• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    土体-大气相互作用下土质边坡稳定性研究

    孙畅 唐朝生 程青 徐金鉴 张大展

    孙畅, 唐朝生, 程青, 徐金鉴, 张大展, 2022. 土体-大气相互作用下土质边坡稳定性研究. 地球科学, 47(10): 3701-3722. doi: 10.3799/dqkx.2022.275
    引用本文: 孙畅, 唐朝生, 程青, 徐金鉴, 张大展, 2022. 土体-大气相互作用下土质边坡稳定性研究. 地球科学, 47(10): 3701-3722. doi: 10.3799/dqkx.2022.275
    Sun Chang, Tang Chaosheng, Cheng Qing, Xu Jinjian, Zhang Dazhan, 2022. Stability of Soil Slope under Soil-Atmosphere Interaction. Earth Science, 47(10): 3701-3722. doi: 10.3799/dqkx.2022.275
    Citation: Sun Chang, Tang Chaosheng, Cheng Qing, Xu Jinjian, Zhang Dazhan, 2022. Stability of Soil Slope under Soil-Atmosphere Interaction. Earth Science, 47(10): 3701-3722. doi: 10.3799/dqkx.2022.275

    土体-大气相互作用下土质边坡稳定性研究

    doi: 10.3799/dqkx.2022.275
    基金项目: 

    国家杰出青年科学基金 41925012

    国家自然科学基金 41772280

    国家自然科学基金 41902271

    江苏省自然科学基金 BK20211087

    国家重点研发计划课题 2019YFC1509902

    详细信息
      作者简介:

      孙畅(1998-),男,博士研究生,从事土体-大气相互作用过程监测及研究.ORCID:0000-0001-9344-2390.E-mail:dz21290011@smail.nju.edu.cn

      通讯作者:

      唐朝生,ORCID: 0000-0002-6419-6116. E-mail: tangchaosheng@nju.edu.cn

    • 中图分类号: P642.5

    Stability of Soil Slope under Soil-Atmosphere Interaction

    • 摘要: 土体-大气相互作用是指在多种气象要素共同驱动下,地表浅层土体与大气之间进行物质交换与能量传递的复杂过程.受全球气候变化影响,近年来极端气候事件频发.土体的工程性质在日益严峻的气候环境下发生剧烈变化,产生了大量滑坡灾害,给岩土和地质工程领域带来许多新挑战.系统总结了降雨、气温、空气湿度、风以及太阳辐射5个主要气象要素影响边坡稳定性的机制,分析了土体龟裂、地表植被和土体-大气相互作用之间的关联效应.通过介绍各因素在改变边坡稳定性过程中发挥的作用,构建了一个包括气象要素、土体龟裂以及地表植被的土体-大气相互作用分析体系.该体系为今后土体-大气相互作用下土质边坡稳定性研究确定了关键研究问题,所揭示的作用机理可为今后同类研究提供参考.针对该课题的研究现状,笔者提出了今后的研究方向和重点,包括土体-植被-大气相互作用的理论模型、气候作用下冻土坡体失稳机理、极端气候工程地质作用的生态调控措施三个方面.

       

    • 图  1  土体-大气相互作用对土质边坡的影响示意图(改自Rahardjo et al., 2010; Ishikawa et al., 2015

      Fig.  1.  Schematic diagram of influence of soil-atmosphere interaction on soil slope(modified from Rahardjo et al., 2010; Ishikawa et al., 2015)

      图  2  滑坡英文核心文献高频关键词分析

      Fig.  2.  Analysis of high frequency keywords in English core documents of landslide

      图  3  入渗率随时间变化示意图(改自Mein and Larson, 1973

      Fig.  3.  Schematic diagram of infiltration rate changing with time(modified from Mein and Larson, 1973)

      图  4  土体渗透系数随吸力变化示意图(据吴宏伟, 2017修改)

      Fig.  4.  Schematic diagram of relationship between water permeability and suction(Ng, 2017)

      图  5  土体蒸发阶段划分(据唐朝生等, 2011b修改)

      Fig.  5.  Schematic showing the three stages of evaporation from soil(Tang et al., 2011b)

      图  6  土体-大气相互作用下的冻土地区滑坡示意图(据Patton et al., 2019修改)

      Fig.  6.  Schematic diagram of landslide in permafrost area under soil-atmosphere interaction(modified from Patton et al., 2019)

      图  7  裂隙优先流诱发土质边坡破坏示意图(据Zhang et al., 2021修改)

      Fig.  7.  Schematic diagrams of soil slope failure induced by crack dominant flow(modified from Zhang et al., 2021)

      图  8  土体-植被-大气相互作用中水循环示意图(据吴宏伟, 2017修改)

      Fig.  8.  Schematic diagram of water circulation in soil-vegetation-atmosphere interaction(modified from Ng, 2017)

