• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    地震荷载下桩-锚组合结构加固边坡的位移解析

    贾志波 陶连金 边金 文虎 张海祥 王志岗

    贾志波, 陶连金, 边金, 文虎, 张海祥, 王志岗, 2022. 地震荷载下桩-锚组合结构加固边坡的位移解析. 地球科学, 47(12): 4513-4522. doi: 10.3799/dqkx.2022.278
    引用本文: 贾志波, 陶连金, 边金, 文虎, 张海祥, 王志岗, 2022. 地震荷载下桩-锚组合结构加固边坡的位移解析. 地球科学, 47(12): 4513-4522. doi: 10.3799/dqkx.2022.278
    Jia Zhibo, Tao Lianjin, Bian Jin, Wen Hu, Zhang Haixiang, Wang Zhigang, 2022. Displacement Analysis of Slope Reinforced by Pile-Anchor Composite Structure under Seismic Loads. Earth Science, 47(12): 4513-4522. doi: 10.3799/dqkx.2022.278
    Citation: Jia Zhibo, Tao Lianjin, Bian Jin, Wen Hu, Zhang Haixiang, Wang Zhigang, 2022. Displacement Analysis of Slope Reinforced by Pile-Anchor Composite Structure under Seismic Loads. Earth Science, 47(12): 4513-4522. doi: 10.3799/dqkx.2022.278

    地震荷载下桩-锚组合结构加固边坡的位移解析

    doi: 10.3799/dqkx.2022.278
    基金项目: 

    国家重点研发计划项目 2019YFC1509704

    国家自然科学基金项目 41877218

    国家自然科学基金项目 42072308

    详细信息
      作者简介:

      贾志波(1990-),男,博士研究生,主要从事岩土工程防灾减灾研究.ORCID:000-0003-1266-9919.E-mail:zhibojia2019@163.com

      通讯作者:

      陶连金,教授,主要从事岩土工程防灾减灾研究.E-mail: lianjintao2021@163.com

    • 中图分类号: P642.22

    Displacement Analysis of Slope Reinforced by Pile-Anchor Composite Structure under Seismic Loads

    • 摘要:

      加固结构所的抗滑力常被简化为恒定值,不能反映其随时间的变化.为了更准确评估地震下桩-锚组合结构加固边坡的稳定性,引入非线性的模型,实现了抗滑力的实时更新.推导了安全系数和位移计算公式,讨论了结构系数对评估结果的影响.结果表明:(1)引入指数非线性模型后,抗滑桩和锚索力均表现出明显的时间效应.屈服加速度随结构的变形而增大.(2)地震初期抗滑桩无加固作用.随着边坡滑动,抗滑桩的力快速增长,最终起主导作用.(3)将结构的抗滑力等效为固定值虽然简化了计算,但是忽略了达到设计值所需的位移,这可能导致边坡的危险性被低估.在加固设计时,应该考虑抗滑力的变化.

       

