• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    沉积、成岩与铀成矿:中国砂岩型铀矿研究的创新发现与认知挑战

    焦养泉 吴立群 荣辉 张帆 乐亮 宋昊 陶振鹏 彭虎 孙钰函 向尧

    焦养泉, 吴立群, 荣辉, 张帆, 乐亮, 宋昊, 陶振鹏, 彭虎, 孙钰函, 向尧, 2022. 沉积、成岩与铀成矿:中国砂岩型铀矿研究的创新发现与认知挑战. 地球科学, 47(10): 3580-3602. doi: 10.3799/dqkx.2022.284
    引用本文: 焦养泉, 吴立群, 荣辉, 张帆, 乐亮, 宋昊, 陶振鹏, 彭虎, 孙钰函, 向尧, 2022. 沉积、成岩与铀成矿:中国砂岩型铀矿研究的创新发现与认知挑战. 地球科学, 47(10): 3580-3602. doi: 10.3799/dqkx.2022.284
    Jiao Yangquan, Wu Liqun, Rong Hui, Zhang Fan, Yue Liang, Song Hao, Tao Zhenpeng, Peng Hu, Sun Yuhan, Xiang Yao, 2022. Sedimentation, Diagenesis and Uranium Mineralization: Innovative Discoveries and Cognitive Challenges in Study of Sandstone-Type Uranium Deposits in China. Earth Science, 47(10): 3580-3602. doi: 10.3799/dqkx.2022.284
    Citation: Jiao Yangquan, Wu Liqun, Rong Hui, Zhang Fan, Yue Liang, Song Hao, Tao Zhenpeng, Peng Hu, Sun Yuhan, Xiang Yao, 2022. Sedimentation, Diagenesis and Uranium Mineralization: Innovative Discoveries and Cognitive Challenges in Study of Sandstone-Type Uranium Deposits in China. Earth Science, 47(10): 3580-3602. doi: 10.3799/dqkx.2022.284

    沉积、成岩与铀成矿:中国砂岩型铀矿研究的创新发现与认知挑战

    doi: 10.3799/dqkx.2022.284
    基金项目: 

    国家重点研发计划项目 2018YFC0604202

    国家自然科学基金项目 42172128

    国家自然科学基金项目 41502105

    中央地质勘查基金专题研究项目 2008150013

    国家重点基础研究发展计划 2015CB453003

    中国地质大学(武汉)学科杰出人才基金资助项目 102-162301192664

    详细信息
      作者简介:

      焦养泉(1963-),男,教授,主要从事沉积盆地分析与能源矿产研究的教学与科研工作. ORCID:0000-0002-6634-8718. E-mail:yqjiao@cug.edu.cn

    • 中图分类号: P611

    Sedimentation, Diagenesis and Uranium Mineralization: Innovative Discoveries and Cognitive Challenges in Study of Sandstone-Type Uranium Deposits in China

    • 摘要: 21世纪,中国在砂岩型铀矿勘查领域获得了前所未有的辉煌成就.砂岩型铀矿产出于沉积盆地,铀矿的形成必须经历由沉积埋藏到抬升成矿两个重要的演化阶段.其中,在抬升成矿阶段,大气降水和氧化-还原作用的参与和约束是最显著的成矿特征.显然,这是一种典型的表生成岩作用的产物,是铀储层复杂成岩序列中的重要一环,隶属于“外生成矿”的范畴.虽然,砂岩型铀矿的成矿作用遵循氧化还原与铀变价的普遍机理,但是特殊的沉积背景却导致了铀成矿作用的多样性和地区的专属性.一些由沉积作用、沉积环境和古气候造就的关键控矿要素,能够从“基因”上直接影响表生成岩阶段的铀成矿作用,由沉积、成岩到铀成矿是一个具有成因联系的地质过程,而盆山耦合机制始终是其最根本的原始驱动力.随着对铀成矿作用细节行为研究的深入,一些创新发现不断地冲击着以往固有的认识,诸如碳质碎屑与铀成矿的相互作用、黄铁矿复杂而有序的演化习性、碳酸盐胶结物与铀成矿的共生叠置、敏感矿物的流体示踪、铀储层非均质性制约下的铀成矿机理、双重还原介质制矿模型、铀成矿的复合地球化学障等.还有一些研究对传统地质学理论提出了认知挑战,诸如,铀储层开放成岩环境中碳质碎屑的“碳化作用机理”、黄铁矿溶蚀或者生长界面上的铀沉淀化学动力机制、干旱沉积背景的铀成矿机理等.同时,铀成矿机理和普遍规律的研究,也为砂岩型铀矿的衰变地质效应研究和盆地铀资源的系统探索奠定了良好的地质基础.相信,针对沉积盆地整装的系统的成矿机理与成因联系研究,必将释放巨大的盆地铀资源潜力和矿床产能,在进一步丰富铀成矿理论的同时助力实现“双碳目标”.

       

    • 图  1  十红滩铀矿床不同阶段地质环境的演变对比(据焦养泉等,2004修改)

      图中铀成矿年龄据徐高中(2003)周巧生和李占游(2003);铀储层地下水矿化度据吴伯林等(2004);艾丁湖水文参数据杨发相等(1996)王亚俊和吴素芬(2003)

      Fig.  1.  Comparison of geological environment evolution in different stages of Shihongtan uranium deposit (modified by Jiao et al., 2004)

      图  2  砂岩型铀矿必须经历的两个重要演化阶段

      Fig.  2.  Two important evolution stages of sandstone-type uranium deposits

      图  3  层间氧化带型砂岩铀矿成矿模式(据Harshman,1972修改)

      Fig.  3.  Metallogenic model of interlayer oxidation zone type sandstone uranium deposit (modified from Harshman, 1972)