    • [1] Abiodun, A. A., Nalbantoglu, Z., 2015. Lime Pile Techniques for the Improvement of Clay Soils. Canadian Geotechnical Journal, 52(6): 760-768. https://doi.org/10.1139/cgj-2014-0073
      [2] Adams, J. E., Hanks, R. J., 1964. Evaporation from Soil Shrinkage Cracks. Soil Science Society of America Journal, 28(2): 281-284. https://doi.org/10.2136/sssaj1964.03615995002800020043x
      [3] Ahuja, L. R., Green, R. E., Chong, S. K., et al., 1980. A Simplified Functions Approach for Determining Soil Hydraulic Conductivities and Water Characteristics In Situ. Water Resources Research, 16(5): 947-953. https://doi.org/10.1029/wr016i005p00947
      [4] Alonso, E. E., Gens, A., Delahaye, C. H., 2003. Influence of Rainfall on the Deformation and Stability of a Slope in Over Consolidated Clays: A Case Study. Hydrogeology Journal, 11(1): 174-192. https://doi.org/10.1007/s10040-002-0245-1
      [5] Bao, C. G., 2004. Behavior of Unsaturated Soil and Stability of Expansive Soil Slope. Chinese Journal of Geotechnical Engineering, 26(1): 1-15(in Chinese with English abstract). doi: 10.3321/j.issn:1000-4548.2004.01.001
      [6] Barthès, B., Roose, E., 2002. Aggregate Stability as an Indicator of Soil Susceptibility to Runoff and Erosion; Validation at Several Levels. CATENA, 47(2): 133-149. https://doi.org/10.1016/S0341-8162(01)00180-1
      [7] Bastos, A., Ciais, P., Friedlingstein, P., et al., 2020. Direct and Seasonal Legacy Effects of the 2018 Heat Wave and Drought on European Ecosystem Productivity. Science Advances, 6(24): eaba2724. https://doi.org/10.1126/sciadv.aba2724
      [8] Blight, G. E., 1997. Interactions between the Atmosphere and the Earth. Géotechnique, 47(4): 715-767.
      [9] Blight, G., 2009. Solar Heating of the Soil and Evaporation from a Soil Surface. Géotechnique, 59(4): 355-363. https://doi.org/10.1680/geot.2009.59.4.355
      [10] Bordoloi, S., Ng, C. W. W., 2020. The Effects of Vegetation Traits and Their Stability Functions in Bio-Engineered Slopes: A Perspective Review. Engineering Geology, 275: 105742. https://doi.org/10.1016/j.enggeo.2020.105742
      [11] Borga, M., Fontana, G. D., DaRos, D., et al., 1998. Shallow Landslide Hazard Assessment Using a Physically Based Model and Digital Elevation Data. Environmental Geology, 35(2): 81-88. https://doi.org/10.1007/s002540050295
      [12] Boulange, J., Hanasaki, N., Yamazaki, D., et al., 2021. Role of Dams in Reducing Global Flood Exposure under Climate Change. Nature Communications, 12: 417. https://doi.org/10.1038/s41467-020-20704-0
      [13] Bring, A., Fedorova, I., Dibike, Y., et al., 2016. Arctic Terrestrial Hydrology: A Synthesis of Processes, Regional Effects, and Research Challenges. Journal of Geophysical Research: Biogeosciences, 121(3): 621-649. https://doi.org/10.1002/2015jg003131
      [14] Brutsaert, W., 1975. A Theory for Local Evaporation (or Heat Transfer) from Rough and Smooth Surfaces at Ground Level. Water Resources Research, 11(4): 543-550. https://doi.org/10.1029/wr011i004p00543
      [15] Burton, G. J., Sheng, D. C., Airey, D., 2014. Experimental Study on Volumetric Behaviour of Maryland Clay and the Role of Degree of Saturation. Canadian Geotechnical Journal, 51(12): 1449-1455. https://doi.org/10.1139/cgj-2013-0332
      [16] Caine, N., 1980. The Rainfall Intensity-Duration Control of Shallow Landslides and Debris Flows. Geografiska Annaler: Series A, Physical Geography, 62(1-2): 23-27. https://doi.org/10.1080/04353676.1980.11879996
      [17] Cazenave, A., Meyssignac, B., Ablain, M., et al., 2018. Global Sea-Level Budget 1993-Present. Earth System Science Data, 10(3): 1551-1590. https://doi.org/10.5194/essd-10-1551-2018
      [18] Chalise, D., Kumar, L., Kristiansen, P., 2019. Land Degradation by Soil Erosion in Nepal: A Review. Soil Systems, 3(1): 12. https://doi.org/10.3390/soilsystems3010012
      [19] Chen, J. B., Kong, L. W., Guo, A. G., et al., 2007. Numerical Simulation of Dynamic Response of Expansive Soil Slope to Atmospheric Conditions. Journal of Hydraulic Engineering, 38(6): 674-682(in Chinese with English abstract). doi: 10.3321/j.issn:0559-9350.2007.06.006
      [20] Cheng, Q., Tang, C. S., 2021. Coupled Effects of Matric Suction and Temperature on Compression Behaviour of Loess. Journal of Environmental Geotechnics, 8(6): 401-407. https://doi.org/10.1680/jenge.18.00186
      [21] Cheng, Q., Tang, C. S., Zeng, H., et al., 2020. Effects of Microstructure on Desiccation Cracking of a Compacted Soil. Engineering Geology, 265: 105418. https://doi.org/10.1016/j.enggeo.2019.105418
      [22] Cheng, Y. J., Tang, C. S., Pan, X. H., et al., 2021. Application of Microbial Induced Carbonate Precipitation for Loess Surface Erosion Control. Engineering Geology, 294: 106387. https://doi.org/10.1016/j.enggeo.2021.106387
      [23] Crozier, M. J., 2010. Deciphering the Effect of Climate Change on Landslide Activity: A Review. Geomorphology, 124(3/4): 260-267. https://doi.org/10.1016/j.geomorph.2010.04.009
