• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基于Newmark模型的概率地震滑坡危险性模型参数优化与应用: 以鲁甸地震区为例

    赵海军 马凤山 李志清 郭捷 张家祥

    赵海军, 马凤山, 李志清, 郭捷, 张家祥, 2022. 基于Newmark模型的概率地震滑坡危险性模型参数优化与应用: 以鲁甸地震区为例. 地球科学, 47(12): 4401-4416. doi: 10.3799/dqkx.2022.289
    引用本文: 赵海军, 马凤山, 李志清, 郭捷, 张家祥, 2022. 基于Newmark模型的概率地震滑坡危险性模型参数优化与应用: 以鲁甸地震区为例. 地球科学, 47(12): 4401-4416. doi: 10.3799/dqkx.2022.289
    Zhao Haijun, Ma Fengshan, Li Zhiqing, Guo Jie, Zhang Jiaxiang, 2022. Optimization of Parameters and Application of Probabilistic Seismic Landslide Hazard Analysis Model Based on Newmark Displacement Model: A Case Study in Ludian Earthquake Area. Earth Science, 47(12): 4401-4416. doi: 10.3799/dqkx.2022.289
    Citation: Zhao Haijun, Ma Fengshan, Li Zhiqing, Guo Jie, Zhang Jiaxiang, 2022. Optimization of Parameters and Application of Probabilistic Seismic Landslide Hazard Analysis Model Based on Newmark Displacement Model: A Case Study in Ludian Earthquake Area. Earth Science, 47(12): 4401-4416. doi: 10.3799/dqkx.2022.289

    基于Newmark模型的概率地震滑坡危险性模型参数优化与应用: 以鲁甸地震区为例

    doi: 10.3799/dqkx.2022.289
    基金项目: 

    国家重点研发计划项目 2019YFC1509704

    第二次青藏高原综合科学考察研究项目 2019QZKK0904

    详细信息
      作者简介:

      赵海军(1981-), 男, 博士, 副研究员, 主要从事工程地质与岩石力学方面的研究工作.ORCID: 0000-0002-4585-6684.E-mail: zhaohaijun@mail.iggcas.ac.cn

    • 中图分类号: P642

    Optimization of Parameters and Application of Probabilistic Seismic Landslide Hazard Analysis Model Based on Newmark Displacement Model: A Case Study in Ludian Earthquake Area

    • 摘要:

      应用概率地震危险性评价模型进行地震滑坡危险性区划,是解决潜在地震诱发滑坡危险性评价中震源不确定性与诱发滑坡时空不确定性的有效方法.通过理论分析,结合鲁甸地震区的实际情况,对基于力学原理的Newmark滑块位移模型与概率地震滑坡危险性分析方法中的参数的不确定性问题进行了分析,将斜坡岩土体地震作用下的强度衰减效应、地震加速度地形放大效应、断层破碎带效应融合到了斜坡累积位移计算模型中,进行了模型计算参数的优化.改进后的分析模型,更好地反映了高陡斜坡地形与断层破碎带对地震滑坡灾害发育的控制作用,在鲁甸地震区域滑坡应用中,优化模型中的滑坡失稳极高风险区与实际地震滑坡分布表现出了较好的一致性,在超越概率2%的滑坡失稳概率分布中,鲁甸地区包谷垴—小河断裂、鲁甸—昭通断裂带及牛栏江河谷地带地震滑坡高—极高风险区分布面积增幅十分显著.因此,在Newmark滑块位移模型中考虑地震动参数与岩土参数动态响应规律与变量间的定量关系,对于提高区域斜坡稳定性分析的可靠性具有重要意义.

