• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    实验矿床学的发展现状和前景展望

    熊小林 侯通 王小林

    熊小林, 侯通, 王小林, 2022. 实验矿床学的发展现状和前景展望. 地球科学, 47(8): 2701-2713. doi: 10.3799/dqkx.2022.285
    引用本文: 熊小林, 侯通, 王小林, 2022. 实验矿床学的发展现状和前景展望. 地球科学, 47(8): 2701-2713. doi: 10.3799/dqkx.2022.285
    Xiong Xiaolin, Hou Tong, Wang Xiaolin, 2022. Advances and Perspectives of Experimental Metallogeny. Earth Science, 47(8): 2701-2713. doi: 10.3799/dqkx.2022.285
    Citation: Xiong Xiaolin, Hou Tong, Wang Xiaolin, 2022. Advances and Perspectives of Experimental Metallogeny. Earth Science, 47(8): 2701-2713. doi: 10.3799/dqkx.2022.285

    实验矿床学的发展现状和前景展望

    doi: 10.3799/dqkx.2022.285
    基金项目: 

    国家自然科学基金项目 41725008

    国家自然科学基金项目 92062222

    国家自然科学基金项目 41921003

    详细信息
      作者简介:

      熊小林(1963-),男,研究员,主要从事实验地球化学、元素地球化学行为与成矿实验研究.ORCID:0000-0003-2054-3339. E-mail:xiongxl@gig.ac.cn

    • 中图分类号: P617.9

    Advances and Perspectives of Experimental Metallogeny

    • 摘要: 实验矿床学是通过高温高压实验手段对成矿元素在矿物−熔体−流体体系的地球化学行为开展研究. 在揭示成矿的“源−运−聚−储”复杂过程中,它是反演和追踪成矿元素“运−聚”机制的重要手段,因而在精细刻画成矿过程,揭示关键控矿因素方面具有不可替代的优势. 实验矿床学是随着实验技术的发展而发展的,为矿床学的发展提供了重要的基础数据,弥补了通过天然样品研究复杂成矿过程的不足,极大地推动了成矿理论的发展. 回顾了实验矿床学的发展历史、研究现状,讨论了相关的科学问题,提出未来应当重点关注两个方面:(1)加强实验平台建设,发展可视化在线观测实验技术;(2)聚焦以国家目标(如关键金属成矿)为导向的科学前沿研究.

       

    • 图  1  层状铬铁矿矿床成因模式

      a, b. 热熔蚀模型(Latypov et al., 2017);c, d. 根据相平衡实验,Veksler and Hou (2020)提出的加水熔融模型

      Fig.  1.  Schematic illustrations of chromitite formation from a basal layer of chromite‐saturated melt

      图  2  热液体系中液-液相分离相变在线观察(a)和成分、结构在线分析(b)

      修改自Wang et al.(2021a);Aq为均一溶液相;L1为富集硫酸盐的高密度液相;L2为贫硫酸盐的低密度液相;*为C2H5OH的特征谱峰

      Fig.  2.  In situ observation of the liquid‐liquid phase separation (a) and Raman spectroscopic characterization of the fluid composition and structure (b) in hydrothermal systems