      [24] Cui, Y. J., 2022. Soil-Atmosphere Interaction in Earth Structures. Journal of Rock Mechanics and Geotechnical Engineering, 14(1): 35-49. https://doi.org/10.1016/j.jrmge.2021.11.004
      [25] Cui, Y. J., Ta, A. N., Hemmati, S., et al., 2013. Experimental and Numerical Investigation of Soil-Atmosphere Interaction. Engineering Geology, 165: 20-28. https://doi.org/10.1016/j.enggeo.2012.03.018
      [26] Cui, Y. J., Tang, A. M., Mantho, A. T., et al., 2008. Monitoring Field Soil Suction Using a Miniature Tensiometer. Geotechnical Testing Journal, 31(1): 95-100.
      [27] Cummings, N. W., Richardson, B., 1927. Evaporation from Lakes. Physical Review, 30(4): 527-534. https://doi.org/10.1103/physrev.30.527
      [28] Daanen, R. P., Grosse, G., Darrow, M. M., et al., 2012. Rapid Movement of Frozen Debris-Lobes: Implications for Permafrost Degradation and Slope Instability in the South-Central Brooks Range, Alaska. Natural Hazards and Earth System Sciences, 12(5): 1521-1537. https://doi.org/10.5194/nhess-12-1521-2012
      [29] Davarzani, H., Smits, K., Tolene, R. M., et al., 2014. Study of the Effect of Wind Speed on Evaporation from Soil through Integrated Modeling of the Atmospheric Boundary Layer and Shallow Subsurface. Water Resources Research, 50(1): 661-680. https://doi.org/10.1002/2013wr013952
      [30] Day, R. W., 1994. Swell-Shrink Behavior of Compacted Clay. Journal of Geotechnical Engineering, 120(3): 618-623. https://doi.org/10.1061/(asce)0733-9410(1994)120: 3(618) doi: 10.1061/(asce)0733-9410(1994)120:3(618
      [31] Descroix, L., Barrios, J. L. G., Viramontes, D., et al., 2008. Gully and Sheet Erosion on Subtropical Mountain Slopes: Their Respective Roles and the Scale Effect. CATENA, 72(3): 325-339. https://doi.org/10.1016/j.catena.2007.07.003
      [32] Ferber, V., Auriol, J. C., Cui, Y. J., et al., 2009. On the Swelling Potential of Compacted High Plasticity Clays. Engineering Geology, 104(3/4): 200-210. https://doi.org/10.1016/j.enggeo.2008.10.008
      [33] Fernández-Raga, M., Palencia, C., Keesstra, S., et al., 2017. Splash Erosion: A Review with Unanswered Questions. Earth-Science Reviews, 171: 463-477. https://doi.org/10.1016/j.earscirev.2017.06.009
      [34] Fischer, E. M., Knutti, R., 2015. Anthropogenic Contribution to Global Occurrence of Heavy-Precipitation and High-Temperature Extremes. Nature Climate Change, 5(6): 560-564. https://doi.org/10.1038/nclimate2617
      [35] Fournier, F., 1960. Climatetérosion. Presses Universitaires de France, Paris.
      [36] Fredlund, D. G., Morgenstern, N. R., Widger, R. A., 1978. The Shear Strength of Unsaturated Soils. Canadian Geotechnical Journal, 15(3): 313-321. https://doi.org/10.1139/t78-029
      [37] Fredlund, D. G., Xing, A. Q., 1994. Equations for the Soil-Water Characteristic Curve. Canadian Geotechnical Journal, 31(4): 521-532. https://doi.org/10.1139/t94-061
      [38] Fu, S. H., Liu, B. Y., Liu, H. P., et al., 2011. The Effect of Slope on Interrill Erosion at Short Slopes. CATENA, 84(1/2): 29-34. https://doi.org/10.1016/j.catena.2010.08.013
      [39] Fu, X. T., 2012. Research on Slope Length Effect on Runoff and Sediment Yield and Dynamics Processes(Dissertation). Zhejiang University, Hangzhou (in Chinese with English abstract).
      [40] Gardner, W. R., 1960. Dynamic Aspects of Water Availability to Plants. Soil Science, 89(2): 63-73. https://doi.org/10.1097/00010694-196002000-00001
      [41] Garg, A., Leung, A. K., Ng, C. W. W., 2015. Comparisons of Soil Suction Induced by Evapotranspiration and Transpiration of S. heptaphylla. Canadian Geotechnical Journal, 52(12): 2149-2155. https://doi.org/10.1139/cgj-2014-0425
      [42] Gariano, S. L., Guzzetti, F., 2016. Landslides in a Changing Climate. Earth-Science Reviews, 162: 227-252. https://doi.org/10.1016/j.earscirev.2016.08.011
      [43] Green, W. H., Ampt, G. A., 1911. Studies on Soil Phyics. The Journal of Agricultural Science, 4(1): 1-24. https://doi.org/10.1017/s0021859600001441
      [44] Guo, Z. Z., Yin, K. L., Liu, Q. L., et al., 2020. Rainfall Warning of Creeping Landslide in Yunyang County of Three Gorges Reservoir Region Based on Displacement Ratio Model. Earth Science, 45(2): 672-684(in Chinese with English abstract).
      [45] Guthrie, R. H., Mitchell, S. J., Lanquaye-Opoku, N., et al., 2010. Extreme Weather and Landslide Initiation in Coastal British Columbia. Quarterly Journal of Engineering Geology and Hydrogeology, 43(4): 417-428. https://doi.org/10.1144/1470-9236/08-119
      [46] Guzzetti, F., Peruccacci, S., Rossi, M., et al., 2007. Rainfall Thresholds for the Initiation of Landslides in Central and Southern Europe. Meteorology and Atmospheric Physics, 98(3): 239-267. https://doi.org/10.1007/s00703-007-0262-7
      [47] Guzzetti, F., Peruccacci, S., Rossi, M., et al., 2008. The Rainfall Intensity-Duration Control of Shallow Landslides and Debris Flows: An Update. Landslides, 5(1): 3-17. https://doi.org/10.1007/s10346-007-0112-1
