Chinese with English abstract). [8] Guo, J.T., Dai, X. W., Liu, S.J., et al., 2021. An Implicit Cutting Method for 3D Geological Body Model. Journal of Wuhan University(Information Science Edition), 46(11): 1766-1773 (in Chinese with English abstract). [9] Hao, S.B., Chen, Y., Huang, P., et al., 2021. Lopingian Conodont Biostratigraphy and Age of Dalong Formation at Wujiachong Section, East Hubei Province. Earth Science, 46(11): 4057-4071 (in Chinese with English abstract). [10] Hassanzadeh, A., Vázquez-Suñé, E., Corbella, M., et al., 2022. An Automatic Geological 3D Cross-Section Generator: Geopropy, an Open-Source Library. Environmental Modelling & Software, 149: 105309. [11] He, W., Barzgar, E., Feng, W., et al., 2021. Reservoirs Patterns and Key Controlling Factors of the Lenghu Oil & Gas Field in the Qaidam Basin, Northwestern China. Journal of Earth Science, 32(4): 1011-1021. doi: 10.1007/s12583-020-1061-z [12] Hong, X., Zhang, J.X., Zeng, Q.S., 2008. Research on Section of 3D Geological Model Based on Similar Tri-Prism. Computer Engineering and Design, 29(15): 4097-4099 (in Chinese with English abstract). [13] Kumar, T. S. S., 2021. Resource Modelling of Iron Ore Deposit Using Surpac Software. Journal of the Geological Society of India, 97(5): 559. https://doi.org/10.1007/s12594-021-1724-0 [14] Li, S.W., 2002. Application Skills of AutoCAD in Engineering Geologic Protraction. Northwest Water Power, (2): 68-70 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-2610.2002.02.020 [15] Liu, S.H., Cheng, P.G., Chen, H.H., 2003. Study of 3D Geology Modeling and Visualization. Journal of Guilin Institute of Technology, 23(2): 154-158 (in Chinese with English abstract). doi: 10.3969/j.issn.1674-9057.2003.02.003 [16] Lu, J., 2003. Automatic Generation Method of Hydrogeological Profile Based on Component GIS (Dissertation). Nanjing Normal University, Nanjing (in Chinese with English abstract). [17] Lu, L., Zhang, Y.H., Yang, Y., 2019. Error Analysis of Reserve Calculation by DIMINE Software in Datun Tin Mine. Mining Engineering, 17(3): 67-69 (in Chinese with English abstract). [18] Morehouse, S., 1992. The ARC/INFO Geographic Information System. Computers & Geosciences, 18(4): 435-441. [19] Olierook, H.K.H., Scalzo, R., Kohn, D., et al., 2021. Bayesian Geological and Geophysical Data Fusion for the Construction and Uncertainty Quantification of 3D Geological Models. Geoscience Frontiers, 12(1): 479-493. doi: 10.1016/j.gsf.2020.04.015 [20] Pei, L.N., Qi, J.M., Liu, Z.H., et al., 2019. Accurate Drawing Algorithm and Realization of Arc Geological Section Based on AutoCAD. Yangtze River, 50(7): 123-127, 149 (in Chinese with English abstract). [21] Tang, H.Y., Liu, Y., 1994. The Design and Implementation of Computer Aided Drawing Profile of Engineering