    • 图  1  加固结构的力学模型

      Fig.  1.  Mechanical model of the reinforced structure

      图  2  边坡滑动机制

      Fig.  2.  Slope sliding mechanism

      图  3  典型边坡模型

      Fig.  3.  Typical slope model

      图  4  条分法示意

      Fig.  4.  Schematic diagram of the strip method

      图  5  锚索加固边坡示意图

      Fig.  5.  Schematic diagram of the slope reinforced with anchor cable

      图  6  抗滑桩加固边坡示意图

      Fig.  6.  Schematic diagram of the slope reinforced with stabilizing pile

      图  7  边坡的安全系数及位移

      Fig.  7.  Safety factor and displacement of slope

      图  8  锚索模型对比

      Fig.  8.  Comparison of anchor cable models

      图  9  锚索结构系数影响

      Fig.  9.  Influence of anchor cable structure coefficient

      图  10  抗滑桩结构系数

      Fig.  10.  Influence of stabilizing pile structure coefficient

    • [1] Al⁃Defae, A. H., Knappett, J. A., 2015. Newmark Sliding Block Model for Pile-Reinforced Slopes under Earthquake Loading. Soil Dynamics and Earthquake Engineering, 75: 265-278. https://doi.org/10.1016/j.soildyn.2015.04.013
      [2] Ausilio, E., Conte, E., Dente, G., 2001. Stability Analysis of Slopes Reinforced with Piles. Computers and Geotechnics, 28(8): 591-611. https://doi.org/10.1016/s0266⁃352x(01)00013⁃1
      [3] Basha, B. M., Babu, G. L. S., 2009. Computation of Sliding Displacements of Bridge Abutments by Pseudo-Dynamic Method. Soil Dynamics and Earthquake Engineering, 29: 103-120. https://doi.org/10.1016/j.soildyn.2008.01.006
      [4] Dong, J. H., Wu, X. L., Lian, B., et al., 2022. Study on Dynamic Calculation Method for Landslide Prevention Structure of Anti⁃Slide Pile with Pre⁃Stressed Anchor Cable. China Civil Engineering Journal(in press)(in Chinese with English abstract).
      [5] Fan, C. C., Luo, J. H., 2008. Numerical Study on the Optimum Layout of Soil⁃Nailed Slopes. Computers and Geotechnics, 35(4): 585-599. https://doi.org/10.1016/j.compgeo.2007.09.002
      [6] He, C., Tang, H. M., Shen, P. W., et al., 2021. Progressive Failure Mode and Stability Reliability of Strain⁃Softening Slope. Earth Science, 46(2): 697-707(in Chinese with English abstract).
      [7] Huang, M. H., Zhou, Z., Ou, J. P., 2014. Nonlinear Analysis on Load Transfer Mechanism of Wholly Grouted Anchor Rod along Anchoring Section. Chinese Journal of Rock Mechanics and Engineering, 33(Suppl. 2): 3992-3997(in Chinese with English abstract).
      [8] Jia, Z. B., Tao, L. J., Shi, M., 2020. Stability Analysis of Prestressed Anchor Cable Slope under Seismic Loads. Rock and Soil Mechanics, 41(11): 3604-3612, 3631(in Chinese with English abstract).
      [9] Lai, J., Zheng, Y. R., Liu, Y., et al., 2014. Shaking Table Tests on Double⁃Row Anti⁃Slide Piles of Slopes under Earthquakes. Chinese Journal of Geotechnical Engineering, 36(4): 680-686(in Chinese with English abstract).
      [10] Lei, H. Y., Liu, X., Song, Y. J., et al., 2021. Stability Analysis of Slope Reinforced by Double-Row Stabilizing Piles with Different Locations. Natural Hazards, 106(1): 19-42. https://doi.org/10.1007/s11069⁃020⁃04446⁃2
      [11] Li, X. P., He, S. M., Wu, Y., 2012. Limit Analysis of the Stability of Slopes Reinforced with Anchors. International Journal for Numerical and Analytical Methods in Geomechanics, 36(17): 1898-1908. https://doi.org/10.1002/nag.1093
