Paleomagnetism: From the Earth to Mars
-
摘要: 古地磁学是一门典型的交叉学科,通过综合地质学、地球物理学、环境科学等学科相关方法,分析天然样品中记录的磁学信息,深入研究地磁场演化、地球动力学过程、古环境与古气候演化等.自20世纪中叶以来,古地磁学在各研究领域得到快速发展,通过进一步与其他学科交叉,衍生出诸多新兴方向.首先回顾了古地磁学的发展历史与基础研究领域.在此基础上,重点介绍了高精度卫星磁测与相关研究新领域、月球与火星磁学研究的新进展.同时,对古地磁学与高精度磁测等方法集成在地磁场演化、板块构造、深部结构、月球磁场演化、火星磁场及环境演化等方面的综合应用进行了讨论.最后,对古地磁学未来的潜在研究方向进行了展望.Abstract: Paleomagnetism involves in interdisciplinary studies including geology, geophysics, and environmental science, etc..It focuses on geomagnetic field evolution, geodynamic process, paleoenvironment and paleoclimate evolution by analyzing magnetic information in natural samples.Since the mid-20th century, paleomagnetism has developed rapidly in various research fields, and many new research branches have been derived by integrating with other disciplines.In this paper, it firstly reviews the history and basic research fields of paleomagnetism.Then, it introduces the high-precision satellite magnetic survey and its related research fields, as well as new progress in the moon and mars magnetism.It further discusses the integrated applications of paleomagnetism, high-precision magnetic survey, and other methods in geomagnetic field evolution, plate tectonics, deep earth structure, Lunar and Martian magnetic field and environmental evolution.Finally, it proposes some potential research directions of paleomagnetism.
-
Key words:
- paleomagnetism /
- satellite magnetic survey /
- moon magnetism /
- mars magnetism /
- geomagnetism
-
图 1 2020年全球地磁场强度分布图(数据来源于IGRF-13)
Fig. 1. Global geomagnetic intensity map (data from IGRF-13)
图 2 全球岩石圈1 050阶球谐模型平均地球半径位置径向分量
Fig. 2. Radial component of global lithosphere spherical harmonic model up to degree 1 050 at Earth's mean radius
图 3 大洋磁异常(a~c)与沉积物相对古强度模拟得到的海洋磁异常(d)结果对比
Fig. 3. The oceanic magnetic anomalies (a-c) and the oceanic magnetic anomalies obtained from the simulation of the relative paleointensity of sediments (d)
图 6 火星表面磁场径向分量
a.北极点俯视图;c.南极点仰视图. 据Langlais et al.(2019)
Fig. 6. Radial component of the magnetic field on the surface of Mars
-
[1] Acuña, M.H., Connerney, J.E.P., Ness, N.F., et al., 1999. Global Distribution of Crustal Magnetization Discovered by the Mars Global Surveyor MAG/ER Experiment. Science, 284(5415): 790-793. https://doi.org/10.1126/science.284.5415.790 [2] Acuña, M.H., Connerney, J.E.P., Wasilewski, P., et al., 2001. Magnetic Field of Mars: Summary of Results from the Aerobraking and Mapping Orbits. Journal of Geophysical Research: Planets, 106(E10): 23403-23417. https://doi.org/10.1029/2000JE001404 [3] Aitken, M. J., Allsop, A. L., Bussell, G. D., et al., 1988. Determination of the Intensity of the Earth's Magnetic Field during Archaeological Times: Reliability of the Thellier Technique. Reviews of Geophysics, 26(1): 3-12. https://doi.org/10.1029/RG026i001p00003 [4] Alken, P., Thébault, E., Beggan, C.D., et al., 2021. International Geomagnetic Reference Field: The Thirteenth Generation. Earth, Planets and Space, 73(1): 49. https://doi.org/10.1186/s40623-020-01288-x [5] Amit, H., Olson, P., 2015. Lower Mantle Superplume Growth Excites Geomagnetic Reversals. Earth and Planetary Science Letters, 414: 68-76. https://doi.org/10.1016/j.epsl.2015.01.013 [6] Anderson, P.C., Rich, F.J., Borisov, S., 2018. Mapping the South Atlantic Anomaly Continuously over 27 Years. Journal of Atmospheric and Solar-Terrestrial Physics, 177: 237-246. https://doi.org/10.1016/j.jastp.2018.03.015 [7] Andrews-Hanna, J. C., Zuber, M. T., Banerdt, W. B, 2008. The Borealis Basin and the Origin of the Martian Crustal Dichotomy. Nature, 453(7199): 1212-1215. https://doi.org/10.1038/nature07011 [8] Aoyama, T., Iyemori, T., Nakanishi, K., et al., 2016. Localized Field-Aligned Currents and 4-Min TEC and Ground Magnetic Oscillations during the 2015 Eruption of Chile's Calbuco Volcano. Earth, Planets and Space, 68(1): 148. https://doi.org/10.1186/s40623-016-0523-0 [9] Arkani-Hamed, J., 2005. On the Possibility of Single-Domain/Pseudo-Single-Domain Magnetic Particles Existing in the Lower Crust of Mars: Source of the Strong Magnetic Anomalies. Journal of Geophysical Research: Planets, 110(E12): E12009. https://doi.org/10.1029/2005je002535 doi: 10.1029/2005JE002535 [10] Arkani-Hamed, J., Ghods, A., 2011. Could Giant Impacts Cripple Core Dynamos of Small Terrestrial Planets? Icarus, 212(2): 920-934. https://doi.org/10.1016/j.icarus.2011.01.020 [11] Aubert, J., Tarduno, J.A., Johnson, C.L., 2010. Observations and Models of the Long-Term Evolution of Earth's Magnetic Field. Space Science Reviews, 155(1): 337-370. https://doi.org/10.1007/s11214-010-9684-5 [12] Banerjee, S.K., 1970. Origin of Thermoremanence in Goethite. Earth and Planetary Science Letters, 8(3): 197-201. https://doi.org/10.1016/0012-821X(70)90175-5 [13] Bezaeva, N.S., Demory, F., Rochette, P., et al., 2015. The Effect of Hydrostatic Pressure up to 1.61 GPa on the Morin Transition of Hematite-Bearing Rocks: Implications for Planetary Crustal Magnetization. Geophysical Research Letters, 42(23): 10188-10196. https://doi.org/10.1002/2015GL066306 [14] Biggin, A.J., Steinberger, B., Aubert, J., et al., 2012. Possible Links between Long-Term Geomagnetic Variations and Whole-Mantle Convection Processes. Nature Geoscience, 5(8): 526-533. https://doi.org/10.1038/ngeo1521 [15] Billups, K., Pälike, H., Channell, J.E.T., et al., 2004. Astronomic Calibration of the Late Oligocene through Early Miocene Geomagnetic Polarity Time Scale. Earth and Planetary Science Letters, 224(1/2): 33-44. https://doi.org/10.1016/j.epsl.2004.05.004 [16] Bono, R.K., Paterson, G.A., van der Boon, A., et al., 2022. The PINT Database: A Definitive Compilation of Absolute Palaeomagnetic Intensity Determinations since 4 Billion Years Ago. Geophysical Journal International, 229(1): 522-545. https://doi.org/10.1093/gji/ggab490 [17] Brenner, A.R., Fu, R.R., Evans, D.A.D., et al., 2020. Paleomagnetic Evidence for Modern-Like Plate Motion Velocities at 3.2 Ga. Science Advances, 6(17): eaaz8670. https://doi.org/10.1126/sciadv.aaz8670 [18] Brown, M.C., Donadini, F., Korte, M., et al., 2015. GEOMAGIA50. v3: 1. General Structure and Modifications to the Archeological and Volcanic Database. Earth, Planets and Space, 67(1): 83. https://doi.org/10.1186/s40623-015-0232-0 [19] Brunhes, B., 1906. Recherches Sur La Direction D'aimantation Des Roches Volcaniques. J. Phys. Theor. Appl. , 5(1): 705-724. https://doi.org/10.1051/jphystap:019060050070500 [20] Butler, R.F., 1992. Paleomagnetism: Magnetic Domains to Geologic Terranes. Blackwell Scientific Publications, Boston. [21] Cai, Y., Huang, J.J., Xu, H.T., et al., 2020. Synthesis, Characterization and Application of Magnetoferritin Nanoparticle by Using Human H Chain Ferritin Expressed by Pichia Pastoris. Nanotechnology, 31(48): 485709. https://doi.org/10.1088/1361-6528/abb15d [22] Cai, Y., Wang, Y.Q., Xu, H.T., et al., 2019. Positive Magnetic Resonance Angiography Using Ultrafine Ferritin-Based Iron Oxide Nanoparticles. Nanoscale, 11(6): 2644-2654. https://doi.org/10.1039/C8NR06812G [23] Cain, J.C., 2007. POGO (OGO-2, -4 and -6 Spacecraft). In: Gubbins, D., Herrero-Bervera, E., eds., Encyclopedia of Geomagnetism and Paleomagnetism. Springer, Heidelberg, 828-829. https://doi.org/10.1007/978-1-4020-4423-6_264 [24] Campuzano, S.A., Gómez-Paccard, M., Pavón-Carrasco, F.J., et al., 2019. Emergence and Evolution of the South Atlantic Anomaly Revealed by the New Paleomagnetic Reconstruction SHAWQ2k. Earth and Planetary Science Letters, 512: 17-26. https://doi.org/10.1016/j.epsl.2019.01.050 [25] Cande, S.C., Kent, D.V., 1995. Revised Calibration of the Geomagnetic Polarity Timescale for the Late Cretaceous and Cenozoic. Journal of Geophysical Research: Solid Earth, 100(B4): 6093-6095. doi: 10.1029/94JB03098 [26] Chan, M.A., Beitler, B., Parry, W.T., et al., 2004. A Possible Terrestrial Analogue for Haematite Concretions on Mars. Nature, 429(6993): 731-734. https://doi.org/10.1038/nature02600 [27] Chang, L., Roberts, A., Winklhofer, M., et al., 2014. Magnetic Detection and Characterization of Biogenic Magnetic Minerals: A Comparison of Ferromagnetic Resonance and First-Order Reversal Curve Diagrams. Journal of Geophysical Research: Solid Earth, 119(8): 6136-6158. https://doi.org/10.1002/2014JB011213 [28] Chang, L., Roberts, A.P., Williams, W., et al., 2012. Giant Magnetofossils and Hyperthermal Events. Earth and Planetary Science Letters, 351/352: 258-269. https://doi.org/10.1016/j.epsl.2012.07.031 [29] Chang, L., Winklhofer, M., Roberts, A., et al., 