    • [1] Alpers, C. N., Jambor, J. L., Nordstrom, D. K., 2000. Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance. Reviews in Mineralogy and Geochemistry, 40: 1-608. https://doi.org/10.2138/rmg.2000.40
      [2] Ballhaus, C., Fonseca, R. O. C., Münker, C., et al., 2015. Spheroidal Textures in Igneous Rocks: Textural Consequences of H2O Saturation in Basaltic Melts. Geochimica et Cosmochimica Acta, 167: 241-252. https://doi.org/10.1016/j.gca.2015.07.029
      [3] Botcharnikov, R. E., Koepke, J., Holtz, F., et al., 2005. The Effect of Water Activity on the Oxidation and Structural State of Fe in a Ferro‐Basaltic Melt. Geochimica et Cosmochimica Acta, 69(21): 5071-5085. https://doi.org/10.1016/j.gca.2005.04.023
      [4] Cafagna, F., Jugo, P. J, 2016. An Experimental Study on the Geochemical Behavior of Highly Siderophile Elements (HSE) and Metalloids (As, Se, Sb, Te, Bi) in a MSS‐Iss‐Pyrite System at 650 ℃: a Possible Magmatic Origin for Co‐HSE‐Bearing Pyrite and the Role of Metalloid‐Rich Phases in the Fractionation of HSE. Geochimica et Cosmochimica Acta, 178: 233-258. https://doi.org/10.1016/j.gca.2015.12.035
      [5] Chebotarev, D. A., Veksler, I. V., Wohlgemuth‐Ueberwasser, C., et al., 2018. Experimental Study of Trace Element Distribution between Calcite, Fluorite and Carbonatitic Melt in the System CaCO3+CaF2+Na2CO3±Ca3(PO4)2 at 100MPa. Contributions to Mineralogy and Petrology, 174(1): 1-13. https://doi.org/10.1007/s00410‐018‐1530‐x
      [6] Chen, W. T., Zhou, M. F., Zhao, T. P, 2013. Differentiation of Nelsonitic Magmas in the Formation of the ~1.74 Ga Damiao Fe‐Ti‐P Ore Deposit, North China. Contributions to Mineralogy and Petrology, 165(6): 1341-1362. https://doi.org/10.1007/s00410‐013‐0861‐x
      [7] Chou, I. M., Wang, R., Fang, J, 2021. In Situ Redox Control and Raman Spectroscopic Characterisation of Solutions below 300 ℃. Geochemical Perspectives Letters, 1-5. https://doi.org/10.7185/geochemlet.2135
      [8] Cui, H., Zhong, R. C., Xie, Y. L., et al., 2020. Forming Sulfate‐ and REE‐Rich Fluids in the Presence of Quartz. Geology, 48(2): 145-148. https://doi.org/10.1130/g46893.1
      [9] Derrey, I. T., Albrecht, M., Dupliy, E., et al., 2017. Experimental Tests on Achieving Equilibrium in Synthetic Fluid Inclusions: Results for Scheelite, Molybdenite, and Gold Solubility at 800 ℃ and 200 MPa. American Mineralogist, 102(2): 275-283. https://doi.org/10.2138/am‐2017‐5869
      [10] Duchesne, J. C., Liégeois, J. P, 2015. The Origin of Nelsonite and High‐Zr Ferrodiorite Associated with Proterozoic Anorthosite. Ore Geology Reviews, 71: 40-56. https://doi.org/10.1016/j.oregeorev.2015.05.005
      [11] Eugster, H. P, 1971. The Beginnings of Experimental Petrology. Science, 173(3996): 481-489. https://doi.org/10.1126/science.173.3996.481
      [12] Eugster, H. P, 1957. Heterogeneous Reactions Involving Oxidation and Reduction at High Pressures and Temperatures. The Journal of Chemical Physics, 26(6): 1760-1761. https://doi.org/10.1063/1.1743626
      [13] Fiege, A., Kirchner, C., Holtz, F., et al., 2011. Influence of Fluorine on the Solubility of Manganotantalite (MnTa2O6) and Manganocolumbite (MnNb2O6) in Granitic Melts‐An Experimental Study. Lithos, 122(3/4): 165-174. https://doi.org/10.1016/j.lithos.2010.12.012
