Displacement Analysis of Slope Reinforced by Pile-Anchor Composite Structure under Seismic Loads
-
摘要:
加固结构所的抗滑力常被简化为恒定值,不能反映其随时间的变化.为了更准确评估地震下桩-锚组合结构加固边坡的稳定性,引入非线性的模型,实现了抗滑力的实时更新.推导了安全系数和位移计算公式,讨论了结构系数对评估结果的影响.结果表明:(1)引入指数非线性模型后,抗滑桩和锚索力均表现出明显的时间效应.屈服加速度随结构的变形而增大.(2)地震初期抗滑桩无加固作用.随着边坡滑动,抗滑桩的力快速增长,最终起主导作用.(3)将结构的抗滑力等效为固定值虽然简化了计算,但是忽略了达到设计值所需的位移,这可能导致边坡的危险性被低估.在加固设计时,应该考虑抗滑力的变化.
Abstract:The anti-sliding force provided by the reinforcement structure is often simplified to a constant value, which cannot reflect the change in the earthquake. To accurately evaluate the stability of the slope, the nonlinear mechanical model is introduced. Combined with the newmark method, the real-time update of the anti-sliding force is realized. The effect of vertical seismic loads on the slope is also considered. The calculation formulas of safety factor and displacement are deduced. Besides, the effect of structural coefficient changes on the results is discussed. The research shows follows: (1) After introducing the exponential nonlinear model, the anti-sliding forces show time effects and increase with earthquakes. (2) The anchor cable force at the initial stage of the earthquake is equal to the pre-tension force, and the stabilizing pile has no anti-sliding effect. As the slope slides, the force of the stabilizing pile grows rapidly and eventually dominates. (3) Equating the anti-sliding force of the structure as a fixed value simplifies the calculation, but the risk of slope instability is underestimated. In the reinforcement design, the deformation of the reinforcement structure should be considered.
-
Key words:
- stabilizing pile /
- anchor cable /
- composite structure /
- newmark method /
- seismic load /
- engineering geology
-
[1] Al⁃Defae, A. H., Knappett, J. A., 2015. Newmark Sliding Block Model for Pile-Reinforced Slopes under Earthquake Loading. Soil Dynamics and Earthquake Engineering, 75: 265-278. https://doi.org/10.1016/j.soildyn.2015.04.013 [2] Ausilio, E., Conte, E., Dente, G., 2001. Stability Analysis of Slopes Reinforced with Piles. Computers and Geotechnics, 28(8): 591-611. https://doi.org/10.1016/s0266⁃352x(01)00013⁃1 [3] Basha, B. M., Babu, G. L. S., 2009. Computation of Sliding Displacements of Bridge Abutments by Pseudo-Dynamic Method. Soil Dynamics and Earthquake Engineering, 29: 103-120. https://doi.org/10.1016/j.soildyn.2008.01.006 [4] Dong, J. H., Wu, X. L., Lian, B., et al., 2022. Study on Dynamic Calculation Method for Landslide Prevention Structure of Anti⁃Slide Pile with Pre⁃Stressed Anchor Cable. China Civil Engineering Journal(in press)(in Chinese with English abstract). [5] Fan, C. C., Luo, J. H., 2008. Numerical Study on the Optimum Layout of Soil⁃Nailed Slopes. Computers and Geotechnics, 35(4): 585-599. https://doi.org/10.1016/j.compgeo.2007.09.002 [6] He, C., Tang, H. M., Shen, P. W., et al., 2021. Progressive Failure Mode and Stability Reliability of Strain⁃Softening Slope. Earth Science, 46(2): 697-707(in Chinese with English abstract). [7] Huang, M. H., Zhou, Z., Ou, J. P., 2014. Nonlinear Analysis on Load Transfer Mechanism of Wholly Grouted Anchor Rod along Anchoring Section. Chinese Journal of Rock Mechanics and Engineering, 33(Suppl. 