2013. Low-Temperature Magnetic Properties of Pelagic Carbonates: Oxidation of Biogenic Magnetite and Identification of Magnetosome Chains: MAGNETISM oF PELAGIC CARBONATES. Journal of Geophysical Research Atmospheres, 118(12): 6049-6065. https://doi.org/10.1002/2013JB010381 [30] Chen, C., Zhu, X., Chen, Y. Q., et al., 2021. Application of BEMD in Extraction of Magnetic Anomaly Components Associated with Sn-W Polymetallic Mineralization in SE Yunnan, SW China. Journal of Earth Science, 32(2): 318-326. https://doi.org/10.1007/s12583-021-1438-7 [31] Chen, S., Heaney, P., Post, J., et al., 2021. Superhydrous Hematite and Goethite: A Potential Water Reservoir in the Red Dust of Mars? Geology, 49(11): 1343-1347. https://doi.org/10.1130/G48929.1 [32] Cisowski, S.M., 1986. Magnetic Studies on Shergotty and Other SNC Meteorites. Geochimica et Cosmochimica Acta, 50(6): 1043-1048. https://doi.org/10.1016/0016-7037(86)90386-8 [33] Civet, F., Thébault, E., Verhoeven, O., et al., 2015. Electrical Conductivity of the Earth's Mantle from the First Swarm Magnetic Field Measurements. Geophysical Research Letters, 42(9): 3338-3346. https://doi.org/10.1002/2015GL063397 [34] Coe, R., 1967a. Paleo-Intensities of the Earth's Magnetic Field Determined from Tertiary and Quaternary Rocks. Journal of Geophysical Research Atmospheres, 72(12): 3247-3262. https://doi.org/10.1029/JZ072i012p03247 [35] Coe, R., 1967b. The Determination of Paleo-Intensities of the Earth's Magnetic Field with Emphasis on Mechanisms Which could Cause Non-Ideal Behavior in Thellier's Method. Journal of Geomagnetism and Geoelectricity, 19(3): 157-179. https://doi.org/10.5636/jgg.19.157 [36] Coe, R.S., Grommé, S., Mankinen, E.A., 1978. Geomagnetic Paleointensities from Radiocarbon-Dated Lava Flows on Hawaii and the Question of the Pacific Nondipole Low. Journal of Geophysical Research: Solid Earth, 83: 1740-1756. https://doi.org/10.1029/JB083iB04p01740 [37] Collinson, D.W., 1983. Methods in Rocks Magnetism and Paleomagnetism: Tecniques and Instrumentation. Chapman and Hall, London. [38] Collinson, D.W., 1997. Magnetic Properties of Martian Meteorites: Implications for an Ancient Martian Magnetic Field. Meteoritics & Planetary Science, 32(6): 803-811. https://doi.org/10.1111/j.1945-5100.1997.tb01571.x [39] Connerney, J.E.P., Acuña, M.H., Ness, N.F., et al., 2005. Tectonic Implications of Mars Crustal Magnetism. Proceedings of the National Academy of Sciences of the United States of America, 102(42): 14970-14975. https://doi.org/10.1073/pnas.0507469102 [40] Connerney, J.E.P., Acuña, M.H., Wasilewski, P.J., et al., 1999. Magnetic Lineations in the Ancient Crust of Mars. Science, 284(5415): 794-798. https://doi.org/10.1126/science.284.5415.794 [41] Connerney, J.E.P., Acuña, M.H., Wasilewski, P.J., et al., 2001. The Global Magnetic Field of Mars and Implications for Crustal Evolution. Geophysical Research Letters, 28(21): 4015-4018. https://doi.org/10.1029/2001gl013619 doi: 10.1029/2001GL013619 [42] Constable, C., Korte, M., Panovska, S., 2016. Persistent High Paleosecular Variation Activity in Southern Hemisphere for at Least 10 000 Years. Earth and Planetary Science Letters, 453: 78-86. https://doi.org/10.1016/j.epsl.2016.08.015 [43] Cornell, R.M., Schwertmann, U., 2003. The Iron Oxides: Structure, Properties, Reactions, Occurrences, and Uses. Wiley‐VCH. [44] Cottrell, R.D., Tarduno, J.A., 1999. Geomagnetic Paleointensity Derived from Single Plagioclase Crystals. Earth and Planetary Science Letters, 169(1/2): 1-5. https://doi.org/10.1016/S0012-821X(99)00068-0 [45] Cournède, C., Gattacceca, J., Rochette, P., 2012. Magnetic Study of Large Apollo Samples: Possible Evidence for an Ancient Centered Dipolar Field on the Moon. Earth and Planetary Science Letters, 331/332: 31-42. https://doi.org/10.1016/j.epsl.2012.03.004 [46] Courtillot, V., Le Mouël, J.L., 2007. The Study of Earth's Magnetism (1269-1950): A Foundation by Peregrinus and Subsequent Development of Geomagnetism and Paleomagnetism. Reviews of Geophysics, 45(3): RG3008. https://doi.org/10.1029/2006RG000198 [47] Cox, A., Doell, R.R., Dalrymple, G.B., 1963. Geomagnetic Polarity Epochs and Pleistocene Geochronometry. Nature, 198(4885): 1049-1051. https://doi.org/10.1038/1981049a0 [48] Crawford, D.A., 2020. Simulations of Magnetic Fields Produced by Asteroid Impact: Possible Implications for Planetary Paleomagnetism. International Journal of Impact Engineering, 137: 103464. https://doi.org/10.1016/j.ijimpeng.2019.103464 [49] Creer, K.M., Irving, E., Runcorn, S.K., 1954. The Direction of the Geomagnetic Field in Remote Epochs in Great Britain. Journal of Geomagnetism and Geoelectricity, 6(4): 163-168. https://doi.org/10.5636/jgg.6.163 [50] David, P., 1904. Sur La Stabilité De La Direction D'aimantation Dans Quelques Roches Volcaniques. CR Acad. Sci. Paris, 138: 41-42. [51] Davies, C.J., Bono, R.K., Meduri, D.G., et al., 2022. Dynamo Constraints on the Long-Term Evolution of Earth's Magnetic Field Strength. Geophysical Journal International, 228(1): 316-336. https://doi.org/10.1093/gji/ggab342 [52] De Santis, A., Marchetti, D., Pavón-Carrasco, F.J., et al., 2019. Precursory Worldwide Signatures of Earthquake Occurrences on Swarm Satellite Data. Scientific Reports, 9(1): 1-13. https://doi.org/10.1038/s41598-019-56599-1 doi: 10.1038/s41598-018-37186-2 [53] Dekkers, M.J., 1989. Magnetic Properties of Natural Goethite—Ⅱ. TRM Behaviour during Thermal and Alternating Field Demagnetization and Low-Temperature Treatment. Geophysical Journal International, 97(2): 341-355. https://doi.org/10.1111/j.1365-246X.1989.tb00505.x [54] Dekkers, M.J., Böhnel, H.N., 2006. Reliable Absolute Palaeointensities Independent of Magnetic Domain State. Earth and Planetary Science Letters, 248(1-2): 508-517. https://doi.org/10.1016/j.epsl.2006.05.040 [55] Deng, C.L., Liu, Q.S., Pan, Y.X., et al., 2007. Environmental Magnetism of Chinese Loess-Paleosol Sequences. Quaternary Sciences, 27(2): 193-209(in Chinese with English abstract). doi: 10.3321/j.issn:1001-7410.2007.02.005 [56] Doell, R.R., Dalrymple, G.B., 1966. Geomagnetic Polarity Epochs: A New Polarity Event and the Age of the Brunhes-Matuyama Boundary. Science, 152(3725): 1060-1061. https://doi.org/10.1126/science.152.3725.1060 [57] Dong, J., Xu, Z.H., Kuznicki, S.M., 2009. Magnetic Multi-Functional Nano Composites for Environmental Applications. Advanced Functional Materials, 19(8): 1268-1275. https://doi.org/10.1002/adfm.200800982 [58] Driscoll, P.E., 2016. Simulating 2 Ga of Geodynamo History. Geophysical Research Letters, 43(11): 5680-5687. https://doi.org/10.1002/2016GL068858 [59] Dunlop, D.J., 2006. Inverse Thermoremanent Magnetization. Journal of Geophysical Research: Solid Earth, 111(B12): B12S02. https://doi.org/10.1029/2006jb004572 [60] Dunlop, D.J., 2007. A More Ancient Shield. Nature, 446(7136): 623-625. https://doi.org/10.1038/446623a [61] Dunlop, D.J., Özdemir, Ö., 1997. Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press, Cambridge. [62] Dunlop, D.J., Özdemir, Ö., 2001. Beyond Néel's Theories: Thermal Demagnetization of Narrow-Band Partial Thermoremanent Magnetizations. Physics of the Earth and Planetary Interiors, 126(1/2): 43-57. https://doi.org/10.1016/S0031-9201(01)00243-6 [63] Dunlop, D.J., Prévot, M., 1982. Magnetic Properties and Opaque Mineralogy of Drilled Submarine Intrusive Rocks. Geophysical Journal International, 69(3): 763-802. https://doi.org/10.1111/j.1365-246X.1982.tb02774.x [64] Dupont-Nivet, G., Horton, B.K., Butler, R.F., et al., 2004. Paleogene Clockwise Tectonic Rotation of the Xining-Lanzhou Region, Northeastern Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 109(B4): B04401. https://doi.org/10.1029/2003JB002620 [65] Dyal, P., Parkin, C.W., Daily, W.D., 1974. Magnetism and the Interior of the Moon. Reviews of Geophysics, 12(4): 568-591. https://doi.org/10.1029/RG012i004p00568 [66] Ebbing, J., Dilixiati, Y., Haas, P., et al., 2021. East Antarctica Magnetically Linked to Its Ancient Neighbours in Gondwana. Scientific Reports, 11(1): 5513. https://doi.org/10.1038/s41598-021-84834-1 [67] Ehlmann, B.L., Mustard, J.F., Murchie, S.L., et al., 2011. Subsurface Water and Clay Mineral Formation during the Early History of Mars. Nature, 479(7371): 53-60. https://doi.org/10.1038/nature10582 [68] Evans, A.J., Tikoo, S.M., 2022. An Episodic High-Intensity Lunar Core Dynamo. Nature Astronomy, 6(3): 325-330. https://doi.org/10.1038/s41550-021-01574-y [69] Evans, A.J., Tikoo, S.M., Andrews-Hanna, J.C., 