       

    • 图  1  区域地震构造与动力学背景

      a.区域活动断裂分布图;b.昭通-鲁甸断裂带及邻区地震构造图,①鲜水河断裂;②龙门山断裂;③安宁河断裂;④则木河断裂;⑤莲峰-昭通断裂;⑥小江断裂;⑦红河断裂;⑧实皆断裂;⑨大凉山断裂;⑩马边-盐津断裂;⑪莲峰断裂;⑫昭通-鲁甸断裂;⑬翻身村断裂;⑭者海-石门坎断裂;⑮汤朗-易门断裂;据常祖峰等(2014)Wen et al.(2011)

      Fig.  1.  Regional seismological tectonic map and dynamic setting

      图  2  研究区三维地形示意图

      Fig.  2.  Schematic diagram of the three-dimensional topography of the study area

      图  3  研究区典型崩滑灾害特征

      a.红石岩右岸滑坡;b.红石岩左岸滑坡;c.乐红崩塌;d.沙坝滑坡

      Fig.  3.  Typical geological hazards in the study area

      图  4  研究区岩性与断层分布图

      Fig.  4.  Distribution map of lithology and faults in the study area

      图  5  研究区地形坡度分布图

      Fig.  5.  Topographic slope gradient in the study area

      图  6  断层长度与断层影响带宽度变化关系曲线(据雷光伟等, 2016)

      Fig.  6.  Relation curves between the length of fault and the width of fault-affected zone (modified from Lei et al., 2016))

      图  7  研究区断层分布及断层影响带宽度变化

      Fig.  7.  Distribution map of faults and changes in the width of the fault-affected zone in the study area

      图  8  研究区斜坡临界加速度分布图

      a.参数优化方法计算结果; b.传统方法计算结果

      Fig.  8.  Critical acceleration distribution of slopes in the study area

      图  9  研究区50年超越概率10%地震滑坡危险性概率分布图

      a.参数优化方法计算结果; b.传统方法计算结果

      Fig.  9.  Probability distribution of earthquake-induced landslide risks in study area for 10% probability of exceedance in 50 years

      图  10  震中100 km范围内地震台站分布图(a)与鲁甸地震PGA等值线分布图(b)

      Fig.  10.  Distribution of seismic stations within 100 km of the epicenter (a) and PGA contour distribution of Ludian earthquake (b)

      图  11  鲁甸地震滑坡Newmark位移分布图

      a.参数优化方法计算结果; b.传统方法计算结果

      Fig.  11.  Newmark displacement distribution in Ludian area

      图  12  鲁甸地震滑坡危险性概率分布与崩滑灾害分布

      Fig.  12.  Probability distribution of earthquake-induced landslide risks and actual seismic-induced landslides in Ludian area

      图  13  研究区50年超越概率2%地震滑坡危险性概率分布图

      Fig.  13.  Probability distribution of earthquake-induced landslide risks in study area for 2% probability of exceedance in 50 years

      图  14  不同超越概率水平下滑坡失稳概率面积曲线图

      Fig.  14.  Area curves of probability distribution of earthquake-induced landslide at different exceedance probability levels

      表  1  研究区模型计算岩石参数取值

      Table  1.   Rock parameters used in the study area

      岩性 $ {\phi }^{\mathrm{\text{'}}}(°) $ $ {c}^{\mathrm{\text{'}}}\left(\mathrm{M}\mathrm{P}\mathrm{a}\right) $ $ \gamma (\mathrm{k}\mathrm{N}•{m}^{-3}) $
      白云岩 35.25 0.036 27.50
      泥岩 30.00 0.020 27.00
      砂黏土 20.25 0.015 20.00
      砂岩 33.75 0.025 26.50
      石灰岩 36.50 0.030 27.50
      玄武岩 38.75 0.035 30.00
      页岩 25.20 0.025 27.00
      下载: 导出CSV

      表  2  50年不同超越概率水平下峰值加速度PGA比值

      Table  2.   Bedrock PGA ratios at different exceeding probabilities over 50 years

      不同超越概率水平下峰值加速度PGA之比 场地类别
      多遇地震(63.5%/10%) 0.323 0.333 0.378
      罕遇地震((2%~3%)/10%) 2.145 1.900 1.657
      下载: 导出CSV

      表  3  建筑规范中规定的不同超越概率地震PGA比值

      Table  3.   The PGA ratios at different exceeding probabilities for seismic design of buildings