      [12] Li, X. P., Su, L. J., He, S. M., et al., 2016. Limit Equilibrium Analysis of Seismic Stability of Slopes Reinforced with a Row of Piles. International Journal for Numerical Analytical Methods in Geomechanics, 40(8): 1241-1250. https://doi.org/10.1002/nag.2484
      [13] Liu, X. F., Zhao, Y. Q., Wang, X. R., et al., 2022. Current Status and Prospects of Research on Fatigue Damage and Failure Precursors of Rocks. Earth Science, 47(6): 2190-2198(in Chinese with English abstract).
      [14] Luo, Y., He, S. M., Ouyang, C. J., et al., 2010. Stability Analysis of Pile and Anchor Composite Structure Reinforced Slope under the Earthquake Loading. Journal of Sichuan University (Engineering Science Edition), 42(Suppl. 1): 93-99(in Chinese with English abstract).
      [15] Nian, T. K., Jiang, J. C., Wang, F. W., et al., 2016. Seismic Stability Analysis of Slope Reinforced with a Row of Piles. Soil Dynamics and Earthquake Engineering, 84: 83-93. https://doi.org/10.1016/j.soildyn.2016.01.023
      [16] Qu, H. L., Luo, H., Hu, H. G., et al., 2018. Dynamic Response of Anchored Sheet Pile Wall under Ground Motion: Analytical Model with Experimental Validation. Soil Dynamics and Earthquake Engineering, 115: 896-906. https://doi.org/10.1016/j.soildyn.2017.09.015
      [17] Qu, H. L., Zhang, J. J., Wang F. J., 2013. Seismic Response of Prestressed Anchor Sheet Pile Wall from Shaking Table Tests. Chinese Journal of Geotechnical Engineering, 35(2): 313-320(in Chinese with English abstract).
      [18] Tao, L. J., Jia, Z. B., Bian, J., et al., 2021. Analytical Solution of Seismic Analysis of Piled⁃Reinforced Slopes. Bulletin of Engineering Geology and the Environment, 81(1): 1-14. https://doi.org/10.1007/s10064⁃021⁃02532⁃8
      [19] Wu, H. G., Pai, L. F., Lai, T. W., et al., 2019. Study on Cooperative Performance of Pile⁃Anchor⁃Reinforced Soil Combined Retaining Structure of High Fill Slopes in Mountainous Airports. Chinese Journal of Rock Mechanics and Engineering, 38(7): 1498-1511(in Chinese with English abstract).
      [20] Wu, W. Y., Xu, C., Wang, X. Q., et al., 2020. Landslides Triggered by the 3 August 2014 Ludian (China) Mw 6.2 Earthquake: An Updated Inventory and Analysis of Their Spatial Distribution. Journal of Earth Science, 31(4): 853-866. https://doi.org/10.1007/s12583⁃020⁃1297⁃7
      [21] Wu, Z. J., Wang, Z. J., Bi, J. W., et al., 2021. Shaking Table Test on the Seismic Responses of a Slope Reinforced by Prestressed Anchor Cables and Double⁃Row Antisliding Piles. Shock and Vibration, (2021): 1-13. https://doi.org/10.1155/2021/9952380
      [22] Xu, M., Tang, Y. F., Liu, X. S., et al., 2018. A Shaking Table Model Test on a Rock Slope Anchored with Adaptive Anchor Cables. International Journal of Rock Mechanics and Mining Sciences, 112: 201-208. https://doi.org/10.1016/j.ijrmms.2018.10.021
      [23] Xu, X., Huang, Y., 2021. Parametric Study of Structural Parameters Affecting Seismic Stability in Slopes Reinforced by Pile⁃Anchor Structures. Soil Dynamics and Earthquake Engineering, 147: 106789. https://doi.org/10.1016/j.soildyn.2021.106789
      [24] Yan, M. J., Xia, Y. Y., Liu, T. T., et al., 2019. Limit Analysis under Seismic Conditions of a Slope Reinforced with Prestressed Anchor Cables. Computers and Geotechnics, 108: 226-233. https://doi.org/10.1016/j.compgeo.2018.12.027
      [25] Yu, Y. Z., Deng, L. J., 2007. Centrifuge Modeling of Seismic Behavior of Slopes Reinforced by Stabilizing Pile. Chinese Journal of Geotechnical Engineering, 29(9): 1320-1323(in Chinese with English abstract). doi: 10.3321/j.issn:1000-4548.2007.09.007