Geology Bore. Shanghai Land & Resources, (3): 59-63 (in Chinese). [22] Tao, Y., 2014. Study of the Geological Map Vectorization Technique Based on GIS. Modern Surveying and Mapping, 37(6): 50-52 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-4097.2014.06.017 [23] Tian, T., Pan, M., Chen, L., et al., 2008. Strata Auto-Connection of Geologic Section Chart Based on Spatial Semantics. Geography and Geo-Information Science, 24(6): 54-56 (in Chinese with English abstract). [24] Wang, J.M., Lü, Q., Wan, D.S., 2009. Geological Section Modeling System Based on Borehole Data. Journal of Hohai University (Natural Sciences), 37(4): 463-466 (in Chinese with English abstract). doi: 10.3876/j.issn.1000-1980.2009.04.020 [25] Wang, J.W., Guo, J.T., Zhang, R.B., 2012. An Automatic Generation and 2D/3D Visualization for Geological Sections with Strata Pinch-out. Journal of Shenyang Jianzhu University (Natural Science), 28(3): 405-410 (in Chinese with English abstract). [26] Wang, Y.Y., 2000. Computer-Generated Geologic Map Applied to Mineral Resoureces Assessment. Geology and Prospecting, 36(1): 44-47 (in Chinese with English abstract). [27] Wen, X.D., Lu, X.S., Li, Q.Y., et al., 2005. Study of 3D Geo-Spatial Modeling Based on Tri-Prism Volume. Science of Surveying and Mapping, 30(5): 82-83, 94 (in Chinese with English abstract). doi: 10.3771/j.issn.1009-2307.2005.05.029 [28] Yan, C.B., Li, J.L., Cheng, L., et al., 2021. Stratigraphic Distribution of the Early Triassic Nanzhang-Yuan'an Fauna in Western Hubei. Journal of Earth Science, 46 (1): 122-135. [29] Yang, Y.P., Zhang, Y., Wang, Q., 2004. Research and Development of Knowledge-Based Geology Section Chart System. Geography and Geo-Information Science, 20(5): 24-27 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-0504.2004.05.006 [30] Zheng, J.H., Wu, M.B., 1998. Computer Graphic System of Engineering Seismic Log Columnar Section. South China Journal of Seismology, 18(2): 72-77 (in Chinese). [31] Zhu, D.P., Niu, W.J., Yang, Q., et al., 2001.3 Dimension Visualization for Geology-Constructed-Model. Journal of Beijing University of Aeronautics and Astronautics, 27(4): 448-451 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-5965.2001.04.018 [32] Zhu, Y., Liu, X.J., Chen, S.Z., 2007. A Research on the Data Model of Automatic Generating Geologic Section. Journal of Hunan University of Science & Technology(Natural Science Edition), 22(3): 96-100 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-9102.2007.03.021 [33] 陈国良, 刘修国, 尚建嘎, 等, 2007. 三维地质结构模型的切割分析技术及方法. 计算机工程, 33(20): 184-186. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC200720066.htm [34] 陈俊智, 侯克鹏, 2005. 利用OpenGL对岩体三维模型进行切剖面方法研究. 云南冶金, 34(1): 12-15, 20. doi: 10.3969/j.issn.1006-0308.2005.01.002 [35] 邓林, 王虎, 李开锦, 2022. 