      图  4  店头-双龙铀矿床的成岩-成矿作用演化序列

      Fig.  4.  Diagenesis-mineralization evolution sequence of Diantou-Shuanglong uranium deposit

      图  5  富铀碳质碎屑的显微组分与铀富集的关系

      a. 铀矿物(白色区域)赋存在丝质体的胞腔中,扫描电镜;b. 富铀有机基质具有由不同“灰度”显示的原子序数非均质性,白色斑点为铀矿物,扫描电镜;c. 碳质碎屑粉末中铀价态谱图,XPS;d. U4+和U6+的相对原子含量(表明有机质以吸附为主还原为辅),XPS

      Fig.  5.  Relationship between macerals of uranium-rich carbonaceous debris and uranium enrichment

      图  6  黄铁矿、黄铜矿、方铅矿和铀矿物的周期性环带生长关系

      a.黄铁矿周期性环带状生长与溶蚀现象,扫描电镜,东胜铀矿田;b~d.硫化物和铀矿物的环带状生长结构,扫描电镜,店头-双龙铀矿床;e~g.黄铁矿和超细粒铀矿物的周期性生长结构,电子探针面扫,彭阳铀矿产地.Py.黄铁矿;U.铀矿物;nU.纳米级铀矿物;Pit.沥青铀矿;Cp.黄铜矿;Gn.方铅矿;Ilt.伊利石

      Fig.  6.  Periodic ring growth relationship of pyrite, chalcopyrite, galena and uranium minerals

      图  7  伊犁盆地砂岩型铀矿床氢氧同位素特征(据Song et al., 2019)

      a.黏土矿物同位素;b.流体同位素

      Fig.  7.  Hydrogen and oxygen isotopic characteristics of sandstone-type uranium deposit in Yili basin (according to Song et al., 2019)

      图  8  铀储层中层间氧化带、钙质胶结物与铀矿体的空间配置关系典型实例

      a.鄂尔多斯盆地北部大营铀矿床,J2z1-1;b.鄂尔多斯盆地北部大营铀矿床,J2z1-2;c.鄂尔多斯盆地东北部皂火壕铀矿床神山沟露头区(由Ca1到Ca2铀丰度降低),J2z1-1;d.美国怀俄明Shirley盆地陆相砂岩铀矿床(据Harshman,1974Dahlkamp,1993)

      Fig.  8.  Typical example of spatial configuration relationship between interlayer oxidation zone, calcareous cement and uranium ore body in uranium reservoir

      图  9  砂岩型铀矿的衰变地质效应

      a.铀储层不同部位碳质碎屑Ro的均值变化规律,大营铀矿;b.碎屑石英中的裂变径迹,单偏光,十红滩铀矿床;c.碎屑石英中的裂变径迹,铸体薄片单偏光,东胜铀矿田;d.碎屑石英裂变径迹密度与铀矿体空间距离统计关系,东胜铀矿田;e.碎屑锆石振荡环带的局部蚀变现象,扫描电镜,东胜铀矿田;f~g.分别为图e能谱面扫的Fe和Pb元素分布规律;h. 碎屑锆石外围蚀变现象,扫描电镜,东胜铀矿田;i~j.分别为图h能谱面扫的Y和U元素分布规律