      [14] Helmy, H. M., Ballhaus, C., Wohlgemuth‐Ueberwasser, C., et al., 2010. Partitioning of Se, As, Sb, Te and Bi between Monosulfide Solid Solution and Sulfide Melt: Application to Magmatic Sulfide Deposits. Geochimica et Cosmochimica Acta, 74(21): 6174-6179. https://doi.org/10.1016/j.gca.2010.08.009
      [15] Hou, T., Charlier, B., Holtz, F., et al., 2018. Immiscible Hydrous Fe‐Ca‐P Melt and the Origin of Iron Oxide‐Apatite Ore Deposits. Nature Communications, 9: 1415. https://doi.org/10.1038/s41467‐018‐03761‐4
      [16] Hou, T., Charlier, B., Namur, O., et al., 2017. Experimental Study of Liquid Immiscibility in the Kiruna‐Type Vergenoeg Iron‐Fluorine Deposit, South Africa. Geochimica et Cosmochimica Acta, 203: 303-322. https://doi.org/10.1016/j.gca.2017.01.025
      [17] Hou, T., Zhang, Z. C., Ye, X. R., et al., 2011. Noble Gas Isotopic Systematics of Fe‐Ti‐V Oxide Ore‐Related Mafic‐Ultramafic Layered Intrusions in the Panxi Area, China: The Role of Recycled Oceanic Crust in Their Petrogenesis. Geochimica et Cosmochimica Acta, 75(22): 6727-6741. https://doi.org/10.1016/j.gca.2011.09.003
      [18] Jégo, S., Pichavant, M, 2012. Gold Solubility in Arc Magmas: Experimental Determination of the Effect of Sulfur at 1000 ℃ and 0.4 GPa. Geochimica et Cosmochimica Acta, 84: 560-592. https://doi.org/10.1016/j.gca.2012.01.027
      [19] Kjarsgaard, B. A, 1998. Phase Relations of a Carbonated High‐CaO Nephelinite at 0.2 and 0.5 GPa. Journal of Petrology, 39(11/12): 2061-2075. https://doi.org/10.1093/petroj/39.11‐12.2061
      [20] Kotzé, E., Schuth, S., Goldmann, S., et al., 2019. The Mobility of Palladium and Platinum in the Presence of Humic Acids: an Experimental Study. Chemical Geology, 514: 65-78. https://doi.org/10.1016/j.chemgeo.2019.03.028
      [21] Latypov, R., Chistyakova, S., Mukherjee, R, 2017. A Novel Hypothesis for Origin of Massive Chromitites in the Bushveld Igneous Complex. Journal of Petrology, 58(10): 1899-1940. https://doi.org/10.1093/petrology/egx077
      [22] Li, J. K., Liu, Y. C., Zhao, Z., et al., 2018. Roles of Carbonate/CO2 in the Formation of Quartz‐Vein Wolframite Deposits: Insight from the Crystallization Experiments of Huebnerite in Alkali‐Carbonate Aqueous Solutions in a Hydrothermal Diamond‐Anvil Cell. Ore Geology Reviews, 95: 40-48. https://doi.org/10.1016/j.oregeorev.2018.02.024
      [23] Li, J. K., Chou, I, 2015. Hydrogen in Silicate Melt Inclusions in Quartz from Granite Detected with Raman Spectroscopy. Journal of Raman Spectroscopy, 46: 983-986. https://doi.org/10.1002/JRS.4644
      [24] Li, J. K., Chou, I. M, 2017. Homogenization Experiments of Crystal‐Rich Inclusions in Spodumene from Jiajika Lithium Deposit, China, under Elevated External Pressures in a Hydrothermal Diamond‐Anvil Cell. Geofluids, 2017: 9252913. https://doi.org/10.1155/2017/9252913
      [25] Li, J. K., Liu, Y. C., Zhao, Z., et al., 2018. Roles of Carbonate/CO2 in the Formation of Quartz‐Vein Wolframite Deposits: Insight from the Crystallization Experiments of Huebnerite in Alkali‐Carbonate Aqueous Solutions in a Hydrothermal Diamond‐Anvil Cell. Ore Geology Reviews, 95: 40-48. https://doi.org/10.1016/j.oregeorev.2018.02.024