      [48] Hatano, R., Nakamoto, H., Sakuma, T., et al., 1988. Evapotranspiration in Cracked Clay Field Soil. Soil Science and Plant Nutrition, 34(4): 547-555. https://doi.org/10.1080/00380768.1988.10416470
      [49] Hemmati, S., Gatmiri, B., Cui, Y. J., et al., 2012. Thermo-Hydro-Mechanical Modelling of Soil Settlements Induced by Soil-Vegetation-Atmosphere Interactions. Engineering Geology, 139/140: 1-16. https://doi.org/10.1016/j.enggeo.2012.04.003
      [50] Hirabayashi, Y., Mahendran, R., Koirala, S., et al., 2013. Global Flood Risk under Climate Change. Nature Climate Change, 3(9): 816-821. https://doi.org/10.1038/nclimate1911
      [51] Hopkins, W. G., Hüner, N., 2009. Introduction to Plant Physiology. John Wiley & Sons, Inc. .
      [52] Huang, R. H., Zhou, L. T., 2002. Research on the Characteristics, Formation Mechanism and Prediction of Severe Climatic Disasters in China. Journal of Natural Disasters, 11(1): 1-9(in Chinese with English abstract). doi: 10.3969/j.issn.1004-4574.2002.01.001
      [53] Huang, R. Q., 2007. Large-Scale Landslides and Their Sliding Mechanisms in China since the 20th Century. Chinese Journal of Rock Mechanics and Engineering, 26(3): 433-454(in Chinese with English abstract).
      [54] Huang, R. Q., Qi, G. Q., 2002. The Effect of Unsaturated Soil Suction on Slope Stability. Journal of Engineering Geology, 10(4): 343-348(in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2002.04.002
      [55] Huang, S. Y., Barbour, S. L., Fredlund, D. G., 1998. Development and Verification of a Coefficient of Permeability Function for a Deformable Unsaturated Soil. Canadian Geotechnical Journal, 35(3): 411-425. doi: 10.1139/t98-010
      [56] Huggel, C., Salzmann, N., Allen, S., et al., 2010. Recent and Future Warm Extreme Events and High-Mountain Slope Stability. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 368(1919): 2435-2459. https://doi.org/10.1098/rsta.2010.0078
      [57] IPCC, 2018. Global Warming of 1.5 ℃. An IPCC Special Report on the Impacts of Global Warming of 1.5 ℃ above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. IPCC, Geneva, Switzerland (in Press).
      [58] Ishikawa, T., Tokoro, T., Seiichi, M., 2015. Geohazard at Volcanic Soil Slope in Cold Regions and Its Influencing Factors. Japanese Geotechnical Society Special Publication, 1(1): 1-20. https://doi.org/10.3208/jgssp.key-1
      [59] Jin, H. J., Li, S. X., Wang, S. L., et al., 2000. Impacts of Climatic Change on Permafrost and Cold Regions Environments in China. Acta Geographica Sinica, 55(2): 161-173(in Chinese with English abstract). doi: 10.3321/j.issn:0375-5444.2000.02.004
      [60] Jomaa, S., Barry, D. A., Brovelli, A., et al., 2012. Rain Splash Soil Erosion Estimation in the Presence of Rock Fragments. CATENA, 92: 38-48. https://doi.org/10.1016/j.catena.2011.11.008
      [61] Khan, M. S., Hossain, S., Ahmed, A., et al., 2017. Investigation of a Shallow Slope Failure on Expansive Clay in Texas. Engineering Geology, 219: 118-129. https://doi.org/10.1016/j.enggeo.2016.10.004
      [62] Kinnell, P. I. A., 2005. Raindrop-Impact-Induced Erosion Processes and Prediction: A Review. Hydrological Processes, 19(14): 2815-2844. https://doi.org/10.1002/hyp.5788
      [63] Koch, J. C., Runkel, R. L., Striegl, R., et al., 2013. Hydrologic Controls on the Transport and Cycling of Carbon and Nitrogen in a Boreal Catchment Underlain by Continuous Permafrost. Journal of Geophysical Research: Biogeosciences, 118(2): 698-712. https://doi.org/10.1002/jgrg.20058
      [64] Kong, L. W., Chen, Z. H., 2012. Advancement in the Techniques for Special Soils and Slopes. China Civil Engineering Journal, 45(5): 141-161(in Chinese with English abstract).
      [65] Krzeminska, D. M., Bogaard, T. A., van Asch, T. W. J., et al., 2012. A Conceptual Model of the Hydrological Influence of Fissures on Landslide Activity. Hydrology and Earth System Sciences, 16(6): 1561-1576. https://doi.org/10.5194/hess-16-1561-2012
      [66] Lan, H. X., Zhou, C. H., Li, Z. F., et al., 2003. Stability Response Analysis of Rainfall Landslide under Instantaneous Pore Water Pressure: A Case Study of Natural Rainfall Landslide in Hong Kong. Science in China(Series E), 33(S1): 119-136(in Chinese).
      [67] Lee, T. J., Pielke, R. A., 1992. Estimating the Soil Surface Specific Humidity. Journal of Applied Meteorology, 31(5): 480-484. https://doi.org/10.1175/1520-0450(1992)0310480: etsssh>2.0.co;2 doi: 10.1175/1520-0450(1992)0310480:etsssh>2.0.co;2
      [68] Lee, X. H., Goulden, M. L., Hollinger, D. Y., et al., 2011. Observed Increase in Local Cooling Effect of Deforestation at Higher Latitudes. Nature, 479(7373): 384-387. https://doi.org/10.1038/nature10588
      [69] Leng, T., Tang, C. S., Shi, B., 2016. Quantifing Desiccation Crack Behaviour of Remolded Expansive Soil during Wetting-Drying Circles. Journal of Engineering Geology, 24(5): 856-862(in Chinese with English abstract).