      Fig.  9.  Geological effect of sandstone-type uranium deposit decay

    • [1] Barrie, C. D., Boyce, A. J., Boyle, A. P., et al., 2009. Growth Controls in Colloform Pyrite. American Mineralogist, 94(4): 415-429. https://doi.org/10.2138/am.2009.3053
      [2] Bone, S. E., Dynes, J. J., Cliff, J., et al., 2017. Uranium(IV) Adsorption by Natural Organic Matter in Anoxic Sediments. Proceedings of the National Academy of Sciences of the United States of America, 114(4): 711-716. https://doi.org/10.1073/pnas.1611918114
      [3] Bonnetti, C., Cuney, M., Bourlange, S., et al., 2017. Primary Uranium Sources for Sedimentary-Hosted Uranium Deposits in NE China: Insight from Basement Igneous Rocks of the Erlian Basin. Mineralium Deposita, 52(3): 297-315. https://doi.org/10.1007/s00126-016-0661-0
      [4] Bonnetti, C., Cuney, M., Michels, R., et al., 2015. The Multiple Roles of Sulfate-Reducing Bacteria and Fe-Ti Oxides in the Genesis of the Bayinwula Roll Front-Type Uranium Deposit, Erlian Basin, NE China. Economic Geology, 110(4): 1059-1081. https://doi.org/10.2113/econgeo.110.4.1059
      [5] Bordelet, G., Beaucaire, C., Phrommavanh, V., et al., 2013. Sorption Properties of Peat for U(VI) and 226Ra in U Mining Areas. Procedia Earth and Planetary Science, 7: 85-88. https://doi.org/10.1016/j.proeps.2013.03.121
      [6] Cao, M. Q., Rong, H., Chen, Z. Y., et al., 2021. Quantitative Characterization and Controlling Factors of the Interlayer Oxidation Zone of Qianjiadian Uranium Deposit, Songliao Basin. Earth Science, 46(10): 3453-3466(in Chinese with English abstract).
      [7] Chen, Z. B., Zhao, F. M., 2002. Formation Mode of In-Situ Leachable Uranium Deposits and Prospecting Prospect in China. World Nuclear Geoscience, 19(3): 127-133(in Chinese with English abstract). doi: 10.3969/j.issn.1672-0636.2002.03.004
      [8] Cheng, L. W., Du, Q. K., Wu, J. S., et al., 2012. The Practice and Enlightenment of "Simultaneous Exploration of Coal and Uranium" in Daying Uranium Mine. China Nuclear Industry, 0(S1): 1-105 (in Chinese).
      [9] Dahlkamp, F. J., 1993. Uranium Ore Deposits. Springer-Verlag Berlin Heidelberg, New York.
      [10] Harshman, E. N., 1972. Geology and Uranium Deposits, Shirley Basin Area, Wyoming. U. S. Geological Survey, Washington, D. C.
      [11] Harshman, E. N., 1974. Distribution of Elements in Some Roll-Type Uranium Deposits. IAEA, Vienna.
      [12] Hough, G., Swapp, S., Frost, C., et al., 2019. Sulfur Isotopes in Biogenically and Abiogenically Derived Uranium Roll-Front Deposits. Economic Geology, 114(2): 353-373. https://doi.org/10.5382/econgeo.2019.4634
      [13] IAEA., 2014. Uranium 2014: Resources, Production and Demand, NEA No. 7209. OECD, Vienna.
      [14] Ingham, E. S., Cook, N. J., Cliff, J., et al., 2014. A Combined Chemical, Isotopic and Microstructural Study of Pyrite from Roll-Front Uranium Deposits, Lake Eyre Basin, South Australia. Geochimica et Cosmochimica Acta, 125: 440-465. https://doi.org/10.1016/j.gca.2013.10.017
      [15] Jia, J. M., 2020. Mineralogical Characteristics and Mineralization of Pengyang Uranium Deposit in the Southwest Margin of Ordos Basin (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      [16] Jia, J. M., Rong, H., Jiao, Y. Q., et al., 2018. Occurrence of Carbonate Cements and Relationship between Carbonate Cementation and Uranium Mineralization of Qianjiadian Uranium Deposit, Songliao Basin. Earth Science, 43(S2): 149-161(in Chinese with English abstract).
      [17] Jia, J. M., Rong, H., Jiao, Y. Q., et al., 2020. Mineralogy and Geochemistry of Carbonate Cement in Sandstone and Implications for Mineralization of the Qianjiadian Sandstone-Hosted Uranium Deposit, Southern Songliao Basin, China. Ore Geology Reviews, 123: 103590. https://doi.org/10.1016/j.oregeorev.2020.103590
      [18] Jiao, Y. Q., Chen, A. P., Yang, Q., et al., 2005. Sand Body Heterogeneity: One of the Key Factors of Uranium Metallogenesis in Ordos Basin. Uranium Geology, 21(1): 8-15(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0658.2005.01.002
      [19] Jiao, Y. Q., Lü, X. B., Wang, Z. H., et al., 2004. Two Distinct Geological Environments from Sedimentary to Diagenesis Stages: Examples from Sandstone-Type Uranium Deposits, Turpan-Hami Basin. Earth Science, 29(5): 615-620(in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2004.05.018
      [20] Jiao, Y. Q., Wu, L. Q., Peng, Y. B., et al., 2015a. Sedimentary-Tectonic Setting of the Deposition-Type Uranium Deposits Forming in the Paleo-Asian Tectonic Domain, North China. Earth Science Frontiers, 22(1): 189-205(in Chinese with English abstract).