川藏铁路廊道湖相地层斜坡断错变形机理分析及其稳定性评价: 以松宗镇湖相剖面为例. 地球科学, 47(3): 959-973. [36] 段友祥, 李宁宁, 孙歧峰, 等, 2018. 一种油藏地质剖面图矢量化方法. 计算机技术与发展, 28(8): 170-174. doi: 10.3969/j.issn.1673-629X.2018.08.036 [37] 方世明, 吴冲龙, 刘刚, 等, 2004. 地质图切剖面计算机辅助编绘系统设计与实现. 煤田地质与勘探, 32(1): 11-13. doi: 10.3969/j.issn.1001-1986.2004.01.005 [38] 方燕, 李梅, 胡友健, 2003. 层状地质体的三维可视化研究. 焦作工学院学报(自然科学版), 22(6): 441-444. doi: 10.3969/j.issn.1673-9787.2003.06.008 [39] 郭甲腾, 代欣位, 刘善军, 等, 2021. 一种三维地质体模型的隐式剖切方法. 武汉大学学报(信息科学版), 46(11): 1766-1773. https://www.cnki.com.cn/Article/CJFDTOTAL-WHCH202111018.htm [40] 郝少波, 陈龑, 黄攀, 等, 2021. 鄂东伍家冲剖面乐平世牙形石生物地层及大隆组的时代. 地球科学, 46(11): 4057-4071. doi: 10.3799/dqkx.2021.032 [41] 洪雄, 张建勋, 曾庆森, 2008. 基于似三棱柱构模的三维地质体的剖切. 计算机工程与设计, 29(15): 4097-4099. doi: 10.16208/j.issn1000-7024.2008.15.064 [42] 李树武, 2002. AutoCAD在工程地质制图中的一些应用技巧. 西北水电, (2): 68-70. doi: 10.3969/j.issn.1006-2610.2002.02.020 [43] 刘少华, 程朋根, 陈红华, 2003. 三维地质建模及可视化研究. 桂林工学院学报, 23(2): 154-158. doi: 10.3969/j.issn.1674-9057.2003.02.003 [44] 陆娟, 2003. 基于组件式GIS的水文地质剖面图自动生成方法研究: 以孔隙水文地质剖面为例(硕士学位论文). 南京: 南京师范大学. [45] 芦磊, 张云海, 杨殷, 2019. 大屯锡矿应用DIMINE软件进行储量计算的误差分析. 矿业工程, 17(3): 67-69. doi: 10.16672/j.cnki.kygc.2019.03.025 [46] 裴丽娜, 齐菊梅, 刘振红, 等, 2019. 基于AutoCAD的弧段地质剖面精确绘制算法与实现. 人民长江, 50(7): 123-127, 149. doi: 10.16232/j.cnki.1001-4179.2019.07.020 [47] 汤华英, 刘映, 1994. 计算机辅助绘制工程地质剖面图(CADP)软件的设计与实现. 上海国土资源, (3): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-SHAD199403006.htm [48] 陶鹰, 2014. 基于GIS的地质图矢量化技术研究. 现代测绘, 37(6): 50-52. https://www.cnki.com.cn/Article/CJFDTOTAL-JSCH201406017.htm [49] 田甜, 潘懋, 陈雷, 等, 2008. 基于空间语义的地质剖面自动连接算法. 地理与地理信息科学, 24(6): 54-56. https://www.cnki.com.cn/Article/CJFDTOTAL-DLGT200806015.htm [50] 王继民, 吕庆, 万定生, 2009. 基于钻孔数据的地质剖面建模系统. 河海大学学报(自然科学版), 37(4): 463-466. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200904021.htm [51] 王家伟, 郭甲腾, 张荣兵, 2012. 含尖灭地层的地质剖面图自动生成与2D/3D绘制. 沈阳建筑大学学报(自然科学版), 28(3): 405-410. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ201203006.htm [52] 王勇毅, 2000. GIS与地质图制作. 地质与勘探, 36(1): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200001013.htm [53] 文学东, 卢秀山, 李青元, 等, 2005. 基于三棱柱的三维地质体建模及可视化研究. 测绘科学, 30(5): 82-83, 94. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD200505028.htm [54] 阎春波, 李姜丽, 程龙, 等, 2021. 鄂西早三叠世南漳‒远安动物群地层分布特征. 地球科学, 46(1): 122-135. doi: 10.3799/dqkx.2020.023 [55] 杨一鹏, 张银, 王桥, 2004. 基于知识的地质剖面图生成器研究和实现. 地理与地理信息科学, 20(5): 24-27. https://www.cnki.com.cn/Article/CJFDTOTAL-DLGT200405006.htm [56] 郑洁红, 吴名彬, 1998. 工程地震钻孔柱状图的微机绘图系统. 华南地震, 18(2): 72-77. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDI199802014.htm [57] 朱大培, 牛文杰, 杨钦, 等, 2001. 地质构造的三维可视化. 北京航空航天大学学报, 27(4): 448-451. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK200104017.htm [58] 朱莹, 刘学军, 陈锁忠, 2007. 地质剖面自动绘制的数据模型研究. 湖南科技大学学报(自然科学版), 22(3): 96-100. https://www.cnki.com.cn/Article/CJFDTOTAL-XTKY200703022.htm