      [70] Lennon, J., Li, Y. L., Miller, R., et al., 2017. Wildfire, Hydrologic Risk, and Climate Change. World Environmental and Water Resources Congress 2017. May 21-25, 2017, Sacramento, California. Reston, VA, USA: American Society of Civil Engineers, 407-420. https://doi.org/10.1061/9780784480618.041
      [71] Leung, A. K., Garg, A., Coo, J. L., et al., 2015. Effects of the Roots of Cynodon Dactylon and Schefflera Heptaphylla on Water Infiltration Rate and Soil Hydraulic Conductivity. Hydrological Processes, 29(15): 3342-3354. doi: 10.1002/hyp.10452
      [72] Li, Q. Q., Huang, D., Pei, S. F., et al., 2021. Using Physical Model Experiments for Hazards Assessment of Rainfall-Induced Debris Landslides. Journal of Earth Science, 32(5): 1113-1128. https://doi.org/10.1007/s12583-020-1398-3
      [73] Li, S. L., Xu, Q., Tang, M. G., et al., 2020. Study on Spatial Distribution and Key Influencing Factors of Landslides in Three Gorges Reservoir Area. Earth Science, 45(1): 341-354(in Chinese with English abstract).
      [74] Li, Z. Q., Hu, R. L., Wang, L. C., et al., 2006. Study on SWCC of Unsaturated Expansive Soil. Rock and Soil Mechanics, 27(5): 730-734(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2006.05.009
      [75] Lin, Z. Y., Tang, C. S., Yang, Z. M., et al., 2022. Modeling of Drying-Induced Soil Curling Phenomenon. Water Resources Research, 58(1): e2021WR029749. https://doi.org/10.1029/2021WR029749
      [76] Liu, B., Xie, Y. H., Tang, C. S., et al., 2021. Bio-Mediated Method for Improving Surface Erosion Resistance of Clayey Soils. Engineering Geology, 293: 106295. https://doi.org/10.1016/j.enggeo.2021.106295
      [77] Liu, G., Tong, F. G., Tian, B., et al., 2019. Influence of Atmospheric Temperature on Shallow Slope Stability. Environmental Earth Sciences, 78(22): 1-9. https://doi.org/10.1007/s12665-019-8649-6
      [78] Liu, H. Q., Yin, Z. Z., 2010. Research on Analytical Method of Stability of Expansive Soil Slope. Rock and Soil Mechanics, 31(5): 1545-1549, 1554(in Chinese with English abstract).
      [79] Louati, F., Trabelsi, H., Jamei, M., et al., 2021. Impact of Wetting-Drying Cycles and Cracks on the Permeability of Compacted Clayey Soil. European Journal of Environmental and Civil Engineering, 25(4): 696-721. https://doi.org/10.1080/19648189.2018.1541144
      [80] McElrone, A. J., Choat, B., Gambetta, G. A., et al., 2013. Water Uptake and Transport in Vascular Plants. Nature Education Knowledge, 4(5): 6.
      [81] Meehl, G. A., Tebaldi, C., 2004. More Intense, More Frequent, and Longer Lasting Heat Waves in the 21st Century. Science, 305(5686): 994-997. https://doi.org/10.1126/science.1098704
      [82] Mein, R. G., Larson, C. L., 1973. Modeling Infiltration during a Steady Rain. Water Resources Research, 9(2): 384-394. https://doi.org/10.1029/wr009i002p00384
      [83] Montgomery, D. R., Dietrich, W. E., 1994. A Physically Based Model for the Topographic Control on Shallow Landsliding. Water Resources Research, 30(4): 1153-1171. https://doi.org/10.1029/93wr02979
      [84] Morbidelli, R., Saltalippi, C., Flammini, A., et al., 2018. Role of Slope on Infiltration: A Review. Journal of Hydrology, 557: 878-886. https://doi.org/10.1016/j.jhydrol.2018.01.019
      [85] Morin, J., van Winkel, J., 1996. The Effect of Raindrop Impact and Sheet Erosion on Infiltration Rate and Crust Formation. Soil Science Society of America Journal, 60(4): 1223-1227. https://doi.org/10.2136/sssaj1996.03615995006000040038x
      [86] Ng, C. W. W., Shi, Q., 1998. A Numerical Investigation of the Stability of Unsaturated Soil Slopes Subjected to Transient Seepage. Computers and Geotechnics, 22(1): 1-28. https://doi.org/10.1016/S0266-352X(97)00036-0
      [87] Ng, C. W. W., Wang, B., Tung, Y. K., 2001. Three-Dimensional Numerical Investigations of Groundwater Responses in an Unsaturated Slope Subjected to Various Rainfall Patterns. Canadian Geotechnical Journal, 38(5): 1049-1062. https://doi.org/10.1139/t01-057
      [88] Ng, C. W. W., Wang, Z. J., Ni, J. J., 2021. Effects of Plant Morphology on Root-Soil Hydraulic Interactions of Schefflera heptaphylla. Canadian Geotechnical Journal, 58(5): 666-681. https://doi.org/10.1139/cgj-2019-0647
      [89] Ng, C. W. W., Zhan, L. T., Bao, C. G., et al., 2003. Performance of an Unsaturated Expansive Soil Slope Subjected to Artificial Rainfall Infiltration. Géotechnique, 53(2): 143-157. https://doi.org/10.1680/geot.2003.53.2.143
      [90] Ng, W. W. C., 2017. Atmosphere-Plant-Soil Interactions: Theories and Mechanisms. Chinese Journal of Geotechnical Engineering, 39(1): 1-47(in Chinese with English abstract).
      [91] Ng, W. W. C., Chen, S. Y., Pang, Y. W., 1999. Parametric Study of Effects of Rain Infiltration on Unsaturated Slopes. Rock and Soil Mechanics, 20(1): 1-14(in Chinese with English abstract).
      [92] Ni, J. J., Leung, A., Ng, C. W. W., et al., 2016. Investigation of Plant Growth and Transpiration-Induced Matric Suction under Mixed Grass-Tree Conditions. Canadian Geotechnical Journal, 54(4): 561-573. https://doi.org/10.1139/cgj-2016-0226