      [21] Jiao, Y. Q., Wu, L. Q., Rong, H., 2015b. Sedimentology of Coal-Bearing Basins. China University of Geosciences Press, Wuhan(in Chinese).
      [22] Jiao, Y. Q., Wu, L. Q., Rong, H., 2018a. Model of Inner and Outer Reductive Media within Uranium Reservoir Sandstone of Sandstone-Type Uranium Deposits and Its Ore-Controlling Mechanism: Case Studies in Daying and Qianjiadian Uranium Deposits. Earth Science, 43(2): 459-474(in Chinese with English abstract).
      [23] Jiao, Y. Q., Wu, L. Q., Rong, H., et al., 2018b. Geological Modeling of Uranium Reservoir: The Geological Foundation of Revealing the Metallogenic Mechanism and Solving "Remaining Uranium". Earth Science, 43(10): 3568-3583(in Chinese with English abstract).
      [24] Jiao, Y. Q., Wu, L. Q., Rong, H., et al., 2012. Uranium Reservoir Architecture and Ore-Forming Flow Field Study: A Key of Revealing Dongsheng Sandstone Type Uranium Deposit Mineralization Mechanism. Geological Science and Technology Information, 31(5): 94-104(in Chinese with English abstract).
      [25] Jiao, Y. Q., Wu, L. Q., Rong, H., et al., 2016. The Relationship between Jurassic Coal Measures and Sandstone-Type Uranium Deposits in the Northeastern Ordos Basin, China. Acta Geologica Sinica, 90(6): 2117-2132. doi: 10.1111/1755-6724.13026
      [26] Jiao, Y. Q., Wu, L. Q., Rong, H., et al., 2021a. Review of Basin Uranium Resources in China. Earth Science, 46(8): 2675-2696(in Chinese with English abstract).
      [27] Jiao, Y. Q., Wu, L. Q., Rong, H., et al., 2021b. Geological Modeling for Uranium Reservoir Heterogeneous: A Sedimentology Basis of Revealing Metallogenic Mechanism and Enhancing Recovery for Sandstone-Type Uranium Deposits in the Zhiluo Formation in Ordos Basin. China University of Geosciences Press, Wuhan (in Chinese).
      [28] Jiao, Y. Q., Wu, L. Q., Wang, M. F., et al., 2005. Forecasting the Occurrence of Sandstone-Type Uranium Deposits by Spatial Analysis: An Example from the Northeastern Ordos Basin, China. Mineral Deposit Research: Meeting the Global Challenge. Springer Berlin Heidelberg, Berlin, Heidelberg, 273-275. https://doi.org/10.1007/3-540-27946-6_71
      [29] Jiao, Y. Q., Wu, L. Q., Yang, S. K., et al., 2006. Sedimentology of Uranium Reservior: The Foundation of Sandstone Type Uranium Deposit Exploration and Development. Geological Publishing House, Beijing (in Chinese).
      [30] Jin, R. S., Chen, Y., Si, Q. H., et al., 2020. Metallogenic Models of Sandstone-Type Uranium Deposits in Ordos Basin. Science Press, Beijing (in Chinese).
      [31] Landais, P., 1996. Organic Geochemistry of Sedimentary Uranium Ore Deposits. Ore Geology Reviews, 11(1-3): 33-51. https://doi.org/10.1016/0169-1368(95)00014-3
      [32] Li, Z. Y., Fang, X. H., Qin, M. K., 2019. Sandstone-Hosted Uranium Metallogeny in North Ordos Basin, China. Geological Publishing House, Beijing(in Chinese).
      [33] Liu, C. Y., 2005. Research Progress of Coexistence and Enrichment of Various Energy Minerals in Basins. Science Press, Beijing(in Chinese).
      [34] Miao, P. S., Chen, Y., Cheng, Y. H., et al., 2020. New Deep Exploration Discoveries of Sandstone-Type Uranium Deposits in North China. Geotectonica et Metallogenia, 44(4): 563-575(in Chinese with English abstract).
      [35] Miao, P. S., Li, J. G., Tang, C., et al., 2017. Metallogenic Condition and Prospecting Orientation for Deep Sandstone-Hosted Uranium Deposits in Mesozoic-Cenozoic Basins of North China. Geological Bulletin of China, 36(10): 1830-1840(in Chinese with English abstract).
      [36] Nasdala, L., Hanchar, J. M., Rhede, D., et al., 2010. Retention of Uranium in Complexly Altered Zircon: An Example from Bancroft, Ontario. Chemical Geology, 269(3-4): 290-300. https://doi.org/10.1016/j.chemgeo.2009.10.004
      [37] Nie, F. J., Chen, A. P., Peng, Y. B., 2010. Paleo-Channel Sandstone Type Uranium Deposits in Erlian Basin. Geological Publishing House, Beijing (in Chinese).
      [38] Peng, H., Jiao, Y. Q., Dong, F. S., et al., 2022. Relationships between Uranium Occurrence, Pyrite and Carbonaceous Debris in Fuxin Formation in the Songliao Basin: Evidenced by Mineralogy and Sulfur Isotopes. Ore Geology Reviews, 140(1-3): 104580. https://doi.org/10.1016/j.oregeorev.2021.104580
      [39] Peng, Y. B., Jiao, Y. Q., Chen, A. P., et al., 2019. Theoretical & Technological Innovation of Uranium Mineralization and Major Prospecting Breakthrough of Mesozoic Uranium-Bearing Basins in Midwestern Inner Mongolia. China University of Geosciences Press, Wuhan (in Chinese).