2018. The Case against an Early Lunar Dynamo Powered by Core Convection. Geophysical Research Letters, 45(1): 98-107. https://doi.org/10.1002/2017GL075441 [70] Evans, D.A.D., Mitchell, R.N., 2011. Assembly and Breakup of the Core of Paleoproterozoic-Mesoproterozoic Supercontinent Nuna. Geology, 39(5): 443-446. https://doi.org/10.1130/G31654.1 [71] Evans, M.E., Heller, F., 2003. Environmental Magnetism: Principles and Applications of Enviromagnetics. Elsevier. [72] Feng, Y., An, Z.C., Sun, H., et al., 2010. Geomagnetic Survey Satellites. Progress in Geophysics, 25(6): 1947-1958(in Chinese with English abstract). doi: 10.3969/j.issn.1004-2903.2010.06.009 [73] Ferré, E.C., Kupenko, I., Martín-Hernández, F., et al., 2021. Magnetic Sources in the Earth's Mantle. Nature Reviews Earth & Environment, 2(1): 59-69. https://doi.org/10.1038/s43017-020-00107-x [74] Finlay, C.C., Kloss, C., Olsen, N., et al., 2020. The CHAOS-7 Geomagnetic Field Model and Observed Changes in the South Atlantic Anomaly. Earth, Planets, and Space, 72(1): 156. https://doi.org/10.1186/s40623-020-01252-9 [75] Forsyth, J.B., Hedley, I.G., Johnson, C.E., 1968. The Magnetic Structure and Hyperfine Field of Goethite (α-FeOOH). Journal of Physics C Solid State Physics, 1(1): 179. https://doi.org/10.1088/0022-3719/1/1/321 [76] Friis-Christensen, E., Lühr, H., Knudsen, D., et al., 2008. Swarm: An Earth Observation Mission Investigating Geospace. Advances in Space Research, 41(1): 210-216. https://doi.org/10.1016/j.asr.2006.10.008 [77] Funaki, M., Hoffmann, V., Imae, N., 2009. Estimate of the Magnetic Field of Mars Based on the Magnetic Characteristics of the Yamato 000593 Nakhlite. Meteoritics & Planetary Science, 44(8): 1179-1191. https://doi.org/10.1111/j.1945-5100.2009.tb01216.x [78] Gai, C.C., Liu, Y.G., Shi, X.F., et al., 2021. Recording Fidelity of Relative Paleointensity Characteristics in the North Pacific Ocean. Journal of Geophysical Research: Solid Earth, 126(7): e2021JB022068. https://doi.org/10.1029/2021JB022068 [79] Gao, B.L., Hu, Z.W., Li, D., et al., 2021. Fusion of Ground and Airborne Magnetic Data Using Multi-Layer Equivalent Source Method. Earth Science, 46(5): 1881-1895(in Chinese with English abstract). [80] Garrick-Bethell, I., Poppe, A.R., Fatemi, S., 2019. The Lunar Paleo‐Magnetosphere: Implications for the Accumulation of Polar Volatile Deposits. Geophysical Research Letters, 46(11): 5778-5787. https://doi.org/10.1029/2019GL082548 [81] Garrick-Bethell, I., Weiss, B.P., Shuster, D.L., et al., 2009. Early Lunar Magnetism. Science, 323(5912): 356-359. https://doi.org/10.1126/science.1166804 [82] Gattacceca, J., Boustie, M., Hood, L., et al., 2010. Can the Lunar Crust be Magnetized by Shock: Experimental Groundtruth. Earth and Planetary Science Letters, 299(1-2): 42-53. https://doi.org/10.1016/j.epsl.2010.08.011 [83] Gattacceca, J., Hewins, R.H., Lorand, J.P., et al., 2013. Opaque Minerals, Magnetic Properties, and Paleomagnetism of the Tissint Martian Meteorite. Meteoritics & Planetary Science, 48(10): 1919-1936. https://doi.org/10.1111/maps.12172 [84] Gattacceca, J., Rochette, P., 2004. Toward a Robust Normalized Magnetic Paleointensity Method Applied to Meteorites. Earth and Planetary Science Letters, 227(3-4): 377-393. https://doi.org/10.1016/j.epsl.2004.09.013 [85] Gattacceca, J., Rochette, P., Scorzelli, R.B., et al., 2014. Martian Meteorites and Martian Magnetic Anomalies: A New Perspective from NWA 7034. Geophysical Research Letters, 41(14): 4859-4864. https://doi.org/10.1002/2014gl060464 doi: 10.1002/2014GL060464 [86] Glatzmaiers, G.A., Roberts, P.H., 1995. A Three-Dimensional Self-Consistent Computer Simulation of a Geomagnetic Field Reversal. Nature, 377(6546): 203-209. https://doi.org/10.1038/377203a0 [87] Glenn, D.R., Fu, R.R., Kehayias, P., et al., 2017. Micrometer‐Scale Magnetic Imaging of Geological Samples Using a Quantum Diamond Microscope. Geochemistry, Geophysics, Geosystems, 18(8): 3254-3267. https://doi.org/10.1002/2017GC006946 [88] Golden, D.C., Ming, D.W., Morris, R.V., et al., 2008. Hydrothermal Synthesis of Hematite Spherules and Jarosite: Implications for Diagenesis and Hematite Spherule Formation in Sulfate Outcrops at Meridiani Planum, Mars. American Mineralogist, 93(8/9): 1201-1214. https://doi.org/10.2138/am.2008.2737 [89] Goree, W.S., Fuller, M., 1976. Magnetometers Using RF-Driven Squids and Their Applications in Rock Magnetism and Paleomagnetism. Reviews of Geophysics, 14(4): 591-608. https://doi.org/10.1029/rg014i004p00591 doi: 10.1029/RG014i004p00591 [90] Gradstein, F.M., Ogg, J.G., Schmitz, M.D., et al., 2020. Geologic Time Scale 2020. Elsevier, Oxford. [91] Granot, R., Dyment, J., Gallet, Y., 2012. Geomagnetic Field Variability during the Cretaceous Normal Superchron. Nature Geoscience, 5(3): 220-223. https://doi.org/10.1038/ngeo1404 [92] Green, J., Draper, D., Boardsen, S., et al., 2020. When the Moon had a Magnetosphere. Science Advances, 6(42): eabc0865. https://doi.org/10.1126/sciadv.abc0865 [93] Hao, Q.Z., Oldfield, F., Bloemendal, J., et al., 2009. The Record of Changing Hematite and Goethite Accumulation over the Past 22 Myr on the Chinese Loess Plateau from Magnetic Measurements and Diffuse Reflectance Spectroscopy. Journal of Geophysical Research Atmospheres, 114(B12): B12101. https://doi.org/10.1029/2009JB006604 [94] Harrison, R.J., Lascu, I., 2014. FORCulator: A Micromagnetic Tool for Simulating First-Order Reversal Curve Diagrams. Geochemistry, Geophysics, Geosystems, 15(12): 4671-4691. https://doi.org/10.1002/2014GC005582 [95] Harrison, R.J., Muraszko, J., Heslop, D., et al., 2018. An Improved Algorithm for Unmixing First-Order Reversal Curve Diagrams Using Principal Component Analysis. Geochemistry, Geophysics, Geosystems, 19(5): 1595-1610. https://doi.org/10.1029/2018GC007511 [96] Hays, J.D., Saito, T., Opdyke, N.D., et al., 1969. Pliocene-Pleistocene Sediments of the Equatorial Pacific: Their Paleomagnetic, Biostratigraphic, and Climatic Record. Geological Society of America Bulletin, 80(8): 1481-1514. https://doi.org/10.1130/0016-7606(1969)80[1481:PSOTEP]2.0.CO;2 [97] He, K., Pan, Y.X., 2020. Magnetofossil Abundance and Diversity as Paleoenvironmental Proxies: A Case Study from Southwest Iberian Margin Sediments. Geophysical Research Letters, 47(8): e2020GL087165. https://doi.org/10.1029/2020GL087165 [98] Heller, F., Liu, T.S., 1982. Magnetostratigraphical Dating of Loess Deposits in China. Nature, 300(5891): 431-433. https://doi.org/10.1038/300431a0 [99] Heller, F., Liu, T.S., 1986. Palaeoclimatic and Sedimentary History from Magnetic Susceptibility of Loess in China. Geophysical Research Letters, 13(11): 1169-1172. https://doi.org/10.1029/GL013i011p01169 [100] Hemingway, D.J., Driscoll, P.E., 2021. History and Future of the Martian Dynamo and Implications of a Hypothetical Solid Inner Core. Journal of Geophysical Research: Planets, 126(4): e2020JE006663. https://doi.org/10.1029/2020je006663 [101] Heslop, D., Dekkers, M.J., Kruiver, P.P., et al., 2002. Analysis of Isothermal Remanent Magnetization Acquisition Curves Using the Expectation-Maximization Algorithm. Geophysical Journal International, 148(1): 58-64. https://doi.org/10.1046/j.0956-540x.2001.01558.x [102] Hill, M.J., Shaw, J., 1999. Palaeointensity Results for Historic Lavas from Mt Etna Using Microwave Demagnetization/Remagnetization in a Modified Thellier-Type Experiment. Geophysical Journal International, 139(2): 583-590. https://doi.org/10.1046/j.1365-246x.1999.00980.x [103] Hoffman, N., 2001. Modern Geothermal Gradients on Mars and Implications for Subsurface Liquids. Conference on the Geophysical Detection of Subsurface Water on Wars, Houston, Tex. [104] Hood, L.L., Harrison, K.P., Langlais, B., et al., 2010. Magnetic Anomalies near Apollinaris Patera and the Medusae Fossae Formation in Lucus Planum, Mars. Icarus, 208(1): 118-131. https://doi.org/10.1016/j.icarus.2010.01.009 [105] Hounslow, M.W., Domeier, M., Biggin, A.J., 2018. Subduction Flux Modulates the Geomagnetic Polarity Reversal Rate. Tectonophysics, 742/743: 34-49. https://doi.org/10.1016/j.tecto.2018.05.018 [106] Huang, B.C., 2013. Paleomagnetic Location Method for Paleoplate in the Earth. In: Ding, Z.L., ed., Geophysical Methods. Science Press, Beijing, 805-817 (in Chinese). [107] Huang, B.C., Yan, Y.G., Piper, J.D.A., et al., 2018. Paleomagnetic Constraints on the Paleogeography of the East Asian Blocks during Late Paleozoic and Early Mesozoic Times. Earth-Science Reviews, 186: 