      [26] Li, Y., Andreas, A, 2012. Partitioning of V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Sn, Sb, W, Au, Pb, and Bi between Sulfide Phases and Hydrous Basanite Melt at Upper Mantle Conditions. Earth and Planetary Science Letters, 355/356: 327-340. https://doi.org/10.1016/j.epsl.2012.08.008
      [27] Liu, Y. N., Brenan, J, 2015. Partitioning of Platinum‐Group Elements (PGE) and Chalcogens (Se, Te, As, Sb, Bi) between Monosulfide‐Solid Solution (MSS), Intermediate Solid Solution (ISS) and Sulfide Liquid at Controlled fO2fS2 Conditions. Geochimica et Cosmochimica Acta, 159: 139-161. https://doi.org/10.1016/j.gca.2015.03.021
      [28] Lledo, H. L., Jenkins, D. M, 2007. Experimental Investigation of the Upper Thermal Stability of Mg‐Rich Actinolite; Implications for Kiruna‐Type Iron Deposits. Journal of Petrology, 49(2): 225-238. https://doi.org/10.1093/petrology/egm078
      [29] Lukkari, S., Holtz, F, 2007. Phase Relations of a F‐Enriched Peraluminous Granite: an Experimental Study of the Kymi Topaz Granite Stock, Southern Finland. Contributions to Mineralogy and Petrology, 153(3): 273-288. https://doi.org/10.1007/s00410‐006‐0146‐8
      [30] Martin, L. H. J., Schmidt, M. W., Mattsson, H. B., et al., 2012. Element Partitioning between Immiscible Carbonatite‐Kamafugite Melts with Application to the Italian Ultrapotassic Suite. Chemical Geology, 320/321: 96-112. https://doi.org/10.1016/j.chemgeo.2012.05.019
      [31] Martin, L. H. J., Schmidt, M. W., Mattsson, H. B., et al., 2013. Element Partitioning between Immiscible Carbonatite and Silicate Melts for Dry and H2O‐Bearing Systems at 1~3 GPa. Journal of Petrology, 54(11): 2301-2338. https://doi.org/10.1093/petrology/egt048
      [32] McLeish, D. F., Williams‐Jones, A. E., Vasyukova, O. V., et al., 2021. Colloidal Transport and Flocculation are the Cause of the Hyperenrichment of Gold in Nature. Proceedings of the National Academy of Sciences of the United States of America, 118(20): e2100689118. https://doi.org/10.1073/pnas.2100689118
      [33] Migdisov, A., Williams‐Jones, A. E., Brugger, J., et al., 2016. Hydrothermal Transport, Deposition, and Fractionation of the REE: Experimental Data and Thermodynamic Calculations. Chemical Geology, 439: 13-42. https://doi.org/10.1016/j.chemgeo.2016.06.005
      [34] Migdisov, A. A., Williams‐Jones, A. E, 2013. A Predictive Model for Metal Transport of Silver Chloride by Aqueous Vapor in Ore‐Forming Magmatic‐Hydrothermal Systems. Geochimica et Cosmochimica Acta, 104: 123-135. https://doi.org/10.1016/j.gca.2012.11.020
      [35] Mondal, S. K., Mathez, E. A, 2007. Origin of the UG2 Chromitite Layer, Bushveld Complex. Journal of Petrology, 48(3): 495-510. https://doi.org/10.1093/petrology/egl069
      [36] Piña, R., Gervilla, F., Helmy, H., et al., 2020. Partition Behavior of Platinum‐Group Elements during the Segregation of Arsenide Melts from Sulfide Magma. American Mineralogist, 105: 1889-1897. https://doi.org/10.2138/am‐2020‐7477
      [37] Pirajno, F., 2009. Hydrothermal Processes and Mineral Systems. Springer, Switzerland, 1250.
      [38] Pokrovski, G. S., Dubrovinsky, L. S, 2011. The S3- Ion is Stable in Geological Fluids at Elevated Temperatures and Pressures. Science, 331(6020): 1052-1054. https://doi.org/10.1126/science.1199911