      [93] Niu, F. J., Cheng, G. D., Lai, Y. M., et al., 2004. Instability Study on Thaw Slumping in Permafrost Regions of Qinghai-Tibet Plateau. Chinese Journal of Geotechnical Engineering, 26(3): 402-406(in Chinese with English abstract).
      [94] Onodera, T., Yoshinaka, R., Kazama, H., 1974. Slope Failures Caused by Heavy Rainfall in Japan. Journal of the Japan Society of Engineering Geology, 15(4): 191-200. https://doi.org/10.5110/jjseg.15.191
      [95] Pan, H. L., Mahrt, L., 1987. Interaction between Soil Hydrology and Boundary-Layer Development. Boundary-Layer Meteorology, 38(1): 185-202. https://doi.org/10.1007/BF00121563
      [96] Patton, A. I., Rathburn, S. L., Capps, D. M., 2019. Landslide Response to Climate Change in Permafrost Regions. Geomorphology, 340: 116-128. https://doi.org/10.1016/j.geomorph.2019.04.029
      [97] Pei, P., Zhao, Y. L., Ni, P. P., et al., 2020. A Protective Measure for Expansive Soil Slopes Based on Moisture Content Control. Engineering Geology, 269: 105527. https://doi.org/10.1016/j.enggeo.2020.105527
      [98] Penman, H. L., 1948. Natural Evaporation from Open Water, Bare Soil and Grass. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 193(1032): 120-145. https://doi.org/10.1098/rspa.1948.0037
      [99] Philip, J. R., 1966. Plant Water Relations: Some Physical Aspects. Annual Review of Plant Physiology, 17: 245-268. https://doi.org/10.1146/annurev.pp.17.060166.001333
      [100] Philip, J. R., 1986. Linearized Unsteady Multidimensional Infiltration. Water Resources Research, 22(12): 1717-1727. https://doi.org/10.1029/wr022i012p01717
      [101] Poulsen, T. G., 2022. Predicting Evaporation from Moist, Cracked Soil, Based on Near-Surface Wind Speed, Crack Width and Crack Distance. European Journal of Soil Science, 73(1): e13215. https://doi.org/10.1111/ejss.13215
      [102] Poulsen, T. G., Cai, W. L., Garg, A., 2020. Water Evaporation from Cracked Soil under Moist Conditions as Related to Crack Properties and Near-Surface Wind Speed. European Journal of Soil Science, 71(4): 627-640. https://doi.org/10.1111/ejss.12926
      [103] Qi, G. Q., Huang, R. Q., 2004. Study on Slope Displacements Due to Rainfall. Rock and Soil Mechanics, 25(3): 379-382(in Chinese with English abstract).
      [104] Quansah, C., 1981. The Effect of Soil Type, Slope, Rain Intensity and Their Interactions on Splash Detachment and Transport. Journal of Soil Science, 32(2): 215-224. https://doi.org/10.1111/j.1365-2389.1981.tb01701.x
      [105] Rahardjo, H., Ong, T. H., Rezaur, R. B., et al., 2010. Response Parameters for Characterization of Infiltration. Environmental Earth Sciences, 60(7): 1369-1380. https://doi.org/10.1007/s12665-009-0273-4
      [106] Rianna, G., Comegna, L., Mercogliano, P., et al., 2016. Potential Effects of Climate Changes on Soil-Atmosphere Interaction and Landslide Hazard. Natural Hazards, 84(2): 1487-1499. https://doi.org/10.1007/s11069-016-2481-z
      [107] Rianna, G., Pagano, L., Urciuoli, G., 2014. Rainfall Patterns Triggering Shallow Flowslides in Pyroclastic Soils. Engineering Geology, 174: 22-35. https://doi.org/10.1016/j.enggeo.2014.03.004
      [108] Richards, L. A., 1931. Capillary Conduction of Liquids through Porous Mediums. Physics, 1(5): 318-333. https://doi.org/10.1063/1.1745010
      [109] Riser, S. C., Freeland, H. J., Roemmich, D., et al., 2016. Fifteen Years of Ocean Observations with the Global Argo Array. Nature Climate Change, 6(2): 145-153. https://doi.org/10.1038/nclimate2872
      [110] Ritchie, J. T., Adams, J. E., 1974. Field Measurement of Evaporation from Soil Shrinkage Cracks. Soil Science Society of America Journal, 38(1): 131-134. https://doi.org/10.2136/sssaj1974.03615995003800010040x
      [111] Rossi, G., Catani, F., Leoni, L., et al., 2013. HIRESSS: A Physically Based Slope Stability Simulator for HPC Applications. Natural Hazards and Earth System Sciences, 13(1): 151-166. https://doi.org/10.5194/nhess-13-151-2013
      [112] Schewe, J., Gosling, S. N., Reyer, C., et al., 2019. State-of-the-Art Global Models Underestimate Impacts from Climate Extremes. Nature Communications, 10: 1005. https://doi.org/10.1038/s41467-019-08745-6
      [113] Schlesinger, W. H., Jasechko, S., 2014. Transpiration in the Global Water Cycle. Agricultural and Forest Meteorology, 189/190: 115-117. https://doi.org/10.1016/j.agrformet.2014.01.011
      [114] Segoni, S., Rosi, A., Rossi, G., et al., 2014. Analysing the Relationship between Rainfalls and Landslides to Define a Mosaic of Triggering Thresholds for Regional-Scale Warning Systems. Natural Hazards and Earth System Sciences, 14(9): 2637-2648. https://doi.org/10.5194/nhess-14-2637-2014
      [115] Seidl, R., Thom, D., Kautz, M., et al., 2017. Forest Disturbances under Climate Change. Nature Climate Change, 7(6): 395-402. https://doi.org/10.1038/nclimate3303