      加速度分档 0.05 g 0.10 g 0.15 g 0.20 g 0.30 g 0.40 g
      多遇地震(63.5%/10%) 0.36 0.35 0.37 0.35 0.37 0.35
      罕遇地震((2%~3%)/10%) 2.50 2.20 2.07 2.00 1.70 1.55
      下载: 导出CSV
    • [1] Ai, H., Wu, H.G., Yang, T., et al., 2016. Experimental Study on the Shear Strength Parameters of Soil after Earthquake. China Sciencepaper, 11(13): 1544-1547, 1554(in Chinese with English abstract). doi: 10.3969/j.issn.2095-2783.2016.13.023
      [2] Chang, Z.F., Zhou, R.J., An, X.W., et al., 2014. Late Quaternary Activity of the Zhaotong-Ludian Fault Zone and Its Tectonic Implication. Seismology and Geology, 36(4): 1260-1279(in Chinese with English abstract). doi: 10.3969/j.issn.0253-4967.2014.04.025
      [3] Dai, B.Y., Wu, B., Chang, H., et al., 2017. Contrastive Analysis of Landslide between the Yunnan Ludian MS6.5 and the Jinggu MS6.6 Earthquake. Journal of Seismological Research, 40(1): 153-160(in Chinese with English abstract).
      [4] Dreyfus, D., Rathje, E.M., Jibson, R.W., 2013. The Influence of Different Simplified Sliding-Block Models and Input Parameters on Regional Predictions of Seismic Landslides Triggered by the Northridge Earthquake. Engineering Geology, 163: 41-54. https://doi.org/10.1016/j.enggeo.2013.05.015
      [5] Du, G.L., Zhang, Y.S., Yang, Z.H., et al., 2017. Estimation of Seismic Landslide Hazard in the Eastern Himalayan Syntaxis Region of Tibetan Plateau. Acta Geologica Sinica, 91(2): 658-668. doi: 10.1111/1755-6724.13124
      [6] Guo, M.Z., Cao, X.Y., Chang, Y.B., et al., 2016. Effect of Fault Fracture Zone on Ground Motion of Fault Site. Earthquake Resistant Engineering and Retrofitting, 38(6): 129-135(in Chinese with English abstract).
      [7] Hsieh, S.Y., Lee, C.T., 2011. Empirical Estimation of the Newmark Displacement from the Arias Intensity and Critical Acceleration. Engineering Geology, 122(1): 34-42. http://www.ingentaconnect.com/content/el/00137952/2011/00000122/00000001/art00005
      [8] Huang, R.Q., Li, W.L., 2008. Research on Development and Distribution Rules of Geohazards Induced by Wenchuan Earthquake on 12th May, 2008. Chinese Journal of Rock Mechanics and Engineering, 27(12): 2585-2592(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2008.12.028
      [9] Jiang, H., Zhou, H., Gao, M.T., 2015. A Study on the Correlation of Ridge Line and Slope with Peak Ground Velocity Amplification Factor. Chinese Journal of Geophysics, 58(1): 229-237(in Chinese with English abstract).
      [10] Jibson, R.W., 1993. Predicting Earthquake-Induced Landslide Displacements Using Newmark's Sliding Block Analysis. Transportation Research Record, 1411: 9-17.
      [11] Jibson, R.W., 2007. Regression Models for Estimating Coseismic Landslide Displacement. Engineering Geology, 91(2-4): 209-218. https://doi.org/10.1016/j.enggeo.2007.01.013
      [12] Jibson, R.W., 2011. Methods for Assessing the Stability of Slopes during Earthquakes: A Retrospective. Engineering Geology, 122(1-2): 43-50. https://doi.org/10.1016/j.enggeo.2010.09.017
      [13] Jibson, R.W., Harp, E.L., Michael, J.A., 2000. A Method for Producing Digital Probabilistic Seismic Landslide Hazard Maps. Engineering Geology, 58(3-4): 271-289. https://doi.org/10.1016/s0013-7952(00)00039-9
      [14] Jin, K.P., Yao, L.K., Chen, M.D., 2019. Improvement of Newmark Model and Method Study of Risk Zoning for Earthquake Triggered Landslide. Journal of Disaster Prevention and Mitigation Engineering, 39(2): 301-308(in Chinese with English abstract).