      [39] Pokrovski, G. S., Kokh, M. A., Guillaume, D., et al., 2015. Sulfur Radical Species Form Gold Deposits on Earth. Proceedings of the National Academy of Sciences of the United States of America, 112(44): 13484-13489. https://doi.org/10.1073/pnas.1506378112
      [40] Qiu, Y., Yang, Y. X., Wang, X. L., et al., 2020a. In Situ Raman Spectroscopic Quantification of Aqueous Sulfate: Experimental Calibration and Application to Natural Fluid Inclusions. Chemical Geology, 533: 119447. https://doi.org/10.1016/j.chemgeo.2019.119447
      [41] Qiu, Y., Zhang, R. Q., Chou, I. M., et al., 2021. Boron‐Rich Ore‐Forming Fluids in Hydrothermal W‐Sn Deposits from South China: Insights from in Situ Raman Spectroscopic Characterization of Fluid Inclusions. Ore Geology Reviews, 132: 104048. https://doi.org/10.1016/j.oregeorev.2021.104048
      [42] Qiu, Y., Wang, X. L., Liu, X., et al., 2020b. In Situ Raman Spectroscopic Quantification of CH4‐CO2 Mixture: Application to Fluid Inclusions Hosted in Quartz Veins from the Longmaxi Formation Shales in Sichuan Basin, Southwestern China. Petroleum Science, 17(1): 23-35. https://doi.org/10.1007/s12182‐019‐00395‐z
      [43] Schannor, M., Veksler, I. V., Hecht, L., et al., 2018. Small‐Scale Sr and O Isotope Variations through the UG2 in the Eastern Bushveld Complex: The Role of Crustal Fluids. Chemical Geology, 485: 100-112. https://doi.org/10.1016/j.chemgeo.2018.03.040
      [44] Shang, L. B., Chou, I. M., Lu, W. J., et al., 2009. Determination of Diffusion Coefficients of Hydrogen in Fused Silica between 296 and 523 K by Raman Spectroscopy and Application of Fused Silica Capillaries in Studying Redox Reactions. Geochimica et Cosmochimica Acta, 73(18): 5435-5443. https://doi.org/10.1016/j.gca.2009.06.001
      [45] Shang, L. B., Williams‐Jones, A. E., Wang, X. S., et al., 2020. An Experimental Study of the Solubility and Speciation of MoO3(s) in Hydrothermal Fluids at Temperatures up to 350 ℃. Economic Geology, 115(3): 661-669. https://doi.org/10.5382/econgeo.4715
      [46] Shaw, H. R, 1963. Hydrogen‐Water Vapor Mixtures: Control of Hydrothermal Atmospheres by Hydrogen Osmosis. Science, 139(3560): 1220-1222. https://doi.org/10.1126/science.139.3560.1220
      [47] Smith, M. P., Moore, K., Kavecsánszki, D., et al., 2016. From Mantle to Critical Zone: a Review of Large and Giant Sized Deposits of the Rare Earth Elements. Geoscience Frontiers, 7(3): 315-334. https://doi.org/10.1016/j.gsf.2015.12.006
      [48] Song, W. L., Xu, C., Veksler, I. V., et al., 2016. Experimental Study of REE, Ba, Sr, Mo and W Partitioning between Carbonatitic Melt and Aqueous Fluid with Implications for Rare Metal Mineralization. Contributions to Mineralogy and Petrology, 171(1): 1-12. https://doi.org/10.1007/s00410‐015‐1217‐5
      [49] Tropper, P., Manning, C. E., Harlov, D. E, 2013. Experimental Determination of CePO4 and YPO4 solubilities in H2O‐NaF at 800 ℃ and 1 GPa: Implications for Rare Earth Element Transport in High‐Grade Metamorphic Fluids. Geofluids, 13(3): 372-380. https://doi.org/10.1111/gfl.12031
      [50] Veksler, I. V., Hou, T, 2020. Experimental Study on the Effects of H2O Upon Crystallization in the Lower and Critical Zones of the Bushveld Complex with an Emphasis on Chromitite Formation. Contributions to Mineralogy and Petrology, 175(9): 1-17. https://doi.org/10.1007/s00410‐020‐01733‐w