      [26] Zhang, J. J., Niu, J. Y., Fu, X., et al., 2020. Shaking Table Test of Seismic Responses of Anchor Cable and Lattice Beam Reinforced Slope. Journal of Mountain Science, 17(5): 1251-1268. https://doi.org/10.1007/s11629⁃019⁃5712⁃4
      [27] Zhao, X. Y., Huang, J. H., Zhou, Y. W., et al., 2017. Joint Reinforcement Design Method of Tieback Anchors on Slope Surface and Anti⁃Slide Piles at Slope Toe. Journal of Southwest Jiaotong University, 52(3): 489-495(in Chinese with English abstract). doi: 10.3969/j.issn.0258-2724.2017.03.008
      [28] Zheng, T., Liu, H. S., Yuan, X. M., et al., 2016. Experimental Study on Seismic Response of Anti⁃Slide Piles with Anchor Cables by Centrifugal Shaking Table. Chinese Journal of Rock Mechanics and Engineering, 35(11): 2276-2286(in Chinese with English abstract).
      [29] Zheng, Y., Wang, R. Q., Chen, C. X., et al., 2021. Dynamic Analysis of Anti⁃Dip Bedding Rock Slopes Reinforced by Pre⁃Stressed Cables Using Discrete Element Method. Engineering Analysis with Boundary Elements, 130: 79-93. https://doi.org/10.1016/j.enganabound.2021.05.014
      [30] Zhu, X., Tang, Y., 2022. Failure Precursory Characteristics of Slope Model with Locked Section. Earth Science, 47(6): 1957-1968(in Chinese with English abstract).
      [31] Zhuang, Y., Cui, X. Y., Dai, G. L., et al., 2021. An Analytical Method for a Pile⁃Stabilised Slope Considering Soil Anisotropy. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 174(3): 252-262. https://doi.org/10.1680/jgeen.19.00108
      [32] 董建华, 吴晓磊, 连博, 等, 2022. 预应力锚索抗滑桩滑坡防治结构的动力计算方法研究. 土木工程学报(待刊).
      [33] 何成, 唐辉明, 申培武, 等, 2021. 应变软化边坡渐进破坏模式及稳定性可靠度. 地球科学, 46(2): 697-707. doi: 10.3799/dqkx.2020.058
      [34] 黄明华, 周智, 欧进萍, 2014. 全长黏结式锚杆锚固段荷载传递机制非线性分析. 岩石力学与工程学报, 33(增刊2): 3992-3997. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2077.htm
      [35] 贾志波, 陶连金, 史明, 2020. 地震作用下预应力锚索边坡的稳定性分析. 岩土力学, 41(11): 3604-3612, 3631. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011011.htm
      [36] 刘新锋, 赵英群, 王晓睿, 等, 2022. 岩石疲劳损伤及破坏前兆研究现状与展望. 地球科学, 47(6): 2190-2198. doi: 10.3799/dqkx.2021.186
      [37] 罗渝, 何思明, 欧阳朝军, 等, 2010. 地震作用下桩锚组合结构加固边坡稳定性分析. 四川大学学报(工程科学版), 42(增刊1): 93-99. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH2010S1016.htm
      [38] 曲宏略, 张建经, 王富江, 2013. 预应力锚索桩板墙地震响应的振动台试验研究. 岩土工程学报, 35(2): 313-320. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201302017.htm
      [39] 吴红刚, 牌立芳, 赖天文, 等, 2019. 山区机场高填方边坡桩-锚-加筋土组合结构协同工作性能优化研究. 岩石力学与工程学报, 38(7): 1498-1511. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201907018.htm
      [40] 于玉贞, 邓丽军, 2007. 抗滑桩加固边坡地震响应离心模型试验. 岩土工程学报, 29(9): 1320-1323. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200709007.htm
      [41] 赵晓彦, 黄金河, 周一文, 等, 2017. 坡面锚索与坡脚抗滑桩联合加固边坡设计方法. 西南交通大学学报, 52(3): 489-495. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201703009.htm
      [42] 郑桐, 刘红帅, 袁晓铭, 等, 2016. 锚索抗滑桩地震响应的离心振动台模型试验研究. 岩石力学与工程学报, 35(11): 2276-2286. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201611012.htm
      [43] 朱星, 唐垚, 2022. 锁固段边坡模型破坏前兆特征. 地球科学, 47(6): 1957-1968. doi: 10.3799/dqkx.2021.204
    • 加载中
    图(10)
    计量
    • 文章访问数:  84
    • HTML全文浏览量:  27
    • PDF下载量:  20
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-04-30
    • 网络出版日期:  2023-01-10
    • 刊出日期:  2022-12-25

    目录

      /

      返回文章
      返回