      [15] Legg, M., Slosson, J., Eguchi, R., 1982. Seismic Hazard for Lifelines Vulnerability Analyses. In Proceedings, 3rd International Conference on Microzoning, Seattle, Washington, 1641-1652.
      [16] Lei, G.W., Yang, C.H., Wang, G.B., et al., 2016. The Development Law and Mechanical Causes of Fault Influenced Zone. Chinese Journal of Rock Mechanics and Engineering, 35(2): 231-241(in Chinese with English abstract).
      [17] Li, X.J., Xu, W.J., Gao, M.T., 2021. Characteristics of Arias Intensity and Newmark Displacement of Strong Ground Motion in Lushan Earthquake. Acta Seismologica Sinica, 43(6): 768-786(in Chinese with English abstract).
      [18] Li, Z.S., 2003. The State of the Art of the Research on Seismic Landslide Hazard at Home and Abroad. Journal of Catastrophology, 18(4): 64-70(in Chinese with English abstract).
      [19] Liu, J.M., 2015. Probabilistic Seismic Landslide Hazard Zonation Method and Its Application (Dissertation). Institute of Geophysics, China Earthquake Administration, Beijing (in Chinese with English abstract).
      [20] Ministry of Housing and Urban-Rural Development of the People's Republic of China, State General Administration of the People's Republic of China for Quality Supervision and Inspection and Quarantine, 2016. Specifications for Antiseismic Construction Design. China Architecture and Building Press, Beijing(in Chinese).
      [21] Newmark, N.M., 1965. Effects of Earthquakes on Dames and Embankments. Geotechnique, 15(2): 139-160. https://doi.org/10.1680/geot.1965.15.2.139
      [22] Parsons, T., Ji, C., Kirby, E., 2008. Stress Changes from the 2008 Wenchuan Earthquake and Increased Hazard in the Sichuan Basin. Nature, 454: 509-510. https://doi.org/10.1038/nature07177
      [23] Qi, S.W., 2007. Evaluation of the Permanent Displacement of Rock Mass Slope Considering Deterioration of Slide Surface during Earthquake. Chinese Journal of Geotechnical Engineering, 29(3): 452-457(in Chinese with English abstract). doi: 10.3321/j.issn:1000-4548.2007.03.024
      [24] Rathje, E.M., Saygili, G., 2009. Probabilistic Assessment of Earthquake-Induced Sliding Displacements of Natural Slopes. Bulletin of the New Zealand Society for Earthquake Engineering, 42(1): 18-27. https://doi.org/10.5459/bnzsee.42.1.18-27
      [25] Rodríguez-Peces, M.J., García-Mayordomo, J., Azañón, J.M., et al., 2014. GIS Application for Regional Assessment of Seismically Induced Slope Failures in the Sierra Nevada Range, South Spain, along the Padul Fault. Environmental Earth Sciences, 72(7): 2423-2435. https://doi.org/10.1007/s12665-014-3151-7
      [26] Romeo, R., 2000. Seismically Induced Landslide Displacements: A Predictive Model. Engineering Geology, 58(3-4): 337-351. https://doi.org/10.1016/s0013-7952(00)00042-9
      [27] Rovelli, A., Caserta, A., Marra, F., et al., 2002. Can Seismic Waves be Trapped Inside an Inactive Fault Zone? The Case Study of Nocera Umbra, Central Italy. Bulletin of the Seismological Society of America, 92(6): 2217-2232. https://doi.org/10.1785/0120010288
      [28] Schueller, S., Braathen, A., Fossen, H., et al., 2013. Spatial Distribution of Deformation Bands in Damage Zones of Extensional Faults in Porous Sandstones: Statistical Analysis of Field Data. Journal of Structural Geology, 52: 148-162. https://doi.org/10.1016/j.jsg.2013.03.013