      [51] Veksler, I. V., Dorfman, A. M., Dulski, P., et al., 2012. Partitioning of Elements between Silicate Melt and Immiscible Fluoride, Chloride, Carbonate, Phosphate and Sulfate Melts, with Implications to the Origin of Natrocarbonatite. Geochimica et Cosmochimica Acta, 79: 20-40. https://doi.org/10.1016/j.gca.2011.11.035
      [52] Veksler, I. V., Petibon, C., Jenner, G. A., et al., 1998. Trace Element Partitioning in Immiscible Silicate‐Carbonate Liquid Systems: an Initial Experimental Study Using a Centrifuge Autoclave. Journal of Petrology, 39(11/12): 2095-2104. https://doi.org/10.1093/petroj/39.11‐12.2095
      [53] Walter, B. F., Giebel, R. J., Steele‐MacInnis, M., et al., 2021. Fluids Associated with Carbonatitic Magmatism: a Critical Review and Implications for Carbonatite Magma Ascent. EarthScience Reviews, 215: 103509. https://doi.org/10.1016/j.earscirev.2021.103509
      [54] Wan, Y., Wang, X. L., Chou, I. M., et al., 2021. Role of Sulfate in the Transport and Enrichment of REE in Hydrothermal Systems. Earth and Planetary Science Letters, 569: 117068. https://doi.org/10.1016/j.epsl.2021.117068
      [55] Wan, Y., Wang, X. L., Hu, W. X., et al., 2017. In Situ Optical and Raman Spectroscopic Observations of the Effects of Pressure and Fluid Composition on Liquid‐Liquid Phase Separation in Aqueous Cadmium Sulfate Solutions (≤400 ℃, 50 MPa) with Geological and Geochemical Implications. Geochimica et Cosmochimica Acta, 211: 133-152. https://doi.org/10.1016/j.gca.2017.05.020
      [56] Wang, J. T., Xiong, X. L., Zhang, L., et al., 2020a. Element loss to Pt Ccapsule in High Temperature and Pressure Experiments. American Mineralogist, 105(10): 1593-1597. https://doi.org/ 10.2138/am‐2020‐7580
      [57] Wang, X. L., Wan, Y., Hu, W. X., et al., 2016. In Situ Observations of Liquid‐Liquid Phase Separation in Aqueous ZnSO4 Solutions at Temperatures up to 400 ℃: Implications for Zn2+‐SO42- Association and Evolution of Submarine Hydrothermal Fluids. Geochimica et Cosmochimica Acta, 181: 126-143. https://doi.org/10.1016/j.gca. 2016.03.001 doi: 10.1016/j.gca.2016.03.001
      [58] Wang, X. L., Chou, I. M., Hu, W. X., et al., 2011. Raman Spectroscopic Measurements of CO2 Density: Experimental Calibration with High‐Pressure Optical Cell (HPOC) and Fused Silica Capillary Capsule (FSCC) with Application to Fluid Inclusion Observations. Geochimica et Cosmochimica Acta, 75(14): 4080-4093. https://doi.org/10.1016/j.gca.2011.04.028
      [59] Wang, X. S., Timofeev, A., Williams‐Jones, A. E., et al., 2019. An Experimental Study of the Solubility and Speciation of Tungsten in NaCl‐Bearing Aqueous Solutions at 250, 300, and 350 ℃. Geochimica et Cosmochimica Acta, 265: 313-329. https://doi.org/10.1016/j.gca.2019.09.013
      [60] Wang, X. L., Chou, I. M., Hu, W. X., et al., 2013a. In Situ Observations of Liquid‐Liquid Phase Separation in Aqueous MgSO4 Solutions: Geological and Geochemical Implications. Geochimica et Cosmochimica Acta, 103: 1-10. https://doi.org/10.1016/j.gca.2012.10.044
      [61] Wang, X. L., Hu, W. X., Chou, I. M, 2013b. Raman Spectroscopic Characterization on the OH Stretching Bands in NaCl‐Na2CO3‐Na2SO4‐CO2‐H2O Systems: Implications for the Measurement of Chloride Concentrations in Fluid Inclusions. Journal of Geochemical Exploration, 132: 111-119. https://doi.org/10.1016/j.gexplo.2013.06.006