      [40] Peng, Y. B., Jiao, Y. Q., Lu, C., et al., 2021. Paleo-Valley Type Sandstone-Hosted Uranium Deposit in Erlian Basin. China University of Geosciences Press, Wuhan(in Chinese).
      [41] Peng, Y. B., Jiao, Y. Q., Zhang, J. D., et al., 2015. Synsedimentary Mudstone-Type Uranium Deposit: A Typical Analysis of the Super Large Nuheting Uranium Deposit in Erlian Basin. Geological Publishing House, Beijing (in Chinese).
      [42] Que, W. M., Wang, H. F., Tian, S. F., et al., 2005. Research Status and Development of In-Situ Leaching Uranium Techniques in China. Uranium Mining and Metallurgy, 24(3): 113-117(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8063.2005.03.001
      [43] Rallakis, D., Michels, R., Brouand, M., et al., 2019. The Role of Organic Matter on Uranium Precipitation in Zoovch Ovoo, Mongolia. Minerals, 9(5): 310. https://doi.org/10.3390/min9050310
      [44] Rickard, D., 2012. Sedimentary Pyrite. Developments in Sedimentology. Elsevier, Amsterdam, 233-285. https://doi.org/10.1016/b978-0-444-52989-3.00006-4
      [45] Rickard, D., 2019. How Long does It Take a Pyrite Framboid to Form? Earth and Planetary Science Letters, 513: 64-68. https://doi.org/10.1016/j.epsl.2019.02.019
      [46] Rong, H., 2012. The Effects of the Palaeoclimate of the Late Cretaceous Yaojia Formation on the Uranium Mineralization in the South Songliao Basin (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      [47] Rong, H., Jiao, Y. Q., Liu, W. H., et al., 2021a. Influence Mechanism of Palaeoclimate of Uranium-Bearing Strata on Mineralization: A Case Study from the Qianjiadian Sandstone-Hosted Uranium Deposit, Songliao Basin, China. Ore Geology Reviews, 138: 104336. https://doi.org/10.1016/j.oregeorev.2021.104336
      [48] Rong, H., Jiao, Y. Q., Wu, L. Q., et al., 2021b. Effects of Igneous Intrusions on Diagenesis and Reservoir Quality of Sandstone in the Songliao Basin, China. Marine and Petroleum Geology, 127: 104980. https://doi.org/10.1016/j.marpetgeo.2021.104980
      [49] Rong, H., Jiao, Y. Q., Liu, X. F., et al., 2020. Effects of Basic Intrusions on REE Mobility of Sandstones and Their Geological Significance: A Case Study from the Qianjiadian Sandstone-Hosted Uranium Deposit in the Songliao Basin. Applied Geochemistry, 120: 104665. https://doi.org/10.1016/j.apgeochem.2020.104665.
      [50] Rong, H., Jiao, Y. Q., Wu, L. Q., et al., 2016. Epigenetic Alteration and Its Constraints on Uranium Mineralization from the Qianjiadian Uranium Deposit, Southern Songliao Basin. Earth Science, 41(1): 153-166(in Chinese with English abstract).
      [51] Rong, H., Jiao, Y. Q., Wu, L. Q., et al., 2019. Origin of the Carbonaceous Debris and Its Implication for Mineralization within the Qianjiadian Uranium Deposit, Southern Songliao Basin. Ore Geology Reviews, 107: 336-352. https://doi.org/10.1016/j.oregeorev.2019.02.036
      [52] Seal, R. R., 2006. Sulfur Isotope Geochemistry of Sulfide Minerals. Reviews in Mineralogy and Geochemistry, 61(1): 633-677. doi: 10.2138/rmg.2006.61.12
      [53] Si, Q. H., Li, J. G., Miao, P. S., et al., 2021. Characteristics and Mechanism of Hydrocarbon Alteration of Faded Sandstone in the Uranium-Bearing Luohe Formation, Pengyang Area, Southwestern Ordos Basin. Ore Geology Reviews, 139: 104500. https://doi.org/10.1016/j.oregeorev.2021.104500
      [54] Song, H., Ni, S. J., Chi, G. X., et al., 2019. Systematic Variations of H-O-C Isotopes in Different Alteration Zones of Sandstone-Hosted Uranium Deposits in the Southern Margin of the Yili Basin (Xinjiang, China): A Review and Implications for the Ore-Forming Mechanisms. Ore Geology Reviews, 107: 615-628. https://doi.org/10.1016/j.oregeorev.2019.03.004
      [55] Su, X. B., Du, Z. M., 2012. Development and Prospect of China Uranium In-Situ Leaching Technology. China Mining Magazine, 21(9): 79-83(in Chinese with English abstract). doi: 10.3969/j.issn.1004-4051.2012.09.021
      [56] Sun, Y. H., Jiao, Y. Q., Wu, L. Q., et al., 2022. Relations of Uranium Enrichment and Metal Sulfides within the Shuanglong Uranium Deposit, Southern Ordos Basin. Journal of Earth Science, 33(2): 395-408. https://doi.org/10.1007/s12583-021-1456-5
      [57] Sun, Y. H., Wu, L. Q., Jiao, Y. Q., et al., 2020. Effect of Zircon Self-Radiation Damage on Lattice Destruction and Elements Migration. Geotectonica et Metallogenia, 44(4): 772-782(in Chinese with English abstract).
      [58] Sun, Y. H., Wu, L. Q., Jiao, Y. Q., et al., 2021. Alteration and Elements Migration of Detrital Zircons from the Daying Uranium Deposit in the Ordos Basin, China. Ore Geology Reviews, 139: 104418. https://doi.org/10.1016/j.oregeorev.2021.104418