8-36. https://doi.org/10.1016/j.earscirev.2018.02.004 [108] Huang, F., Xu, J.F., Wang, B.D., et al., 2020. Destiny of Neo-Tethyan Lithosphere during India-Asia Collision. Earth Science, 45(8): 2785-2804(in Chinese with English abstract). [109] Hulot, G., Sabaka, T.J., Olsen, N., et al., 2015. The Present and Future Geomagnetic Field. In: Schubert, G., ed., Treatise on Geophysics (Second Edition). Elsevier, 33-78. https://doi.org/10.1016/B978-0-444-53802-4.00096-8 [110] Hunt, C.P., Moskowitz, B.M., Banerjee, S.K., 1995. Magnetic Properties of Rocks and Minerals. In: Ahrens, T.J., ed., Rock Physics and Phase Relations: A Handbook of Physical Constants, Volume, 3. American Geophysical Union, 189-204. [111] Jeong, D., Liu, Q.S., Yamamoto, Y., et al., 2021. New Criteria for Selecting Reliable Thellier-Type Paleointensity Results from the 1960 Kilauea Lava Flows, Hawaii. Earth, Planets and Space, 73(1): 144. https://doi.org/10.1186/s40623-021-01473-6 [112] Ji, W.B., Chen, Y., Chen, K., et al., 2018. Multiple Emplacement and Exhumation History of the Late Mesozoic Dayunshan-Mufushan Batholith in Southeast China and Its Tectonic Significance: 2. Magnetic Fabrics and Gravity Survey. Journal of Geophysical Research: Solid Earth, 123(1): 711-731. https://doi.org/10.1002/2017JB014598 [113] Jiang, Z.X., Liu, Q.S., Roberts, A.P., et al., 2022. The Magnetic and Color Reflectance Properties of Hematite: From Earth to Mars. Reviews of Geophysics, 60(1): e2020RG000698. https://doi.org/10.1029/2020RG000698 [114] Jiang, Z.X., Rochette, P., Liu, Q.S., et al., 2013. Pressure Demagnetization of Synthetic Al Substituted Hematite and Its Implications for Planetary Studies. Physics of the Earth and Planetary Interiors, 224: 1-10. https://doi.org/10.1016/j.pepi.2013.09.005 [115] Johnson, E.A., Murphy, T., Torreson, O.W., 1948. Pre‐History of the Earth's Magnetic Field. Terrestrial Magnetism and Atmospheric Electricity, 53(4): 349-372. https://doi.org/10.1029/TE053i004p00349 [116] Kiik, K., Plado, J., Muddarmaiah, L., et al., 2020. Magnetic Anomaly and Model of the Lonar Meteorite Impact Crater in Maharashtra, India. Geosciences, 10(10): 417. https://doi.org/10.3390/geosciences10100417 [117] Kirschvink, J.L., 1982. Paleomagnetic Evidence for Fossil Biogenic Magnetite in Western Crete. Earth and Planetary Science Letters, 59(2): 388-392. https://doi.org/10.1016/0012-821X(82)90140-6 [118] Kirschvink, J.L., Walker, M.M., Diebel, C.E., 2001. Magnetite-Based Magnetoreception. Current Opinion in Neurobiology, 11(4): 462-467. https://doi.org/10.1016/S0959-4388(00)00235-X [119] Kletetschka, G., 2018. Magnetization of Extraterrestrial Allende Material may Relate to Terrestrial Descend. Earth and Planetary Science Letters, 487: 1-8. https://doi.org/10.1016/j.epsl.2018.01.020 [120] Koenigsberger, J., 1936. Die Abhängigkeit Der Naturlichen Remanenten Magnetisierung Bei Eruptivgesteinen von Deren Alter Und Susammensetzung. Beitr. Angew. Geophys, 5: 193-246. [121] Kono, M., 1974. Intensities of the Earth's Magnetic Field about 60 M. y. ago Determined from the Deccan Trap Basalts, India. Journal of Geophysical Research, 79(8): 1135-1141. https://doi.org/10.1029/JB079i008p01135 [122] Kono, M., 2007. Geomagnetism in Perspective. In: Schubert, G., ed., Treatise on Geophysics. Elsevier, Oxford. https://doi.org/10.1016/B978-044452748-6.00086-9 [123] Korte, M., Constable, C., Donadini, F., et al., 2011. Reconstructing the Holocene Geomagnetic Field. Earth and Planetary Science Letters, 312(3/4): 497-505. https://doi.org/10.1016/j.epsl.2011.10.031 [124] Krijgsman, W., Hilgen, F.J., Langereis, C.G., et al., 1995. Late Miocene Magnetostratigraphy, Biostratigraphy and Cyclostratigraphy in the Mediterranean. Earth and Planetary Science Letters, 136(3/4): 475-494. https://doi.org/10.1016/0012-821X(95)00206-R [125] Kupenko, I., Aprilis, G., Vasiukov, D.M., et al., 2019. Magnetism in Cold Subducting Slabs at Mantle Transition Zone Depths. Nature, 570(7759): 102-106. https://doi.org/10.1038/s41586-019-1254-8 [126] Kuvshinov, A., Grayver, A., Tøffner-Clausen, L., et al., 2021. Probing 3-D Electrical Conductivity of the Mantle Using 6 Years of Swarm, CryoSat-2 and Observatory Magnetic Data and Exploiting Matrix Q-Responses Approach. Earth, Planets and Space, 73(1): 67. https://doi.org/10.1186/s40623-020-01341-9 [127] Landeau, M., Fournier, A., Nataf, H.C., et al., 2022. Sustaining Earth's Magnetic Dynamo. Nature Reviews Earth & Environment, 3(4): 255-269. https://doi.org/10.1038/s43017-022-00264-1 [128] Langlais, B., Erwan, T., Aymeric, H., et al., 2019. A New Model of the Crustal Magnetic Field of Mars Using MGS and MAVEN. The Journal of Geophysical Research Planets, 124(1): 1542-1569. https://doi.org/10.1029/2018JE005854 [129] Larmor, J., 1919. How could a Rotating Body such as the Sun Become a Magnet? In: Lang, K.R., Gingerich, O., eds., Reports of the British Association for the Advancement of Science, 159-160. [130] Lascu, I., Einsle, J.F., Ball, M.R., et al., 2018. The Vortex State in Geologic Materials: A Micromagnetic Perspective. Journal of Geophysical Research: Solid Earth, 123(9): 7285-7304. https://doi.org/10.1029/2018JB015909 [131] Lawrence, K., Johnson, C., Tauxe, L., et al., 2008. Lunar Paleointensity Measurements: Implications for Lunar Magnetic Evolution. Physics of the Earth and Planetary Interiors, 168(1/2): 71-87. https://doi.org/10.1016/j.pepi.2008.05.007 [132] Le Bars, M., Wieczorek, M.A., Karatekin, Ö., et al., 2011. An Impact-Driven Dynamo for the Early Moon. Nature, 479(7372): 215-218. https://doi.org/10.1038/nature10565 [133] Levi, S., Banerjee, S.K., 1976. On the Possibility of Obtaining Relative Paleointensities from Lake Sediments. Earth and Planetary Science Letters, 29(1): 219-226. https://doi.org/10.1016/0012-821X(76)90042-X [134] Li, B.S., Yan, M.D., Zhang, W.L., et al., 2021a. Bidirectional Growth of the Altyn Tagh Fault since the Early Oligocene. Tectonophysics, 815: 228991. https://doi.org/10.1016/j.tecto.2021.228991 [135] Li, Q.L., Zhou,Q., Liu,Y., et al., 2021b. Two-Billion-Year-Old Volcanism on the Moon from Chang'E-5 Ba-salts. Nature, 600(7887): 54-58. https://doi.org/10.1038/s41586-021-04100-2 [136] Li, Y. J., Liu, J. B., Liu, Q. S., 2021c. Geomagnetic Field Paleointensity Spanning the Past 11 Myr from Marine Magnetic Anomalies in the Southern Hemisphere. Geophysical Research Letters, 48(11): e2021GL093235. https://doi.org/10.1029/2021GL093235 [137] Li, J.H., Liu, P.Y., Wang, J., et al., 2020a. Magnetotaxis as an Adaptation to Enable Bacterial Shuttling of Microbial Sulfur and Sulfur Cycling across Aquatic Oxic-Anoxic Interfaces. Journal of Geophysical Research: Biogeosciences, 125(12): e2020JG006012. https://doi.org/10.1029/2020JG006012 [138] Li, J.H., Menguy, N., Roberts, A.P., et al., 2020b. Bullet-Shaped Magnetite Biomineralization within a Magnetotactic Deltaproteobacterium: Implications for Magnetofossil Identification. Journal of Geophysical Research: Biogeosciences, 125(7): e2020JG005680. https://doi.org/10.1029/2020JG005680 [139] Li, J.X., Yue, L.P., Roberts, A.P., et al., 2018. Global Cooling and Enhanced Eocene Asian Mid-Latitude Interior Aridity. Nature Communications, 9(1): 3026. https://doi.org/10.1038/s41467-018-05415-x [140] Li, W. J., Xu, H. J., Zhang, J. F, 2020. Magnetic Fabric and Petrofabric of Amphibolites from the Namcha Barwa Complex, Eastern Himalaya. Journal of Earth Science, 31(1): 115-125. https://doi.org/10.1007/s12583-019-1021-7 [141] Li, Y.Q., Liu, J.Z., Ouyang, Z.Y., et al., 2005. Lunar Magnetism and Its Evolution. Progress in Geophysics, 20(4): 1003-1008(in Chinese with English abstract). doi: 10.3969/j.issn.1004-2903.2005.04.020 [142] Li, Z.X., Bogdanova, S.V., Collins, A.S., et al., 2008. Assembly, Configuration, and Break-up History of Rodinia: A Synthesis. Precambrian Research, 160(1/2): 179-210. https://doi.org/10.1016/j.precamres.2007.04.021 [143] Li, Z.X., Evans, D.A., 2010. Late Neoproterozoic 40° Intraplate Rotation within Australia Allows for a Tighter-Fitting and Longer-Lasting Rodinia. Geology, 39(1): 39-42. https://doi.org/10.1130/G31461.1 [144] Lillis, R.J., Robbins, S., Manga, M., et al., 2013. Time History of the Martian Dynamo from Crater Magnetic Field Analysis. Journal of Geophysical Research Planets, 118(7): 1488-1511. https://doi.org/10.1002/jgre.20105 [145] Lin, W., Bazylinski, D.A., Xiao, T., et al., 2014. Life with Compass: Diversity and Biogeography of Magnetotactic Bacteria. Environmental Microbiology, 16(9): 2646-2658. https://doi.org/10.1111/1462-2920.12313 [146] Lin, W., Kirschvink, J.L., Paterson, G.A., et al., 2020a. On the Origin of Microbial Magnetoreception. National Science Review, 7(2): 472-479. https://doi.org/10.1093/nsr/nwz065 [147] Lin, W., Zhang, W.S., Paterson, G.A., et al., 2020b. Expanding Magnetic Organelle Biogenesis in the Domain Bacteria. Microbiome, 8(1): 152. https://doi.org/10.1186/s40168-020-00931-9 [148] Lin, W., Paterson, G.A., Zhu, Q.Y., et al., 2017. Origin of Microbial Biomineralization and Magnetotaxis during the Archean. Proceedings of the National Academy of Sciences of the United States of America, 114(9): 2171-2176. https://doi.org/10.1073/pnas.1614654114 [149] Lin, W., Zhang, W.S., Zhao, X., et al., 2018. Genomic Expansion of Magnetotactic Bacteria Reveals an Early Common Origin of Magnetotaxis with Lineage-Specific Evolution. The ISME Journal, 12(6): 1508-1519. https://doi.org/10.1038/s41396-018-0098-9 [150] Liu, C.F., Leong, W.H., Xia, K.W., et al., 2021a. Ultra-Sensitive Hybrid Diamond Nanothermometer. National Science Review, 8(5): nwaa194. https://doi.org/10.1093/nsr/nwaa194 [151] Liu, C.Y., Nie, J.S., Li, Z.J., et al., 2021b. Eccentricity Forcing of East Asian Monsoonal Systems over the Past 3 Million Years. Proceedings of the National Academy of Sciences of the United States of America, 118(43): e2107055118. https://doi.org/10.1073/pnas.2107055118 [152] Liu, P.Y., Liu, Y., Zhao, X., et al., 2021c. Diverse Phylogeny and Morphology of Magnetite Biomineralized by Magnetotactic Cocci. Environmental Microbiology, 23(2): 1115-1129. https://doi.org/10.1111/1462-2920.15254 [153] Liu, Q.S., Roberts, A.P., Larrasoaña, J.C., et al., 2012. Environmental Magnetism: Principles and Applications. Reviews of Geophysics, 50(4): RG4002. https://doi.org/10.1029/2012RG000393 [154] Liu, Q.X., Xu, Z.H., 1995. Self-Assembled Monolayer Coatings on Nanosized Magnetic Particles Using 16-Mercaptohexadecanoic Acid. Langmuir, 11(12): 4617-4622. https://doi.org/10.1021/la00012a005 [155] Liu, Y., Wu, X., Liu, Z.H., et al., 2021. Geological Evolution and Habitable Environment of Mars: Progress and Prospects. Reviews of Geophysics and Planetary Physics, 52(4): 416-436(in Chinese with English abstract). [156] Livermore, P.W., Finlay, C.C., Bayliff, M., 2020. Recent North Magnetic Pole Acceleration towards Siberia Caused by Flux Lobe Elongation. Nature Geoscience, 13(5): 387-391. https://doi.org/10.1038/s41561-020-0570-9 [157] Livermore, P.W., Hollerbach, R., Finlay, C.C., 2017. An Accelerating High-Latitude Jet in Earth's Core. Nature Geoscience, 10(1): 62-68. https://doi.org/10.1038/ngeo2859 [158] Lohmann, K.J., 2016. A Candidate Magnetoreceptor. Nature Materials, 15(2): 136-138. https://doi.org/10.1038/nmat4550 [159] Lowrie, W., 1990. Identification of Ferromagnetic Minerals in a Rock by Coercivity and Unblocking Temperature Properties. Geophysical Research Letters, 17(2): 159-162. https://doi.org/10.1029/GL017i002p00159 [160] Lucchitta, B.K., Ferguson, H.M., Summers, C., 1986. Sedimentary Deposits in the Northern Lowland Plains, Mars. Journal of Geophysical Research: Solid Earth, 91(B13): E166-E174. https://doi.org/10.1029/JB091iB13p0E166 [161] Maher, B.A., Thompson, R., 1999. Quaternary Climates, Environments, and Magnetism. Cambridge University Press, Cambridge. [162] Malin, S.R.C., Bullard, E., 1981. The Direction of the Earth's Magnetic Field at London, 1570-1975. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 299(1450): 357-423. https://doi.org/10.1098/rsta.1981.0026 [163] Marchetti, D., Akhoondzadeh, M., 2018. Analysis of Swarm Satellites Data Showing Seismo-Ionospheric Anomalies around the Time of the Strong Mexico (Mw=8.2) Earthquake of 08 September 2017. Advances in Space Research, 62(3): 614-623. https://doi.org/10.1016/j.asr.2018.04.043 [164] Marinova, M.M., Aharonson, O., Asphaug, E., 2008. Mega-Impact Formation of the Mars Hemispheric Dichotomy. Nature, 453(7199): 1216-1219. https://doi.org/10.1038/nature07070 [165] Mason, R.G., Raff, A.D., 1961. Magnetic Survey off the West Coast of North America, 32° N. Latitude to 42° N. Latitude. Geological Society of America Bulletin, 72(8): 1259-1265. https://doi.org/10.1130/0016-7606(1961)72[1259:MSOTWC]2.0.CO;2 [166] Matuyama, M., 1929. On the Direction of Magnetisation of Basalt in Japan, Tyôsen and Manchuria. Proceedings of the Imperial Academy, 5(5): 203-205. https://doi.org/10.2183/pjab1912.5.203 [167] Maus, S., 2007. Champ Magnetic Mission. In: David, G., Emilio, H.B., eds., Encyclopedia of Geomagnetism and Paleomagnetism. Springer, Dordrecht, 59-60. [168] McKay, D.S., Gibson, E. K. Jr, Thomas-Keprta, K. L., et al., 1996. Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001. Science, 273(5277): 924-930. https://doi.org/10.1126/science.273.5277.924 [169] Meduri, D.G., Biggin, A.J., Davies, C.J., et al., 2021. Numerical Dynamo Simulations Reproduce Paleomagnetic Field Behavior. Geophysical Research Letters, 48(5): e2020GL090544. https://doi.org/10.1029/2020GL090544 [170] Merrill, R.T., McElhinny, M.W., 1983. The Earth's Magnetic Field: Its History, Origin and Planetary Perspective. Academic Press, London. [171] Mighani, S., Wang, H.P., Shuster, D.L., et al., 2020. The End of the Lunar Dynamo. Science Advances, 6(1): eaax0883. https://doi.org/10.1126/sciadv.aax0883 [172] Milbury, C., Schubert, G., Raymond, C.A., et al., 2012. The History of Mars' Dynamo as Revealed by Modeling Magnetic Anomalies near Tyrrhenus Mons and Syrtis Major. Journal of Geophysical Research: Planets, 117(E10): E10007. https://doi.org/10.1029/2012je004099 [173] Mitchell, D.L., Halekas, J.S., Lin, R.P., et al., 2008. Global Mapping of Lunar Crustal Magnetic Fields by Lunar Prospector. Icarus, 194(2): 401-409. https://doi.org/10.1016/j.icarus.2007.10.027 [174] Mittelholz, A., Johnson, C.L., Feinberg, J.M., et al., 2020. Timing of the Martian Dynamo: New Constraints for a Core Field 4.5 and 3.7 Ga ago. Science Advances, 6(18): eaba0513. https://doi.org/10.1126/sciadv.aba0513 [175] Moore, K.M., Bloxham, J., 2017. The Construction of Sparse Models of Mars's Crustal Magnetic Field. Journal of Geophysical Research: Planets, 122(7): 1443-1457. https://doi.org/10.1002/2016je005238 doi: 10.1002/2016JE005238 [176] Morschhauser, A., Vervelidou, F., Thomas, P., et al., 2018. Mars' Crustal Magnetic Field. In: Lühr, H., Wicht, J., Gilder, S.A., et al., eds., Magnetic Fields in the Solar System: Planets, Moons and Solar Wind Interactions. Springer International Publishing, Berlin, 331-356. https://doi.org/10.1007/978-3-319-64292-5_12 [177] Ninkovich, D., Opdyke, N., Heezen, B.C., et al., 1966. Paleomagnetic Stratigraphy, Rates of Deposition and Tephrachronology in North Pacific Deep-Sea Sediments. Earth and Planetary Science Letters, 1(6): 476-492. https://doi.org/10.1016/0012-821X(66)90052-5 [178] Nur, A., Ron, H., Scotti, O., 1986. Fault Mechanics and the Kinematics of Block Rotations. Geology, 14(9): 746-749. https://doi.org/10.1130/0091-7613(1986)14<746:FMATKO>2.0.CO;2 doi: 10.1130/0091-7613(1986)14<746:FMATKO>2.0.CO;2 [179] O'Reilly, W., 1984. Rock and Mineral Magnetism. Springer, Blackie, Glasgow. [180] Ojha, L., Karunatillake, S., Karimi, S., et al., 2021. A Magmatic Hydrothermal Systems on Mars from Radiogenic Heat. Nature Communications, 12(1): 1754. https://doi.org/10.1038/s41467-021-21762-8 [181] Olsen, N., Christensen, E.F., Floberghagen, R., et al., 2013. The Swarm Satellite Constellation Application and Research Facility (SCARF) and Swarm Data Products. Earth, Planets and Space, 65(11): 1189-1200. https://doi.org/10.5047/eps.2013.07.001 [182] Olsen, N., Holme, R., Hulot, G., et al., 2000. Ørsted Initial Field Model. Geophysical Research Letters, 27(22): 3607-3610. https://doi.org/10.1029/2000GL011930 [183] Olsen, N., Hulot, G., Sabaka, T.J., 2007. The Present Field. In: Schubert, G., ed., Treatise on Geophysics. Elsevier, Oxford, 33-75. https://doi.org/10.1016/B978-044452748-6.00087-0 [184] Olson, P., Amit, H., 2015. Mantle Superplumes Induce Geomagnetic Superchrons. Frontiers in Earth Science, 3: 38. https://doi.org/10.3389/feart.2015.00038 [185] Opdyke, N.D., Glass, B., Hays, J.D., et al., 1966. Paleomagnetic Study of Antarctic Deep-Sea Cores. Science, 154(3747): 349-357. https://doi.org/10.1126/science.154.3747.349 [186] Özdemir, Ö., 2000. Coercive Force of Single Crystals of Magnetite at Low Temperatures. Geophysical Journal International, 141(2): 351-356. https://doi.org/10.1046/j.1365-246x.2000.00081.x [187] Özdemir, Ö., Dunlop, D.J., 1993. Chemical Remanent Magnetization during γFeOOH Phase Transformations. Journal of Geophysical Research: Solid Earth, 98(B3): 4191-4198. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKB201409018.htm [188] Özdemir, Ö., Dunlop, D.J., 2005. Thermoremanent Magnetization of Multidomain Hematite. Journal of Geophysical Research: Solid Earth, 110(B9): B09104. https://doi.org/10.1029/2005JB003820 [189] Özdemir, Ö., Dunlop, D.J., Berquó, T.S., 2008. Morin Transition in Hematite: Size Dependence and Thermal Hysteresis. Geochemistry, Geophysics, Geosystems, 9(10): Q10Z01. https://doi.org/10.1029/2008GC002110 [190] Özdemir, Ö., Dunlop, D.J., Moskowitz, B.M., 2002. Changes in Remanence, Coercivity and Domain State at Low Temperature in Magnetite. Earth and Planetary Science Letters, 194(3/4): 343-358. https://doi.org/10.1016/S0012-821X(01)00562-3 [191] Pan, Y.X., Deng, C.L., Liu, Q.S., et al., 2004. Biomineralization and Magnetism of Bacterial Magnetosomes. Chinese Science Bulletin, 49(24): 2563-2568. https://doi.org/10.1360/982004-153 [192] Pan, Y.X., Ji, X.L., Zhu, R.X., 2010. A Review of Lunar Magnetism. Geochimica, 39(1): 32-36(in Chinese with English abstract). [193] Pan, Y.X., Zhu, R.X., 1998. The Recent Progress in Magnetic Fabrics. Progress in Geophysics, 13(1): 52-59(in Chinese with English abstract). [194] Pan, Y.X., Zhu, R.X., 2011. A Review of Biogeophysics: The Establishment of a New Discipline and Recent Progress. Chinese Science Bulletin, 56(17): 1335-1344(in Chinese). doi: 10.1360/972010-467 [195] Pan, Y.X., Zhu, R.X., Banerjee, S.K., et al., 2000. Rock Magnetic Properties Related to Thermal Treatment of Siderite: Behavior and Interpretation. Journal of Geophysical Research Atmospheres, 105(B1): 783-794. https://doi.org/10.1029/1999JB900358 [196] Pan, Y.X., Zhu, R.X., Liu, Q.S., et al., 2002. Low-Temperature Magnetic Behavior Related to Thermal Alteration of Siderite. Geophysical Research Letters, 29(23): 2-1-2-4. https://doi.org/10.1029/2002GL016021 [197] Panovska, S., Korte, M., Constable, C.G., 2019. One Hundred Thousand Years of Geomagnetic Field Evolution. Reviews of Geophysics, 57(4): 1289-1337. https://doi.org/10.1029/2019RG000656 [198] Panovska, S., Korte, M., Finlay, C.C., et al., 2015. Limitations in Paleomagnetic Data and Modelling Techniques and Their Impact on Holocene Geomagnetic Field Models. Geophysical Journal International, 202(1): 402-418. https://doi.org/10.1093/gji/ggv137 [199] Panovska, S., Korte, M., Liu, J., et al., 2021. Global Evolution and Dynamics of the Geomagnetic Field in the 15-70 kyr Period Based on Selected Paleomagnetic Sediment Records. Journal of Geophysical Research: Solid Earth, 126(12): e2021JB022681. https://doi.org/10.1029/2021JB022681 [200] Parés, J.M., 2004. How Deformed are Weakly Deformed Mudrocks? Insights from Magnetic Anisotropy. Geological Society, London, Special Publications, 238(1): 191-203. https://doi.org/10.1144/GSL.SP.2004.238.01.13 [201] Piper, J.D.A., 1987. Palaeomagnetism and the Continental Crust. Open University Press/Halsted Press, Milton Keynes, England/New York. [202] Plattner, A., Simons, F.J., 2015. High‐Resolution Local Magnetic Field Models for the Martian South Pole from Mars Global Surveyor Data. Journal of Geophysical Research: Planets, 120(9): 1543-1566. https://doi.org/10.1002/2015je004869 doi: 10.1002/2015JE004869 [203] Qin, H.F., He, H.Y., Liu, Q.S., et al., 2011. Palaeointensity Just at the Onset of the Cretaceous Normal Superchron. Physics of the Earth and Planetary Interiors, 187(3/4): 199-211. https://doi.org/10.1016/j.pepi.2011.05.009 [204] Quesnel, Y., Sotin, C., Langlais, B., et al., 2009. Serpentinization of the Martian Crust during Noachian. Earth and Planetary Science Letters, 277(1/2): 184-193. https://doi.org/10.1016/j.epsl.2008.10.012 [205] Rieder, R., Economou, T., Wänke, H., et al., 1997. The Chemical Composition of Martian Soil and Rocks Returned by the Mobile Alpha Proton X-Ray Spectrometer: Preliminary Results from the X-Ray Mode. Science, 278(5344): 1771-1774. https://doi.org/10.1126/science.278.5344.1771 [206] Riisager, P., Riisager, J., 2001. Detecting Multidomain Magnetic Grains in Thellier Palaeointensity Experiments. Physics of the Earth and Planetary Interiors, 125(1-4): 111-117. https://doi.org/10.1016/S0031-9201(01)00236-9 [207] Roberts, A. P., Pike, C. R., Verosub, K. L, 2000. First‐Order Reversal Curve Diagrams: A New Tool for Characterizing the Magnetic Properties of Natural Samples. Journal of Geophysical Research: Solid Earth, 105(B12): 28461-28475. https://doi.org/10.1029/2000JB900326 [208] Roberts, A.P., Almeida, T.P., Church, N.S., et al., 2017. Resolving the Origin of Pseudo-Single Domain Magnetic Behavior: Origin of PSD Behavior. Journal of Geophysical Research: Solid Earth, 122(12): 9534-9558. https://doi.org/10.1002/2017JB014860 [209] Roberts, J.H., Lillis, R.J., Manga, M., 2009. Giant Impacts on Early Mars and the Cessation of the Martian Dynamo. Journal of Geophysical Research: Planets, 114(E4): E04009. https://doi.org/10.1029/2008je003287 [210] Rogers, J., Fox, J.M.W., Aitken, M.J., 1979. Magnetic Anisotropy in Ancient Pottery. Nature, 277(5698): 644-646. https://doi.org/10.1038/277644a0 [211] Rohrbach, A., Hafner, J., Kresse, G., 2004. Ab Initio Study of the (0001) Surfaces of Hematite and Chromia: Influence of Strong Electronic Correlations. Physical Review B, 70(12): 125426. https://doi.org/10.1103/PhysRevB.70.125426 [212] Rother, M., Korte, M., Morschhauser, A., et al., 2021. The Mag. num Core Field Model as a Parent for IGRF-13, and the Recent Evolution of the South Atlantic Anomaly. Earth, Planets and Space, 73(1): 50. https://doi.org/10.1186/s40623-020-01277-0 [213] Sabaka, T.J., Tyler, R.H., Olsen, N., 2016. Extracting Ocean-Generated Tidal Magnetic Signals from Swarm Data through Satellite Gradiometry. Geophysical Research Letters, 43(7): 3237-3245. https://doi.org/10.1002/2016GL068180 [214] Saynisch, J., Petereit, J., Irrgang, C., et al., 2016. Impact of Climate Variability on the Tidal Oceanic Magnetic Signal—A Model Based Sensitivity Study. Journal of Geophysical Research: Oceans, 121(8): 5931-5941. https://doi.org/10.1002/2016JC012027 [215] Saynisch, J., Petereit, J., Irrgang, C., et al., 2017. Impact of Oceanic Warming on Electromagnetic Oceanic Tidal Signals: A CMIP5 Climate Model-Based Sensitivity Study. Geophysical Research Letters, 44(10): 4994-5000. https://doi.org/10.1002/2017GL073683 [216] Schubert, G., Russell, C.T., Moore, W.B., 2000. Timing of the Martian Dynamo. Nature, 408(6813): 666-667. https://doi.org/10.1038/35047163 [217] Scott, E.R.D., Fuller, M., 2004. A Possible Source for the Martian Crustal Magnetic Field. Earth and Planetary Science Letters, 220(1/2): 83-90. https://doi.org/10.1016/S0012-821X(04)00032-9 [218] Selkin, P.A., Gee, J.S., Tauxe, L., 2007. Nonlinear Thermoremanence Acquisition and Implications for Paleointensity Data. Earth and Planetary Science Letters, 256(1-2): 81-89. https://doi.org/10.1016/j.epsl.2007.01.017 [219] Shau, Y.H., Peacor, D.R., Essene, E.J., 1993. Formation of Magnetic Single-Domain Magnetite in Ocean Ridge Basalts with Implications for Sea-Floor Magnetism. Science, 261(5119): 343-345. https://doi.org/10.1126/science.261.5119.343 [220] Shaw, J., 1974. A New Method of Determining the Magnitude of the Palaeomagnetic Field: Application to Five Historic Lavas and Five Archaeological Samples. Geophysical Journal International, 39(1): 133-141. https://doi.org/10.1111/j.1365-246X.1974.tb05443.x [221] Shaw, J., Hill, M.J., Openshaw, S.J., 2001. Investigating the Ancient Martian Magnetic Field Using Microwaves. Earth and Planetary Science Letters, 190(3/4): 103-109. https://doi.org/10.1016/S0012-821X(01)00381-8 [222] Shea, E.K., Weiss, B.P., Cassata, W.S., et al., 2012. A Long-Lived Lunar Core Dynamo. Science, 335(6067): 453-456. https://doi.org/10.1126/science.1215359 [223] Sleep, N.H., 1994. Martian Plate Tectonics. Journal of Geophysical Research: Planets, 99(E3): 5639-5655. https://doi.org/10.1029/94JE00216 [224] Smirnov, A.V., Tarduno, J.A., 2002. Magnetic Field Control of the Low-Temperature Magnetic Properties of Stoichiometric and Cation-Deficient Magnetite. Earth and Planetary Science Letters, 194(3/4): 359-368. https://doi.org/10.1016/S0012-821X(01)00575-1 [225] Smith, A.G., Hallam, A., 1970. The Fit of the Southern Continents. Nature, 225(5228): 139-144. https://doi.org/10.1038/225139a0 [226] Smith, T.T., 1916. The Magnetic Properties of Hematite. Physical Review, 