      [29] State General Administration of the People's Republic of China for Quality Supervision and Inspection and Quarantine, Standardization Administration of China, 2015. Seismic Ground Motion Parameters Zonation Map of China(GB18306-2015). Standards Press of China, Beijing(in Chinese).
      [30] Wang, T., Wu, S.R., Shi, J.S., et al., 2015. Concepts and Mechanical Assessment Method for Seismic Landslide Hazard: A Review. Journal of Engineering Geology, 23(1): 93-104(in Chinese with English abstract).
      [31] Wang, Y., Yang, Y.D., Yan, X.S., et al., 2016. Characteristics and Causes of Super-Huge Secondary Geological Hazards Induced by M6.5 Ludian Earthquake in Yunnan. Journal of Catastrophology, 31(1): 83-86(in Chinese with English abstract).
      [32] Wei, Z.Y., He, H.L., Shi, F., et al., 2012. Slip Rate on the South Segment of Daliangshan Fault Zone. Seismology and Geology, 34(2): 282-293(in Chinese with English abstract).
      [33] Wen, X.Z., Du, F., Long, F., et al., 2011. Tectonic Dynamics and Correlation of Major Earthquake Sequences of the Xiaojiang and Qujiang-Shiping Fault Systems, Yunnan, China. Science China: Earth Sciences, 54(10): 1563-1575. doi: 10.1007/s11430-011-4231-0
      [34] Weng, J.Q., Zeng, L.B., Lü, W.Y., et al., 2020. Width of Stress Disturbed Zone near Fault and Its Influencing Factors. Journal of Geomechanics, 26(1): 39-47(in Chinese with English abstract).
      [35] Xu, C., Dai, F.C., Xu, X.W., 2010. Wenchuan Earthquake-Induced Landslides: An Overview. Geological Review, 56(6): 860-874(in Chinese with English abstract).
      [36] Xu, G.X., Yao, L.K., Li, C.H., et al., 2012. Predictive Models for Permanent Displacement of Slopes Based on Recorded Strong Motion Data of Wenchuan Earthquake. Chinese Journal of Geotechnical Engineering, 34(6): 1131-1136(in Chinese with English abstract).
      [37] Yin, Z.Q., Xu, Y.Q., Chen, H.Q., et al., 2016. The Development and Distribution Characteristics of Geohazards Induced by August 3, 2014 Ludian Earthquake and Comparison with Jinggu and Yingjiang Earthquakes. Acta Geologica Sinica, 90(6): 1086-1097(in Chinese with English abstract).
      [38] Yuan, R. M, Deng, Q.H., Dickson, C., et al., 2016. Newmark Displacement Model for Landslides Induced by the 2013 Ms 7.0 Lushan Earthquake, China. Frontiers of Earth Science, 10(4): 740-750. https://doi.org/10.1007/s11707-015-0547-y
      [39] Zhang, H.J., 2011. Soil Mechanics. China Machine Press, Beijing, 93-96(in Chinese).
      [40] Zhang, Y.S., Guo, C.B., Yang, Z.H., et al., 2018. Landslide Characteristics and Hazard Evaluation in the Eastern Margin of Qinghai-Tibet Plateau with Sharp Topographic Changes. China University of Geosciences Press, Wuhan(in Chinese).
      [41] Zhang, Y.S., Guo, C.B., Yao, X., et al., 2016. Research on the Geohazard Effect of Active Fault on the Eastern Margin of the Tibetan Plateau. Acta Geoscientica Sinica, 37(3): 277-286(in Chinese with English abstract).
      [42] Zhang, Y.S., Yang, Z.H., Guo, C.B., et al., 2017. Predicting Landslide Scenes under Potential Earthquake Scenarios in the Xianshuihe Fault Zone, Southwest China. Journal of Mountain Science, 14(7): 1262-1278. https://doi.org/10.1007/s11629-017-4363-6