      [116] Selim, H. M., Kirkham, D., 1970. Soil Temperature and Water Content Changes during Drying as Influenced by Cracks: A Laboratory Experiment. Soil Science Society of America Journal, 34(4): 565-569. https://doi.org/10.2136/sssaj1970.03615995003400040010x
      [117] Shepherd, A., Ivins, E. R., Geruo, A., et al., 2012. A Reconciled Estimate of Ice-Sheet Mass Balance. Science, 338(6111): 1183-1189. https://doi.org/10.1126/science.1228102
      [118] Shi, B., Jiang, H. T., Liu, Z. B., et al., 2002. Engineering Geological Characteristics of Expansive Soils in China. Engineering Geology, 67(1/2): 63-71. https://doi.org/10.1016/S0013-7952(02)00145-X
      [119] Shi, B. X., Chen, S. S., Han, H. Q., et al., 2014. Expansive Soil Crack Depth under Cumulative Damage. The Scientific World Journal, 2014: 498437. https://doi.org/10.1155/2014/498437
      [120] Sidle, R. C., Ochiai, H., 2006. Landslides: Processes, Prediction, and Land Use. American Geophysical Union, Washington, D. C. . https://doi.org/10.1029/wm018
      [121] Smith, D. D., Wischmeier, W. H., 1962. Rainfall Erosion. Advances in Agronomy. Elsevier, Amsterdam, 109-148. https://doi.org/10.1016/s0065-2113(08)60437-x
      [122] Song, W. K., Cui, Y. J., 2020. Modelling of Water Evaporation from Cracked Clayey Soil. Engineering Geology, 266: 105465. https://doi.org/10.1016/j.enggeo.2019.105465
      [123] Song, W. K., Cui, Y. J., Tang, A. M., et al., 2014. Experimental Study on Water Evaporation from Sand Using Environmental Chamber. Canadian Geotechnical Journal, 51(2): 115-128. doi: 10.1139/cgj-2013-0155
      [124] Song, W. K., Cui, Y. J., Tang, A. M., et al., 2016. Experimental Study on Water Evaporation from Compacted Clay Using Environmental Chamber. Canadian Geotechnical Journal, 53(8): 1293-1304. https://doi.org/10.1139/cgj-2015-0415
      [125] Sorbino, G., Nicotera, M. V., 2013. Unsaturated Soil Mechanics in Rainfall-Induced Flow Landslides. Engineering Geology, 165: 105-132. https://doi.org/10.1016/j.enggeo.2012.10.008
      [126] Subramanian, S. S., Ishikawa, T., Tokoro, T., 2017. Stability Assessment Approach for Soil Slopes in Seasonal Cold Regions. Engineering Geology, 221: 154-169. https://doi.org/10.1016/j.enggeo.2017.03.008
      [127] Tang, A. M., Cui, Y. J., 2005. Controlling Suction by the Vapour Equilibrium Technique at Different Temperatures and Its Application in Determining the Water Retention Properties of MX80 Clay. Canadian Geotechnical Journal, 42(1): 287-296. https://doi.org/10.1139/t04-082
      [128] Tang, A. M., Hughes, P. N., Dijkstra, T. A., et al., 2018a. Atmosphere-Vegetation-Soil Interactions in a Climate Change Context; Impact of Changing Conditions on Engineered Transport Infrastructure Slopes in Europe. Quarterly Journal of Engineering Geology and Hydrogeology, 51(2): 156-168. https://doi.org/10.1144/qjegh2017-103
      [129] Tang, L., Cong, S. Y., Geng, L., et al., 2018b. The Effect of Freeze-Thaw Cycling on the Mechanical Properties of Expansive Soils. Cold Regions Science and Technology, 145: 197-207. https://doi.org/10.1016/j.coldregions.2017.10.004
      [130] Tang, C. S., Cui, Y. J., Shi, B., et al., 2011. Desiccation and Cracking Behaviour of Clay Layer from Slurry State under Wetting-Drying Cycles. Geoderma, 166(1): 111-118. https://doi.org/10.1016/j.geoderma.2011.07.018
      [131] Tang, C. S., Cui, Y. J., Tang, A., et al., 2011a. Volumetric Shrinkage Characteristics of Soil during Drying. Chinese Journal of Geotechnical Engineering, 33(8): 1271-1279(in Chinese with English abstract).
      [132] Tang, C. S., Shi, B., Gu, K., 2011b. Experimental Investigation on Evaporation Process of Water in Soil during Drying. Journal of Engineering Geology, 19(6): 875-881(in Chinese with English abstract).
      [133] Tang, C. S., Cui, Y. J., Tang, A. M., et al., 2010. Experiment Evidence on the Temperature Dependence of Desiccation Cracking Behavior of Clayey Soils. Engineering Geology, 114(3/4): 261-266. https://doi.org/10.1016/j.enggeo.2010.05.003
      [134] Tang, C. S., Lin, L., Cheng, Q., et al., 2020. Quantification and Characterizing of Soil Microstructure Features by Image Processing Technique. Computers and Geotechnics, 128(104): 103817. https://doi.org/10.1016/j.compgeo.2020.103817
      [135] Tang, C. S., Shi, B., 2011. Swelling and Shrinkage Behaviour of Expansive Soil during Wetting-Drying Cycles. Chinese Journal of Geotechnical Engineering, 33(9): 1376-1384(in Chinese with English abstract).
      [136] Tang, C. S., Shi, B., Cui, Y. J., 2018. Behaviors and Mechanisms of Desiccation Cracking of Soils. Chinese Journal of Geotechnical Engineering, 40(8): 1415-1423(in Chinese with English abstract).
      [137] Tang, C. S., Shi, B., Cui, Y. J., et al., 2012. Desiccation Cracking Behavior of Fiber Reinforced Clayey Soil. Canadian Geotechnical Journal, 49(9): 1088-1101.
      [138] Tang, C. S., Shi, B., Liu, C., 2012. Study on Desiccation Cracking Behaviour of Expansive Soil. Journal of Engineering Geology, 20(5): 663-673(in Chinese with English abstract).