8(6): 721-737. https://doi.org/10.1103/PhysRev.8.721 [227] Smith, T.T., 1920. Magnetization and Hysteresis in Hematite Crystals. Physical Review, 15(5): 345-364. https://doi.org/10.1103/PhysRev.15.345 [228] Sprenke, K.F., Baker, L.L., Williams, A.F., 2005. Polar Wander on Mars: Evidence in the Geoid. Icarus, 174(2): 486-489. https://doi.org/10.1016/j.icarus.2004.11.009 [229] Squyres, S.W., Grotzinger, J.P., Arvidson, R.E., et al., 2004. In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars. Science, 306(5702): 1709-1714. https://doi.org/10.1126/science.1104559 [230] Stähler, S.C., Khan, A., Banerdt, W.B., et al., 2021. Seismic Detection of the Martian Core. Science, 373(6553): 443-448. https://doi.org/10.1126/science.abi7730 [231] Stanley, S., Elkins-Tanton, L., Zuber, M.T., et al., 2008. Mars' Paleomagnetic Field as the Result of a Single-Hemisphere Dynamo. Science, 321(5897): 1822-1825. https://doi.org/10.1126/science.1161119 [232] Stern, D.P., 2002. A Millennium of Geomagnetism. Reviews of Geophysics, 40(3): 1007. https://doi.org/10.1029/2000rg000097. [233] Stevenson, D.J., 2001. Mars' Core and Magnetism. Nature, 412(6843): 214-219. https://doi.org/10.1038/35084155 [234] Stolz, J.F., Chang, S.B.R., Kirschvink, J.L., 1986. Magnetotactic Bacteria and Single-Domain Magnetite in Hemipelagic Sediments. Nature, 321(6073): 849-851. https://doi.org/10.1038/321849a0 [235] Suavet, C., Weiss, B.P., Cassata, W.S., et al., 2013. Persistence and Origin of the Lunar Core Dynamo. Proceedings of the National Academy of Sciences of the United States of America, 110(21): 8453-8458. https://doi.org/10.1073/pnas.1300341110 [236] Tarduno, J. A., Cottrell, R. D., Bono, R. K., et al., 2020. Paleomagnetism Indicates that Primary Magnetite in Zircon Records a Strong Hadean Geodynamo. Proceedings of the National Academy of Sciences of the United States of America, 117(5): 2309-2318. https://doi.org/10.1073/pnas.1916553117 [237] Tarduno, J.A., Cottrell, R.D., Lawrence, K., et al., 2021. Absence of a Long-Lived Lunar Paleomagnetosphere. Science Advances, 7(32). https://doi.org/10.1126/sciadv.abi7647 [238] Tauxe, L., 1993. Sedimentary Records of Relative Paleointensity of the Geomagnetic Field: Theory and Practice. Reviews of Geophysics, 31(3): 319-354. https://doi.org/10.1029/93rg01771 doi: 10.1029/93RG01771 [239] Tauxe, L., Banerjee, S.K., Butler, R.F., et al., 2010. Essentials of Paleomagnetism (First Edition). University of California Press, California. [240] Tauxe, L., Pick, T., Kok, Y.S., 1995. Relative Paleointensity in Sediments: A Pseudo-Thellier Approach. Geophysical Research Letters, 22(21): 2885-2888. https://doi.org/10.1029/95gl03166 doi: 10.1029/95GL03166 [241] Tauxe, L., Yamazaki, T., 2015. Paleointensities. In: Schubert, G., ed., Treatise on Geophysics (Second Edition). Elsevier, Oxford, 461-509. https://doi.org/10.1016/B978-0-444-53802-4.00107-X [242] Thébault, E., Hulot, G., Langlais, B., et al., 2021. A Spherical Harmonic Model of Earth's Lithospheric Magnetic Field up to Degree 1 050. Geophysical Research Letters, 48(21): e2021GL095147. https://doi.org/10.1029/2021GL095147 [243] Thellier, E., 1938. Sur L'aimantation des Terres Cuites et Ses Applications Géophysiques. Ann. Inst. Phys. Globe Univ. Paris, 16: 157-302. [244] Thellier, E., Thellier, O., 1959. Sur L'intensité Du Champ Magnétique Terrestre Dam Le Passé Historique et Gélogique. Annales Geophysicae, 15: 285-376. [245] Thomas, P., Grott, M., Morschhauser, A., et al., 2018. Paleopole Reconstruction of Martian Magnetic Field Anomalies. Journal of Geophysical Research: Planets, 123(5): 1140-1155. https://doi.org/10.1002/2017je005511 doi: 10.1002/2017JE005511 [246] Thompson, R., Oldfield, F., 1986. Environmental Magnetism. Allen and Unwin, London. [247] Thompson, R., Stober, J.C., Turner, G.M., et al., 1980. Environmental Applications of Magnetic Measurements. Science, 207(4430): 481-486. https://doi.org/10.1126/science.207.4430.481 [248] Tian, L.X., Pan, Y.X., Metzner, W., et al., 2015. Bats Respond to Very Weak Magnetic Fields. PLoS One, 10(4): e0123205. https://doi.org/10.1371/journal.pone.0123205 [249] Tikoo, S.M., Evans, A.J., 2021. Dynamos in the Inner Solar System. Annual Review of Earth and Planetary Sciences, 50(1): 99-122. https://doi.org/10.1146/annurev-earth-032320-102418 [250] Tikoo, S.M., Weiss, B.P., Buz, J., et al., 2012. Magnetic Fidelity of Lunar Samples and Implications for an Ancient Core Dynamo. Earth and Planetary Science Letters, 337/338: 93-103. https://doi.org/10.1016/j.epsl.2012.05.024 [251] Tikoo, S.M., Weiss, B.P., Cassata, W.S., et al., 2014. Decline of the Lunar Core Dynamo. Earth and Planetary Science Letters, 404: 89-97. https://doi.org/10.1016/j.epsl.2014.07.010 [252] Tikoo, S.M., Weiss, B.P., Shuster, D.L., et al., 2017. A Two-Billion-Year History for the Lunar Dynamo. Science Advances, 3(8): e1700207. https://doi.org/10.1126/sciadv.1700207 [253] Tong, Y.B., Yang, Z.Y., Pei, J.L., et al., 2017. Paleomagnetism of the Upper Cretaceous Red-Beds from the Eastern Edge of the Lhasa Terrane: New Constraints on the Onset of the India-Eurasia Collision and Latitudinal Crustal Shortening in Southern Eurasia. Gondwana Research, 48: 86-100. https://doi.org/10.1016/j.gr.2017.04.018 [254] Torsvik, T.H., van der Voo, R., Preeden, U., et al., 2012. Phanerozoic Polar Wander, Palaeogeography and Dynamics. Earth-Science Reviews, 114(3/4): 325-368. https://doi.org/10.1016/j.earscirev.2012.06.007 [255] Tsunakawa, H., Shaw, J., 1994. The Shaw Method of Palaeointensity Determinations and Its Application to Recent Volcanic Rocks. Geophysical Journal International, 118(3): 781-787. https://doi.org/10.1111/j.1365-246X.1994.tb03999.x [256] Valet, J.P., Meynadier, L., 1993. Geomagnetic Field Intensity and Reversals during the Past Four Million Years. Nature, 366(6452): 234-238. https://doi.org/10.1038/366234a0 [257] Velímský, J., Šachl, L., Martinec, Z., 2019. The Global Toroidal Magnetic Field Generated in the Earth's Oceans. Earth and Planetary Science Letters, 509: 47-54. https://doi.org/10.1016/j.epsl.2018.12.026 [258] Vervelidou, F., Lesur, V., Grott, M., et al., 2017. Constraining the Date of the Martian Dynamo Shutdown by Means of Crater Magnetization Signatures. Journal of Geophysical Research: Planets, 122(11): 2294-2311. https://doi.org/10.1002/2017je005410 doi: 10.1002/2017JE005410 [259] Verwey, E.J.W., 1939. Electronic Conduction of Magnetite (Fe3O4) and Its Transition Point at Low Temperatures. Nature, 144(3642): 327-328. https://doi.org/10.1038/144327b0 [260] Vine, F.J., 1966. Spreading of the Ocean Floor: New Evidence: Magnetic Anomalies may Record Histories of the Ocean Basins and Earth's Magnetic Field for 2×108 Years. Science, 154(3755): 1405-1415. https://doi.org/10.1126/science.154.3755.1405 [261] Vine, F.J., Matthews, D.H., 1963. Magnetic Anomalies over Oceanic Ridges. Nature, 199(4897): 947-949. https://doi.org/10.1038/199947a0 [262] Volk, M.W.R., Fu, R.R., Mittelholz, A., et al., 2021. Paleointensity and Rock Magnetism of Martian Nakhlite Meteorite Miller Range (MIL) 03346: Evidence for Intense Small Scale Crustal Magnetization on Mars. The Journal of Geophysical Research Planets, 126(5): e2021JE006856. https://doi.org/10.1029/2021JE006856 [263] Wagner, C.L., Egli, R., Lascu, I., et al., 2021. In Situ Magnetic Identification of Giant, Needle-Shaped Magnetofossils in Paleocene-Eocene Thermal Maximum Sediments. Proceedings of the National Academy of Sciences of the United States of America, 118(6): e2018169118. https://doi.org/10.1073/pnas.2018169118 [264] Wang, H.P., Kent, D.V., 2013. A Paleointensity Technique for Multidomain Igneous Rocks. Geochemistry, Geophysics, Geosystems, 14(10): 4195-4213. doi: 10.1002/ggge.20248 [265] Wang, H.P., Kent, D.V., 2021. RESET: A Method to Monitor Thermoremanent Alteration in Thellier-Series Paleointensity Experiments. Geophysical Research Letters, 48(5): e2020GL091617. https://doi.org/10.1029/2020GL091617 [266] Wei, B.T., Yang, X.F., Cheng, X., et al., 2020. An Absolute Paleogeographic Positioning of the Early Permian Tarim Large Igneous Province. Journal of Geophysical Research: Solid Earth, 125(5): e2019JB019111. https://doi.org/10.1029/2019JB019111 [267] Weiss, B.P., Fong, L.E., Vali, H., et al., 2008. Paleointensity of the Ancient Martian Magnetic Field. Geophysical Research Letters, 35(23): L23207. https://doi.org/10.1029/2008gl035585 doi: 10.1029/2008GL035585 [268] Weiss, B.P., Tikoo, S.M., 2014. The Lunar Dynamo. Science, 346(6214): 