2): 3992-3997(in Chinese with English abstract). [8] Jia, Z. B., Tao, L. J., Shi, M., 2020. Stability Analysis of Prestressed Anchor Cable Slope under Seismic Loads. Rock and Soil Mechanics, 41(11): 3604-3612, 3631(in Chinese with English abstract). [9] Lai, J., Zheng, Y. R., Liu, Y., et al., 2014. Shaking Table Tests on Double⁃Row Anti⁃Slide Piles of Slopes under Earthquakes. Chinese Journal of Geotechnical Engineering, 36(4): 680-686(in Chinese with English abstract). [10] Lei, H. Y., Liu, X., Song, Y. J., et al., 2021. Stability Analysis of Slope Reinforced by Double-Row Stabilizing Piles with Different Locations. Natural Hazards, 106(1): 19-42. https://doi.org/10.1007/s11069⁃020⁃04446⁃2 [11] Li, X. P., He, S. M., Wu, Y., 2012. Limit Analysis of the Stability of Slopes Reinforced with Anchors. International Journal for Numerical and Analytical Methods in Geomechanics, 36(17): 1898-1908. https://doi.org/10.1002/nag.1093 [12] Li, X. P., Su, L. J., He, S. M., et al., 2016. Limit Equilibrium Analysis of Seismic Stability of Slopes Reinforced with a Row of Piles. International Journal for Numerical Analytical Methods in Geomechanics, 40(8): 1241-1250. https://doi.org/10.1002/nag.2484 [13] Liu, X. F., Zhao, Y. Q., Wang, X. R., et al., 2022. Current Status and Prospects of Research on Fatigue Damage and Failure Precursors of Rocks. Earth Science, 47(6): 2190-2198(in Chinese with English abstract). [14] Luo, Y., He, S. M., Ouyang, C. J., et al., 2010. Stability Analysis of Pile and Anchor Composite Structure Reinforced Slope under the Earthquake Loading. Journal of Sichuan University (Engineering Science Edition), 42(Suppl. 1): 93-99(in Chinese with English abstract). [15] Nian, T. K., Jiang, J. C., Wang, F. W., et al., 2016. Seismic Stability Analysis of Slope Reinforced with a Row of Piles. Soil Dynamics and Earthquake Engineering, 84: 83-93. https://doi.org/10.1016/j.soildyn.2016.01.023 [16] Qu, H. L., Luo, H., Hu, H. G., et al., 2018. Dynamic Response of Anchored Sheet Pile Wall under Ground Motion: Analytical Model with Experimental Validation. Soil Dynamics and Earthquake Engineering, 115: 896-906. https://doi.org/10.1016/j.soildyn.2017.09.015 [17] Qu, H. L., Zhang, J. J., Wang F. J., 2013. Seismic Response of Prestressed Anchor Sheet Pile Wall from Shaking Table Tests. Chinese Journal of Geotechnical Engineering, 35(2): 313-320(in Chinese with English abstract). [18] Tao, L. J., Jia, Z. B., Bian, J., et al., 2021. Analytical Solution of Seismic Analysis of Piled⁃Reinforced Slopes. Bulletin of Engineering Geology and the Environment, 81(1): 1-14. https://doi.org/10.1007/s10064⁃021⁃02532⁃8 [19] Wu, H. G., Pai, L. F., Lai, T. W., et al., 2019. Study on Cooperative Performance of Pile⁃Anchor⁃Reinforced Soil Combined Retaining Structure of High Fill Slopes in Mountainous Airports. Chinese Journal of Rock Mechanics and Engineering, 38(7): 1498-1511(in Chinese with English abstract). [20] Wu, W. Y., Xu, C., Wang, X. Q., et al., 2020. Landslides Triggered by the 3 August 2014 Ludian (China) Mw 6.2 Earthquake: An Updated Inventory and Analysis of Their Spatial Distribution. Journal of Earth Science, 31(4): 853-866. https://doi.org/10.1007/s12583⁃020⁃1297⁃7 [21] Wu, Z. J., Wang, Z. J., Bi, J. W., et al., 2021. Shaking Table Test on the Seismic Responses of a Slope Reinforced by Prestressed Anchor Cables and Double⁃Row Antisliding Piles. Shock and Vibration, (2021): 1-13. https://doi.org/10.1155/2021/9952380 [22] Xu, M., Tang, Y. F., Liu, X. S., et al., 2018. A Shaking Table Model Test on a Rock Slope Anchored with Adaptive Anchor Cables. International Journal of Rock Mechanics and Mining Sciences, 112: 201-208. https://doi.org/10.1016/j.ijrmms.2018.10.021 [23] Xu, X., Huang, Y., 2021. Parametric Study of Structural Parameters Affecting Seismic Stability in Slopes Reinforced by Pile⁃Anchor Structures. Soil Dynamics