      [59] Tao, Z. P., Jiao, Y. Q., Wu, L. Q., et al., 2020. The Outcrop Heterogeneity Geology Modeling Study on Architecture Units of Original Uranium Reservoir and Carbonaceous Debris from Zhiluo Formation, East of the Ordos Basin, China. Journal of Asian Earth Sciences, 191: 104219. doi: 10.1016/j.jseaes.2019.104219
      [60] Wang, B., 2021. Mineralogical Characteristics and Mineralization of Pengyang Uranium Deposit in the Southwest Margin of Ordos Basin (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      [61] Wang, L. H., Yan, P. B., Jiao, Y. Q., et al., 2022. Uranium Metallogenic Model of Lower Cretaceous in Northern Ordos Basin. Bulletin of Geological Science and Technology, https://doi:10.19509/j.cnki.dzkq.2022.0096 (in Chinese with English abstract).
      [62] Wang, Y. J., Wu, S. F., 2003. Environment Change over the Aydingkol Lake Region in Turpan Basin, Xinjiang. Journal of Glaciology and Geocryology, 25(2): 229-231(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0240.2003.02.021
      [63] Wu, B. L., Xu, G. Z., Li, W. H., et al., 2004. Metallogenic Conditions of In-Situ Leachable Sandstone-Type Uranium Deposits and Dynamic Evolution of the Turpan-Hami Basin. Geology in China, 31(1): 101-107(in Chinese with English abstract).
      [64] Wu, L. Q., Jiao, Y. Q., Peng, Y. B., et al., 2022. Uranium Metallogeny in Fault-Depression Transition Region: A Case Study of the Tamusu Uranium Deposit in the Bayingobi Basin. Journal of Earth Science, 33(2): 409-421. https://doi.org/10.1007/s12583-021-1553-5
      [65] Wu, L. Q., Jiao, Y. Q., Roger, M., et al., 2009. Sedimentological Setting of Sandstone-Type Uranium Deposits in Coal Measures on the Southwest Margin of the Turpan-Hami Basin, China. Journal of Asian Earth Sciences, 36(2/3): 223-237. https://doi.org/10.1016/j.jseaes.2009.06.003
      [66] Wu, L. Q., Jiao, Y. Q., Wang, G. R., et al. 2022. Response of Uranium Mineralization in Kuqa Depression Driven by Basin-Mountain Coupling Mechanism. Earth Science, 1-23. (2022-04-15). https://kns.cnki.net/kcms/detail/42.1874.p.20220413.2156.032.html (in Chinese with English abstract).
      [67] Xiang, Y., 2022. Relationship between Oxidation-Reduction and Uranium Mineralization in Aeolian Depositional System: Taking Luohe Formation and Luohandong Formation in Southwest Ordos Basin as an Example(Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      [68] Xiang, Y., Jiao, Y. Q., Wu, L. Q., et al., 2022. Markers and Genetic Mechanisms of Primary and Epigenetic Oxidation of an Aeolian Depositional System of the Luohandong Formation, Ordos Basin. Journal of Earth Science, 33(2): 358-372. https://doi.org/10.1007/s12583-020-1109-0
      [69] Xie, H. L., 2016. Water-Rock Interaction in the Forming of the Paleo-Interlayer Oxidation Zone of the Daying Uranium Deposit, Northern Ordos Basin(Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      [70] Xie, H. L., Jiao, Y. Q., Liu, Z. Y., et al., 2020. Occurrence and Enrichment Mechanism of Uranium Ore Minerals from Sandstone-Type Uranium Deposit, Northern Ordos Basin. Earth Science, 45(5): 1531-1543(in Chinese with English abstract).
      [71] Xie, H. L., Wu, L. Q., Jiao, Y. Q., et al., 2016. The Quantitative Evaluation Index System for Uranium Reservoir Heterogeneity in Hantaimiao Region, Ordos Basin. Earth Science, 41(2): 279-292(in Chinese with English abstract).
      [72] Xu, G. Z., 2003. Tectonic Evolution and Its Control over Ore-Formation of Interlayer Oxidized Zone Sandstone-Type Uranium Deposit at Southern Margin of Turpan-Hami Basin. Uranium Geology, 19(3): 137-140, 147(in Chinese with English abstract).
      [73] Yang, F. X., Mu, G. J., Zhao, X. Y., 1996. Analyses on the Shrinkage of Aiding Lake and the Environmental Variation in the Area around the Lake. Arid Land Geography, 19(1): 73-77(in Chinese with English abstract).
      [74] Yue, L., 2021. The Formation Process and Evolution Law of Pyrite in Uranium Reservoir in Zhiluo Formation, Northern Ordos Basin (Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      [75] Yue, L., Jiao, Y. Q., Fayek, M., et al., 2021a. Transformation of Fe-Bearing Minerals from Dongsheng Sandstone-Type Uranium Deposit, Ordos Basin, North-Central China: Implications for Ore Genesis. American Mineralogist (in Press). https://doi.org/10.2138/am-2021-7888
      [76] Yue, L., Jiao, Y. Q., Fayek, M., et al., 2021b. Micromorphologies and Sulfur Isotopic Compositions of Pyrite in Sandstone-Hosted Uranium Deposits: A Review and Implications for Ore Genesis. Ore Geology Reviews, 139(2): 104512. https://doi.org/10.1016/j.oregeorev.2021.104512