1246753. https://doi.org/10.1126/science.1246753 [269] Weiss, B.P., Vali, H., Baudenbacher, F.J., et al., 2002. Records of an Ancient Martian Magnetic Field in ALH84001. Earth and Planetary Science Letters, 201(3/4): 449-463. https://doi.org/10.1016/S0012-821X(02)00728-8 [270] Wen, B., Evans, D.A.D., Anderson, R.P., et al., 2020. Late Ediacaran Paleogeography of Avalonia and the Cambrian Assembly of West Gondwana. Earth and Planetary Science Letters, 552: 116591. https://doi.org/10.1016/j.epsl.2020.116591 [271] Wen, R.J., 2019. The Trilogy of A. Wylie's Puzzle: Yixing's Observation of Declination. Studies in the History of Natural Sciences, 38(1): 67-75(in Chinese with English abstract). [272] Wieczorek, M.A., 2018. Strength, Depth, and Geometry of Magnetic Sources in the Crust of the Moon from Localized Power Spectrum Analysis. Journal of Geophysical Research: Planets, 123(1): 291-316. https://doi.org/10.1002/2017JE005418 [273] Wieczorek, M.A., Beuthe, M., Rivoldini, A., et al., 2019. Hydrostatic Interfaces in Bodies with Nonhydrostatic Lithospheres. Journal of Geophysical Research: Planets, 124(5): 1410-1432. https://doi.org/10.1029/2018JE005909 [274] Xie, C., 2022. Searching for Unity in Diversity of Animal Magnetoreception: From Biology to Quantum Mechanics and back. The Innovation, 3(3): 100229. https://doi.org/10.1016/j.xinn.2022.100229 [275] Yamamoto, Y., 2003. Discovery of Magnetic and Gravitational Forces. Misuzu Publishers, Tokyo (in Japanese). [276] Yamazaki, T., Ioka, N., 1997. Environmental Rock-Magnetism of Pelagic Clay: Implications for Asian Eolian Input to the North Pacific since the Pliocene. Paleoceanography, 12(1): 111-124. https://doi.org/10.1029/96PA02757 [277] Yan, Y.G., Huang, B.C., Zhao, J., et al., 2017. Large Southward Motion and Clockwise Rotation of Indochina Throughout the Mesozoic: Paleomagnetic and Detrital Zircon U-Pb Geochronological Constraints. Earth and Planetary Science Letters, 459: 264-278. https://doi.org/10.1016/j.epsl.2016.11.035 [278] Yang, C.Y., Cao, C.Q., Cai, Y., et al., 2017. Effects of PEGylation on Biomimetic Synthesis of Magnetoferritin Nanoparticles. Journal of Nanoparticle Research, 19(3): 101. https://doi.org/10.1007/s11051-017-3805-y [279] Yang, J.C., 2017. Inversion of Mantle Conductivity Based on Swarm Satellite Measurement Data(Dissertation). Yunnan University, Kunming (in Chinese with English abstract). [280] Yi, Z.Y., Huang, B.C., Chen, J.S., et al., 2011. Paleomagnetism of Early Paleogene Marine Sediments in Southern Tibet, China: Implications to Onset of the India-Asia Collision and Size of Greater India. Earth and Planetary Science Letters, 309(1-2): 153-165. https://doi.org/10.1016/J.EPSL.2011.07.001 [281] Yi, Z.Y., Liu, Y.Q., Meert, J.G., 2019. A True Polar Wander Trigger for the Great Jurassic East Asian Aridification. Geology, 47(12): 1112-1116. https://doi.org/10.1130/G46641.1 [282] Yu, Y., 2011. Importance of Cooling Rate Dependence of Thermoremanence in Paleointensity Determination. Journal of Geophysical Research-Solid Earth, 116: B09101. https://doi.org/10.1029/2011jb008388 [283] Yu, Y., Tauxe, L., 2005. Testing the IZZI Protocol of Geomagnetic Field Intensity Determination. Geochemistry, Geophysics, Geosystems, 6(5): Q05H17. https://doi.org/10.1029/2004GC000840 [284] Yuan, J., Deng, C.L., Yang, Z.Y., et al., 2022. Triple-Stage India-Asia Collision Involving Arc-Continent Collision and Subsequent Two-Stage Continent-Continent Collision. Global and Planetary Change, 212: 103821. https://doi.org/10.1016/j.gloplacha.2022.103821 [285] Zeng, Q.G., Wang, B.D., Xi, L.L.J., et al., 2020. Suture Zones in Tibetan and Tethys Evolution. Earth Science, 45(8): 2735-2763(in Chinese with English abstract). [286] Zhang, S. H., Li, Z. X., Evans, D. A. D., et al., 2012. Pre-Rodinia Supercontinent Nuna Shaping up: A Global Synthesis with New Paleomagnetic Results from North China. Earth and Planetary Science Letters, 353/354: 145-155. https://doi.org/10.1016/j.epsl.2012.07.034 [287] Zhang, B.F., Wang, L., Zhan, A.S., et al., 2021a. Long-Term Exposure to a Hypomagnetic Field Attenuates Adult Hippocampal Neurogenesis and Cognition. Nature Communications, 12(1): 1174. https://doi.org/10.1038/s41467-021-21468-x [288] Zhang, Q., Liu, Q.S., Roberts, A.P., et al., 2021b. Magnetotactic Bacterial Activity in the North Pacific Ocean and Its Relationship to Asian Dust Inputs and Primary Productivity since 8.0 Ma. Geophysical Research Letters, 48(15): e2021GL094687. https://doi.org/10.1029/2021GL094687 [289] Zhang, F., Head, J.W., Wöhler, C., et al., 2021. The Lunar Mare Ring-Moat Dome Structure (RMDS) Age Conundrum: Contemporaneous with Imbrian-Aged Host Lava Flows or Emplaced in the Copernican? Journal of Geophysical Research: Planets, 126(8): e2021JE006880. https://doi.org/10.1029/2021JE006880 [290] Zhang, R., Kravchinsky, V.A., Zhu, R.X., et al., 2010. Paleomonsoon Route Reconstruction along a W-E Transect in the Chinese Loess Plateau Using the Anisotropy of Magnetic Susceptibility: Summer Monsoon Model. Earth and Planetary Science Letters, 299(3/4): 436-446. https://doi.org/10.1016/j.epsl.2010.09.026 [291] Zhang, T.W., Cao, C.Q., Tang, X., et al., 2017. Enhanced Peroxidase Activity and Tumour Tissue Visualization by Cobalt-Doped Magnetoferritin Nanoparticles. Nanotechnology, 28(4): 045704. https://doi.org/10.1088/1361-6528/28/4/045704 [292] Zhao, X., Roberts, A.P., Heslop, D., et al., 2017. Magnetic Domain State Diagnosis Using Hysteresis Reversal Curves. Journal of Geophysical Research: Solid Earth, 122(7): 4767-4789. https://doi.org/10.1002/2016JB013683 [293] Zhu, G.K., 2005. Paleomagnetism: Essential, Principle, Methods, and Application. Science Press, Beijing (in Chinese). [294] Zhu, R.X., Huang, B.C., Pan, Y.X., et al., 2003. A Brief Guide to the Laboratory of Bock Magnetism and Paleomagnetism at the Institute of Geology and Geophysics, Chinese Academy of Sciences. Progress in Geophysics, 18(2): 177-181(in Chinese with English abstract). doi: 10.3969/j.issn.1004-2903.2003.02.001 [295] Zhu, R.X., Liu, Q.S., Cai, S.H., et al., 2013. Research Methods of Geomagnetic Field Formation and Evolution. In: Ding, Z.L., ed., Geophysical Methods. Science Press, Beijing, 462-475 (in Chinese). [296] Zhu, R.X., Pan, Y.X., Deng, C.L., 2006. Geomagnetism and Biomagnetism. Science & Technology Review, 24(8): 5-7(in Chinese with English abstract). [297] Zhu, R.X., Shi, C.D., Liu, Q.S., 2003. Anisotropy of Magnetic Susceptibility of Hannuoba Basalt, Northern China: Constraints on the Vent Position of the Lava Sequences. Geophysical Research Letters, 30(2): 38. https://doi.org/10.1029/2002GL016215 [298] Zuber, M.T., 2001. The Crust and Mantle of Mars. Nature, 412(6843): 220-227. https://doi.org/10.1038/35084163 [299] 邓成龙, 刘青松, 潘永信, 等, 2007. 中国黄土环境磁学. 第四纪研究, 27(2): 193-209. doi: 10.3321/j.issn:1001-7410.2007.02.005 [300] 冯彦, 安振昌, 孙涵, 等, 2010. 地磁测量卫星. 地球物理学进展, 25(6): 1947-1958. doi: 10.3969/j.issn.1004-2903.2010.06.009 [301] 高宝龙, 胡正旺, 李端, 等, 2021. 多层等效源方法在地面与航空磁异常数据融合中的应用. 地球科学, 46(5): 1881-1895. doi: 10.3799/dqkx.2020.134 [302] 黄宝春, 2013. 地球古板块位置的古地磁定位方法. 见: 丁仲礼(主编). 固体地球科学研究方法. 北京: 科学出版社, 805-817. [303] 黄丰, 许继峰, 王保弟, 等, 2020. 印度-亚洲大陆碰撞过程中新特提斯洋岩石圈的命运. 地球科学, 45(8): 2785-2804. doi: 10.3799/dqkx.2020.180 [304] 李泳泉, 刘建忠, 欧阳自远, 等, 2005. 月球磁场与月球演化. 地球物理学进展, 20(4): 1003-1008. doi: 10.3969/j.issn.1004-2903.2005.04.020 [305] 刘洋, 吴兴, 刘正豪, 等, 2021. 火星的地质演化和宜居环境研究进展. 地球与行星物理论评, 52(4): 416-436. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXP202104007.htm [306] 潘永信, 纪新林, 朱日祥, 2010. 月球磁学观测与研究进展. 地球化学, 39(1): 32-36. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201001008.htm [307] 潘永信, 朱日祥, 1998. 磁组构研究现状. 地球物理学进展, 13(1): 52-59. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ801.004.htm [308] 潘永信, 朱日祥, 2011. 生物地球物理学的产生与研究进展. 科学通报, 56(17): 1335-1344. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201117003.htm [309] 闻人军, 2019. 伟烈之谜三部曲: 一行观测磁偏角. 自然科学史研究, 38(1): 67-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRKY201901005.htm [310] 杨嘉诚, 2017. 基于swarm卫星测量数据反演地幔电导率(硕士学位论文). 昆明: 云南大学. [311] 曾庆高, 王保弟, 西洛郎杰, 等, 2020. 西藏的缝合带与特提斯演化. 地球科学, 45(8): 2735-2763. doi: 10.3799/dqkx.2020.152 [312] 朱岗崑, 2005. 古地磁学: 基础, 原理, 方法, 成果与应用. 北京: 科学出版社. [313] 朱日祥, 黄宝春, 潘永信, 等, 2003. 岩石磁学与古地磁实验室简介. 地球物理学进展, 18(2): 177-181. doi: 10.3969/j.issn.1004-2903.2003.02.001 [314] 朱日祥, 刘青松, 蔡书慧, 等, 2013. 地磁场形成和演化研究方法. 见: 丁仲礼(主编). 固体地球科学研究方法. 北京: 科学出版社, 462-475. [315] 朱日祥, 潘永信, 邓成龙, 2006. 地磁场与生物的磁效应. 科技导报, 24(8): 5-7. doi: 10.3321/j.issn:1000-7857.2006.08.002