      [62] Wang, X. L., Qiu, Y., Lu, J. J., et al., 2020b. In Situ Raman Spectroscopic Investigation of the Hydrothermal Speciation of Tungsten: Implications for the Ore‐Forming Process. Chemical Geology, 532: 119299. https://doi.org/10.1016/j.chemgeo.2019.119299
      [63] Wang, X. L., Wan, Y., Chou, I. M, 2021a. Fate of Sulfate in Seafloor Hydrothermal Systems: Insights from in Situ Observation of the Liquid‐Liquid Phase Separation in Hydrothermal Fluids. Solid Earth Sciences, 6(1): 1-11. https://doi.org/10.1016/j.sesci.2020.12.001
      [64] Wang, X. S., Williams‐Jones, A. E., Hu, R. Z., et al., 2021b. The Role of Fluorine in Granite‐Related Hydrothermal Tungsten Ore Genesis: Results of Experiments and Modeling. Geochimica et Cosmochimica Acta, 292: 170-187. https://doi.org/10.1016/j.gca.2020.09.032
      [65] Webster, J. D., Sintoni, M. F., de Vivo, B, 2009. The Partitioning Behavior of Cl, S, and H2O in Aqueous Vapor‐ ± Saline‐Liquid Saturated Phonolitic and Trachytic Melts at 200 MPa. Chemical Geology, 263(1/2/3/4): 19-36. https://doi.org/10.1016/j.chemgeo.2008.10.017
      [66] Weidendorfer, D., Manning, C. E., Schmidt, M. W, 2020. Carbonate Melts in the Hydrous Upper Mantle. Contributions to Mineralogy and Petrology, 175(8): 1-17. https://doi.org/10.1007/s00410‐020‐01708‐x
      [67] Xiong, X. L., Liu, X. C., Li, L., et al., 2020. The Partitioning Behavior of Trace Elements in Subduction Zones: Advances and Prospects. Scientia Sinica(Terrae), 50(12): 1785-1798 (in Chinese with English abstract).
      [68] Yee, N., Koretsky, C., 2004. Who were the Ten Most Notable Geochemists of the 20th Century? The Geochemical News, 120: 6-14.
      [69] Yuan, S. D., Williams‐Jones, A. E., Romer, et al., 2019. Protolith‐Related Thermal Controls on the Decoupling of Sn and W in Sn‐W Metallogenic Provinces: Insights from the Nanling Region, China. Economic Geology, 114: 1005-1012. https://doi.org/10.5382/econgeo.4669
      [70] Zhao, P. L., Chu, X., Williams‐Jones, A. E., et al., 2022a. The Role of Phyllosilicate Partial Melting in Segregating Tungsten and Tin Deposits in W‐Sn Metallogenic Provinces. Geology, 50(1): 121-125. https://doi.org/10.1130/g49248.1
      [71] Zhao, P. L., Zajacz, Z., Tsay, A., et al., 2022b. Magmatic‐Hydrothermal Tin Deposits Form in Response to Efficient Tin Extraction Upon Magma Degassing. Geochimica et Cosmochimica Acta, 316: 331-346. https://doi.org/10.1016/j.gca.2021.09.011
      [72] Zhou, M. F., Robinson, P. T., Lesher, C. M., et al., 2005. Geochemistry, Petrogenesis and Metallogenesis of the Panzhihua Gabbroic Layered Intrusion and Associated Fe‐Ti‐V Oxide Deposits, Sichuan Province, SW China. Journal of Petrology, 46(11): 2253-2280. https://doi.org/10.1093/petrology/egi054
      [73] 熊小林, 刘星成, 李立, 等, 2020. 俯冲带微量元素分配行为研究: 进展和展望. 中国科学: 地球科学, 50(12): 1785-1798. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202012007.htm
    • 加载中
    图(2)
    计量
    • 文章访问数:  338
    • HTML全文浏览量:  160
    • PDF下载量:  129
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-02-05
    • 刊出日期:  2022-09-25

    目录

      /

      返回文章
      返回