      [77] Yue, L., Jiao, Y. Q., Wu, L. Q., et al., 2019. Selective Crystallization and Precipitation of Authigenic Pyrite during Diagenesis in Uranium Reservoir Sandbodies in Ordos Basin. Ore Geology Reviews, 107: 532-545. https://doi.org/10.1016/j.oregeorev.2019.03.003
      [78] Yue, L., Jiao, Y. Q., Wu, L. Q., et al., 2020. Evolution and Origins of Pyrite in Sandstone-Type Uranium Deposits, Northern Ordos Basin, North-Central China, Based on Micromorphological and Compositional Analysis. Ore Geology Reviews, 118: 103334. https://doi.org/10.1016/j.oregeorev.2020.103334
      [79] Zhang, F., 2018. Enhancement of Organic Matter Maturation of Carbonaceous Debris Due to Radiogenic Heat from the Sandstone-Type Uranium Deposits, Ordos Basin(Dissertation). China University of Geosciences, Wuhan(in Chinese with English abstract).
      [80] Zhang, F., Jiao, Y. Q., Wang, S. M., et al., 2022. Origin of Dispersed Organic Matter within Sandstones and Its Implication for Uranium Mineralization: A Case Study from Dongsheng Uranium Ore Filed in China. Journal of Earth Science, 33(2): 325-341. https://doi.org/10.1007/s12583-020-1364-0
      [81] Zhang, F., Jiao, Y. Q., Wu, L. Q., et al., 2019a. Enhancement of Organic Matter Maturation Because of Radiogenic Heat from Uranium: A Case Study from the Ordos Basin in China. AAPG Bulletin, 103(1): 157-176. https://doi.org/10.1306/06071817107
      [82] Zhang, F., Jiao, Y. Q., Wu, L. Q., et al., 2019b. Relations of Uranium Enrichment and Carbonaceous Debris within the Daying Uranium Deposit, Northern Ordos Basin. Journal of Earth Science, 30(1): 142-157. https://doi.org/10.1007/s12583-017-0952-0
      [83] Zhang, F., Jiao, Y. Q., Wu, L. Q., et al., 2019c. In-Situ Analyses of Organic Matter Maturation Heterogeneity of Uranium-Bearing Carbonaceous Debris within Sandstones: A Case Study from the Ordos Basin in China. Ore Geology Reviews, 109: 117-129. https://doi.org/10.1016/j.oregeorev.2019.03.021
      [84] Zhang, F., Jiao, Y. Q., Wu, L. Q., et al., 2020. Changes in Physicochemical Properties of Organic Matter by Uranium Irradiation: A Case Study from the Ordos Basin in China. Journal of Environmental Radioactivity, 211: 106105. https://doi.org/10.1016/j.jenvrad.2019.106105
      [85] Zhang, F., Jiao, Y. Q., Wu, L. Q., et al., 2021a. Roles of Dispersed Organic Matters in Sandstone-Type Uranium Mineralization: A Review of Geological and Geochemical Processes. Ore Geology Reviews, 139: 104485. https://doi.org/10.1016/j.oregeorev.2021.104485
      [86] Zhang, F., Jiao, Y. Q., Wu, L. Q., et al., 2021b Relations between Pyrite Morphologies and Uranium Mineralization in the Shuanglong Region, Northern China. Ore Geology Reviews, 141(4): 104637. https://doi.org/10.1016/j.oregeorev.2021.104637
      [87] Zhang, J. D., Jian, X. F., Guo, Q. Y., et al., 2013. Exploration and Evaluation of Uranium Sources in Meso-Cenozoic Basins in North China (2000-2010). Geological Publishing House, Beijing (in Chinese).
      [88] Zhang, T. F., Miao, P. S., Cheng, X. Y., et al., 2020. Stratigraphic Characteristics of a Newly Discovered Uranium-Bearing Stratum in the Lower Cretaceous, Ordos Basin. Geotectonica et Metallogenia, 44(4): 633-647(in Chinese with English abstract).
      [89] Zheng, D. Y., 2001. To Meet a New Challenge while Stepping into the New Century. Uranium Geology, 17(1): 1-4, 17(in Chinese with English abstract).
      [90] Zhou, Q. S., Li, Z. Y., 2003. Geological Characteristics and Ore Prospects of Underground Leaching Sandstone-Type Uranium Deposits on the Southwestern Margin of the Turpan-Hami Basin. Geology in China, 30(2): 186-191(in Chinese with English abstract).
      [91] Zhu, Q., Si, Q. H., Li, J. G., et al., 2022. Two Genesis of Gray Sandstone and Their Uranium-Bearing Analysis of Lower Cretaceous Luohe Formation in Southwestern Ordos Basin. Earth Science, 1-27. https://kns.cnki.net/kcms/detail/42.1874.P.20220214.1418.008.html(in Chinese with English abstract).
      [92] 曹民强, 荣辉, 陈振岩, 等, 2021. 松辽盆地钱家店铀矿床层间氧化带结构定量表征及制约因素. 地球科学, 46(10): 3453-3466. doi: 10.3799/dqkx.2020.375
      [93] 陈肇博, 赵凤民, 2002. 可地浸型铀矿床的形成模式和在中国的找矿前景. 国外铀金地质, 19(3): 127-133. https://www.cnki.com.cn/Article/CJFDTOTAL-GWYD200203001.htm
      [94] 程利伟, 杜清坤, 吴建设, 等, 2012. 大营铀矿——"煤铀兼探"的实践与启示. 中国核工业, 0(S1): 1-105.
      [95] 贾俊民, 2020. 松辽盆地钱家店铀矿床碳酸盐胶结物矿物学和地球化学特征及其对铀成矿的指示(硕士学位论文). 武汉: 中国地质大学.
      [96] 贾俊民, 荣辉, 焦养泉, 等, 2018. 松辽盆地钱家店铀矿床中碳酸盐胶结物赋存状态及其与铀成矿关系. 地球科学, 43(S2): 149-161. doi: 10.3799/dqkx.2018.115
      [97] 焦养泉, 陈安平, 杨琴, 等, 2005. 砂体非均质性是铀成矿的关键因素之一: 鄂尔多斯盆地东北部铀成矿规律探讨. 铀矿地质, 21(1): 8-15. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ200501001.htm