and Earthquake Engineering, 147: 106789. https://doi.org/10.1016/j.soildyn.2021.106789 [24] Yan, M. J., Xia, Y. Y., Liu, T. T., et al., 2019. Limit Analysis under Seismic Conditions of a Slope Reinforced with Prestressed Anchor Cables. Computers and Geotechnics, 108: 226-233. https://doi.org/10.1016/j.compgeo.2018.12.027 [25] Yu, Y. Z., Deng, L. J., 2007. Centrifuge Modeling of Seismic Behavior of Slopes Reinforced by Stabilizing Pile. Chinese Journal of Geotechnical Engineering, 29(9): 1320-1323(in Chinese with English abstract). doi: 10.3321/j.issn:1000-4548.2007.09.007 [26] Zhang, J. J., Niu, J. Y., Fu, X., et al., 2020. Shaking Table Test of Seismic Responses of Anchor Cable and Lattice Beam Reinforced Slope. Journal of Mountain Science, 17(5): 1251-1268. https://doi.org/10.1007/s11629⁃019⁃5712⁃4 [27] Zhao, X. Y., Huang, J. H., Zhou, Y. W., et al., 2017. Joint Reinforcement Design Method of Tieback Anchors on Slope Surface and Anti⁃Slide Piles at Slope Toe. Journal of Southwest Jiaotong University, 52(3): 489-495(in Chinese with English abstract). doi: 10.3969/j.issn.0258-2724.2017.03.008 [28] Zheng, T., Liu, H. S., Yuan, X. M., et al., 2016. Experimental Study on Seismic Response of Anti⁃Slide Piles with Anchor Cables by Centrifugal Shaking Table. Chinese Journal of Rock Mechanics and Engineering, 35(11): 2276-2286(in Chinese with English abstract). [29] Zheng, Y., Wang, R. Q., Chen, C. X., et al., 2021. Dynamic Analysis of Anti⁃Dip Bedding Rock Slopes Reinforced by Pre⁃Stressed Cables Using Discrete Element Method. Engineering Analysis with Boundary Elements, 130: 79-93. https://doi.org/10.1016/j.enganabound.2021.05.014 [30] Zhu, X., Tang, Y., 2022. Failure Precursory Characteristics of Slope Model with Locked Section. Earth Science, 47(6): 1957-1968(in Chinese with English abstract). [31] Zhuang, Y., Cui, X. Y., Dai, G. L., et al., 2021. An Analytical Method for a Pile⁃Stabilised Slope Considering Soil Anisotropy. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 174(3): 252-262. https://doi.org/10.1680/jgeen.19.00108 [32] 董建华, 吴晓磊, 连博, 等, 2022. 预应力锚索抗滑桩滑坡防治结构的动力计算方法研究. 土木工程学报(待刊). [33] 何成, 唐辉明, 申培武, 等, 2021. 应变软化边坡渐进破坏模式及稳定性可靠度. 地球科学, 46(2): 697-707. doi: 10.3799/dqkx.2020.058 [34] 黄明华, 周智, 欧进萍, 2014. 全长黏结式锚杆锚固段荷载传递机制非线性分析. 岩石力学与工程学报, 33(增刊2): 3992-3997. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2077.htm [35] 贾志波, 陶连金, 史明, 2020. 地震作用下预应力锚索边坡的稳定性分析. 岩土力学, 41(11): 3604-3612, 3631. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011011.htm [36] 刘新锋, 赵英群, 王晓睿, 等, 2022. 岩石疲劳损伤及破坏前兆研究现状与展望. 地球科学, 47(6): 2190-2198. doi: 10.3799/dqkx.2021.186 [37] 罗渝, 何思明, 欧阳朝军, 等, 2010. 地震作用下桩锚组合结构加固边坡稳定性分析. 四川大学学报(工程科学版), 42(增刊1): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH2010S1016.htm [38] 曲宏略, 张建经, 王富江, 2013. 预应力锚索桩板墙地震响应的振动台试验研究. 岩土工程学报, 35(2): 313-320. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201302017.htm [39] 吴红刚, 牌立芳, 赖天文, 等, 2019. 山区机场高填方边坡桩-锚-加筋土组合结构协同工作性能优化研究. 岩石力学与工程学报, 38(7): 1498-1511. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201907018.htm [40] 于玉贞, 邓丽军, 2007. 抗滑桩加固边坡地震响应离心模型试验. 岩土工程学报, 29(9): 1320-1323. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200709007.htm [41] 赵晓彦, 黄金河, 周一文, 等, 2017. 坡面锚索与坡脚抗滑桩联合加固边坡设计方法. 西南交通大学学报, 52(3): 489-495. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201703009.htm [42] 郑桐, 刘红帅, 袁晓铭, 等, 2016. 锚索抗滑桩地震响应的离心振动台模型试验研究. 岩石力学与工程学报, 35(11): 2276-2286. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201611012.htm [43] 朱星, 唐垚, 2022. 锁固段边坡模型破坏前兆特征. 地球科学, 47(6): 1957-1968. doi: 10.3799/dqkx.2021.204