      [43] 艾挥, 吴红刚, 杨涛, 等, 2016. 震后土体抗剪强度参数试验研究. 中国科技论文, 11(13): 1544-1547. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201613023.htm
      [44] 常祖峰, 周荣军, 安晓文, 等, 2014. 昭通-鲁甸断裂晚第四纪活动及其构造意义. 地震地质, 36(4): 1260-1279. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201404025.htm
      [45] 代博洋, 吴波, 常昊, 等, 2017.2014年云南鲁甸MS 6.5与云南景谷MS 6.6地震滑坡灾害对比分析. 地震研究, 40(1): 153-160. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ201701019.htm
      [46] 郭明珠, 曹鑫雨, 常议彬, 等, 2016. 断层破碎带对场地地震动的影响. 工程抗震与加固改造, 38(6): 129-135. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKZ201606019.htm
      [47] 黄润秋, 李为乐, 2008. "5·12" 汶川大地震触发地质灾害的发育分布规律研究. 岩石力学与工程学报, 27(12): 2585-2592. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200812032.htm
      [48] 蒋涵, 周红, 高孟潭, 2015. 山脊线与坡度和峰值速度放大系数的相关性研究. 地球物理学报, 58(1): 229-237. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201501020.htm
      [49] 金凯平, 姚令侃, 陈秒单, 2019. Newmark模型的修正以及地震触发崩塌滑坡危险性区划方法研究. 防灾减灾工程学报, 39(2): 301-308. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201902017.htm
      [50] 雷光伟, 杨春和, 王贵宾, 等, 2016. 断层影响带的发育规律及其力学成因. 岩石力学与工程学报, 35(2): 231-241. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201602004.htm
      [51] 李雪婧, 徐伟进, 高孟潭, 2021. 芦山地震强地面运动之阿里亚斯强度及Newmark位移特征研究. 地震学报, 43(6): 768-786. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB202106008.htm
      [52] 李忠生, 2003. 国内外地震滑坡灾害研究综述. 灾害学, 18(4): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU200304013.htm
      [53] 刘甲美, 2015. 概率地震滑坡危险性区划方法及应用(博士学位论文). 北京: 中国地震局地球物理研究所.
      [54] 祁生文, 2007. 考虑结构面退化的岩质边坡地震永久位移研究. 岩土工程学报, 29(3): 452-457. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200703024.htm
      [55] 王涛, 吴树仁, 石菊松, 等, 2015. 地震滑坡危险性概念和基于力学模型的评估方法探讨. 工程地质学报, 23(1): 93-104. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201501019.htm
      [56] 王宇, 杨迎冬, 晏祥省, 等, 2016. 云南鲁甸6.5级地震次生特大地质灾害的特征及原因. 灾害学, 31(1): 83-86. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201511024.htm
      [57] 魏占玉, 何宏林, 石峰, 等, 2012. 大凉山断裂带南段滑动速率估计. 地震地质, 34(2): 282-293. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201202008.htm
      [58] 翁剑桥, 曾联波, 吕文雅, 等, 2020. 断层附近地应力扰动带宽度及其影响因素. 地质力学学报, 26(1): 39-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX202001005.htm
      [59] 徐光兴, 姚令侃, 李朝红, 等, 2012. 基于汶川地震强震动记录的边坡永久位移预测模型. 岩土工程学报, 34(6): 1131-1136. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201206027.htm
      [60] 许冲, 戴福初, 徐锡伟, 2010. 汶川地震滑坡灾害研究综述. 地质论评, 56(6): 860-874. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201006014.htm
      [61] 殷志强, 徐永强, 陈红旗, 等, 2016.2014年云南鲁甸地震触发地质灾害发育分布规律及与景谷、盈江地震对比研究. 地质学报, 90(6): 1086-1097. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201606004.htm
      [62] 张怀静, 2011. 土力学. 北京: 机械工业出版社, 93-96.
      [63] 张永双, 郭长宝, 杨志华, 等, 2018. 青藏高原东缘地形急变带滑坡灾害特征与危险性研究. 武汉: 中国地质大学出版社.
      [64] 张永双, 郭长宝, 姚鑫, 等, 2016. 青藏高原东缘活动断裂地质灾害效应研究. 地球学报, 37(3): 277-286. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201603004.htm
      [65] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2015. 中国地震动参数区划图(GB18306-2015). 北京: 中国标准出版社.
      [66] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局, 2016. 建筑抗震设计规范(GB50011-2010). 北京: 中国建筑工业出版社.
    • 加载中
    图(14) / 表(3)
    计量
    • 文章访问数:  142
    • HTML全文浏览量:  73
    • PDF下载量:  34
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-04-30
    • 网络出版日期:  2023-01-10
    • 刊出日期:  2022-12-25

    目录

      /

      返回文章
      返回