      [98] 焦养泉, 吕新彪, 王正海, 等, 2004. 从沉积到成岩两种截然不同的地质环境: 吐哈盆地砂岩型铀矿研究实例. 地球科学, 29(5): 615–620. http://www.earth-science.net/article/id/1495
      [99] 焦养泉, 吴立群, 彭云彪, 等, 2015a. 中国北方古亚洲构造域中沉积型铀矿形成发育的沉积-构造背景综合分析. 地学前缘, 22(1): 189-205. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501018.htm
      [100] 焦养泉, 吴立群, 荣辉, 2015b. 聚煤盆地沉积学. 武汉: 中国地质大学出版社.
      [101] 焦养泉, 吴立群, 荣辉, 2018a. 砂岩型铀矿的双重还原介质模型及其联合控矿机理: 兼论大营和钱家店铀矿床. 地球科学, 43(2): 459-474. doi: 10.3799/dqkx.2017.512
      [102] 焦养泉, 吴立群, 荣辉, 等, 2018b. 铀储层地质建模: 揭示成矿机理和应对"剩余铀"的地质基础. 地球科学, 43(10): 3568-3583. doi: 10.3799/dqkx.2018.229
      [103] 焦养泉, 吴立群, 荣辉, 等, 2012. 铀储层结构与成矿流场研究: 揭示东胜砂岩型铀矿床成矿机理的一把钥匙. 地质科技情报, 31(5): 94-104. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201205014.htm
      [104] 焦养泉, 吴立群, 荣辉, 等, 2021a. 中国盆地铀资源概述. 地球科学, 46(8): 2675-2696. doi: 10.3799/dqkx.2020.304
      [105] 焦养泉, 吴立群, 荣辉, 等. 2021b. 铀储层非均质性地质建模: 揭示鄂尔多斯盆地直罗组铀成矿机理和提高采收率的沉积学基础. 武汉: 中国地质大学出版社.
      [106] 焦养泉, 吴立群, 杨生科, 等, 2006. 铀储层沉积学——砂岩型铀矿勘查与开发的基础. 北京: 地质出版社.
      [107] 金若时, 陈印, 司庆红, 等, 2020. 鄂尔多斯盆地砂岩型铀矿成矿作用. 北京: 科学出版社.
      [108] 李子颖, 方锡珩, 秦明宽, 2019. 鄂尔多斯盆地北部砂岩铀成矿作用. 北京: 地质出版社.
      [109] 刘池洋, 2005. 盆地多种能源矿产共存富集成藏(矿)研究进展. 北京: 科学出版社.
      [110] 苗培森, 陈印, 程银行, 等, 2020. 中国北方砂岩型铀矿深部探测新发现及其意义. 大地构造与成矿学, 44(4): 563-575. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202004002.htm
      [111] 苗培森, 李建国, 汤超, 等, 2017. 中国北方中新生代盆地深部砂岩铀矿成矿条件与找矿方向. 地质通报, 36(10): 1830-1840. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201710014.htm
      [112] 聂逢君, 陈安平, 彭云彪, 2010. 二连盆地古河道砂岩型铀矿. 北京: 地质出版社.
      [113] 彭云彪, 焦养泉, 陈安平, 等, 2019. 内蒙古中西部中生代产铀盆地理论技术创新与重大找矿突破/中国北方砂岩型铀矿床研究系列丛书. 武汉: 中国地质大学出版社
      [114] 彭云彪, 焦养泉, 鲁超, 等, 2021. 二连盆地古河谷型砂岩铀矿床. 武汉: 中国地质大学出版社.
      [115] 彭云彪, 焦养泉, 张金带, 等, 2015. 同沉积泥岩型铀矿床——二连盆地超大型努和廷铀矿床典型分析. 北京: 地质出版社.
      [116] 阙为民, 王海峰, 田时丰, 等, 2005. 我国地浸采铀研究现状与发展. 铀矿冶, 24(3): 113-117. https://www.cnki.com.cn/Article/CJFDTOTAL-YKYI200503000.htm
      [117] 荣辉, 2012. 松辽盆地南部姚家组沉积期古气候对铀成矿的影响(博士学位论文). 武汉: 中国地质大学.
      [118] 荣辉, 焦养泉, 吴立群, 等, 2016. 松辽盆地南部钱家店铀矿床后生蚀变作用及其对铀成矿的约束. 地球科学, 41(1): 153-166. doi: 10.3799/dqkx.2016.012
      [119] 苏学斌, 杜志明, 2012. 我国地浸采铀工艺技术发展现状与展望. 中国矿业, 21(9): 79-83. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201209024.htm
      [120] 孙钰函, 吴立群, 焦养泉, 等, 2020. 锆石自辐射损伤对晶格破坏与元素运移的影响. 大地构造与成矿学, 44(4): 772-782. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202004017.htm
      [121] 王弼, 2021. 鄂尔多斯盆地西南缘彭阳铀矿矿物学特征与成矿作用研究(硕士学位论文). 武汉: 中国地质大学.
      [122] 王龙辉, 剡鹏兵, 焦养泉, 等, 2022. 鄂尔多斯盆地北部下白垩统铀成矿模式. 地质科技通报, doi: 10.19509/j.cnki.dzkq.2022.0096.
      [123] 王亚俊, 吴素芬, 2003. 新疆吐鲁番盆地艾丁湖的环境变化. 冰川冻土, 25(2): 229-231. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200302020.htm
      [124] 吴伯林, 徐高中, 李卫红, 等, 2004. 吐哈盆地地浸砂岩型铀矿成矿条件与盆地动力学演化. 中国地质, 31(1): 101-107. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200401014.htm
      [125] 吴立群, 焦养泉, 王国荣, 等, 2022. 盆山耦合机制驱动下的库车坳陷铀成矿作用响应. 地球科学, 1-23. https://kns.cnki.net/kcms/detail/42.1874.p.20220413.2156.032.html
      [126] 向尧, 2022. 风成沉积体系中氧化还原作用与铀成矿关系——以鄂尔多斯盆地西南部洛河组和罗汉洞组为例(博士学位论文). 武汉: 中国地质大学.
      [127] 谢惠丽, 2016. 鄂尔多斯盆地大营铀矿床古层间氧化带形成发育的水-岩作用过程(博士学位论文). 武汉: 中国地质大学.
      [128] 谢惠丽, 焦养泉, 刘章月, 等, 2020. 鄂尔多斯盆地北部铀矿床铀矿物赋存状态及富集机理. 地球科学, 45(5): 1531-1543. doi: 10.3799/dqkx.2019.164
      [129] 谢惠丽, 吴立群, 焦养泉, 等, 2016. 鄂尔多斯盆地罕台庙地区铀储层非均质性定量评价指标体系. 地球科学, 41(2): 279-292. doi: 10.3799/dqkx.2016.021
      [130] 徐高中, 2003. 吐哈盆地南缘构造演化及其对层间氧化带砂岩型铀矿成矿作用的控制. 铀矿地质, 19(3): 137-140, 147. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ200303001.htm
      [131] 杨发相, 穆桂金, 赵兴有, 1996. 艾丁湖萎缩与湖区环境变化分析. 干旱区地理, 19(1): 73-77. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL199601016.htm
      [132] 乐亮, 2021. 鄂尔多斯盆地北部直罗组铀储层中黄铁矿的形成过程与演化规律(博士学位论文). 武汉: 中国地质大学.
      [133] 张帆, 2018. 鄂尔多斯盆地砂岩型铀矿衰变生热对炭质碎屑成熟度的催化影响(博士学位论文). 武汉: 中国地质大学.
      [134] 张金带, 简晓飞, 郭庆银, 等, 2013. 中国北方中新生代沉积盆地铀矿资源调查评价(2000—2010). 北京: 地质出版社.
      [135] 张天福, 苗培森, 程先钰, 等, 2020. 鄂尔多斯盆地早白垩世含铀岩系的新发现及其层序地层. 大地构造与成矿学, 44(4): 633-647. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202004007.htm
      [136] 郑大瑜, 2001. 跨入新世纪  迎接新挑战. 铀矿地质, 17(1): 1-4, 17. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ200101000.htm
      [137] 周巧生, 李占游, 2003. 吐哈盆地西南缘地浸砂岩型铀矿地质特征及找矿前景. 中国地质, 30(2): 186-191. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200302011.htm
      [138] 朱强, 司庆红, 李建国, 等, 2022. 鄂尔多斯盆地西南部下白垩统洛河组灰色砂岩的两种成因及其含铀性. 地球科学, 1-27. https://kns.cnki.net/kcms/detail/42.1874.P.20220214.1418.008.html
    • 加载中
    图(9)
    计量
    • 文章访问数:  817
    • HTML全文浏览量:  244
    • PDF下载量:  233
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-04-23
    • 刊出日期:  2022-10-25

    目录

      /

      返回文章
      返回