      [139] Tang, C. S., Zhu, C., Cheng, Q., et al., 2021. Desiccation Cracking of Soils: A Review of Investigation Approaches, Underlying Mechanisms, and Influencing Factors. Earth-Science Reviews, 216: 103586. https://doi.org/10.1016/j.earscirev.2021.103586
      [140] Tang, C. S., Zhu, C., Leng, T., et al., 2019. Three-Dimensional Characterization of Desiccation Cracking Behavior of Compacted Clayey Soil Using X-Ray Computed Tomography. Engineering Geology, 255: 1-10. https://doi.org/10.1016/j.enggeo.2019.04.014
      [141] Teuling, A. J., Hirschi, M., Ohmura, A., et al., 2009. A Regional Perspective on Trends in Continental Evaporation. Geophysical Research Letters, 36(2): L02404. https://doi.org/10.1029/2008gl036584
      [142] Tian, B. G., Cheng, Q., Tang, C. S., et al., 2022. Effects of Compaction State on Desiccation Cracking Behaviour of a Clayey Soil Subjected to Wetting-Drying Cycles. Engineering Geology, 302: 106650. https://doi.org/10.1016/j.enggeo.2022.106650
      [143] Trewin, B., Cazenave, A., Howell, S., et al., 2021. Headline Indicators for Global Climate Monitoring. Bulletin of the American Meteorological Society, 102(1): E20-E37. https://doi.org/10.1175/bams-d-19-0196.1
      [144] Tsai, T. L., 2008. The Influence of Rainstorm Pattern on Shallow Landslide. Environmental Geology, 53(7): 1563-1569. https://doi.org/10.1007/s00254-007-0767-x
      [145] Tsai, T. L., Wang, J. K., 2011. Examination of Influences of Rainfall Patterns on Shallow Landslides Due to Dissipation of Matric Suction. Environmental Earth Sciences, 63(1): 65-75. https://doi.org/10.1007/s12665-010-0669-1
      [146] Vardon, P. J., 2019. Editorial: Soil-Atmosphere Interaction. Environmental Geotechnics, 6(6): 320-322. https://doi.org/10.1680/jenge.2019.6.6.320
      [147] Walvoord, M. A., Kurylyk, B. L., 2016. Hydrologic Impacts of Thawing Permafrost: A Review. Vadose Zone Journal, 15(6): 1-20. https://doi.org/10.2136/vzj2016.01.0010
      [148] Wilson, G. W., Fredlund, D. G., Barbour, S. L., 1994. Coupled Soil-Atmosphere Modelling for Soil Evaporation. Canadian Geotechnical Journal, 31(2): 151-161. https://doi.org/10.1139/t94-021
      [149] Wood, J. L., Harrison, S., Turkington, T. A. R., et al., 2016. Landslides and Synoptic Weather Trends in the European Alps. Climatic Change, 136(2): 297-308. https://doi.org/10.1007/s10584-016-1623-3
      [150] World Meteorological Organization (WMO), 2021. State of the Global Climate 2020 (WMO-No. 1264). WMO, Geneva.
      [151] Wu, W. M., Sidle, R. C., 1995. A Distributed Slope Stability Model for Steep Forested Basins. Water Resources Research, 31(8): 2097-2110. https://doi.org/10.1029/95wr01136
      [152] Wu, Y. M., Lan, H. X., Gao, X., et al., 2015. A Simplified Physically Based Coupled Rainfall Threshold Model for Triggering Landslides. Engineering Geology, 195: 63-69. https://doi.org/10.1016/j.enggeo.2015.05.022
      [153] Xu, J. J., Tang, C. S., Cheng, Q., et al., 2021a. Investigation on Desiccation Cracking Behavior of Clayey Soils with a Perspective of Fracture Mechanics: A Review. Journal of Soils and Sediments, 22(3): 859-888. https://doi.org/10.1007/s11368-021-03082-y
      [154] Xu, X., Xing, Y. C., Guo, Z., et al., 2021b. Stability Analysis of Rainfall-Triggered Toe-Cut Slopes and Effectiveness Evaluation of Pile-Anchor Structures. Journal of Earth Science, 32(5): 1104-1112. https://doi.org/10.1007/s12583-021-1474-3
      [155] Xu, Y. F., Dong, P., 2002. Fractal Models for the Soil-Water Characteristics of Unsaturated Soils. Rock and Soil Mechanics, 23(4): 400-405(in Chinese with English abstract).
      [156] Yang, H. J., Wei, F. Q., Ma, Z. F., et al., 2020. Rainfall Threshold for Landslide Activity in Dazhou, Southwest China Landslides, 17(1): 61-77. https://doi.org/10.1007/s10346-019-01270-z
      [157] Yin, K. L., 1987. Dynamic Analysis of Landslide Displacement-Influence of Atmospheric Rainfall on Landslide. Hydrogeology and Engineering Geology, 14(5): 52-54(in Chinese with English abstract).
      [158] Yuan, J. P., Yin, Z. Z., 2004. Numerical Model and Simulation of Expansive Soils Slope Infiltration Considered Fissures. Rock and Soil Mechanics, 25(10): 1581-1586(in Chinese with English abstract).
      [159] Zeng, H., Tang, C. S., Liu, C. L., et al., 2019. Measurement and Analysis of Shrinkage Stress of Expansive Soils during Drying Process. Chinese Journal of Geotechnical Engineering, 41(4): 717-725(in Chinese with English abstract).
      [160] Zeng, H., Tang, C. S., Zhu, C., et al., 2022. Desiccation Cracking of Soil Subjected to Different Environmental Relative Humidity Conditions. Engineering Geology, 297: 106536. https://doi.org/10.1016/j.enggeo.2022.106536
      [161] Zhan, L. T., 2006. Study on Soil-Water Interaction in Unsaturated Expansive Soil Slopes. Journal of Zhejiang University (Engineering Science), 40(3): 494-500(in Chinese with English abstract).
      [162] Zhan, L. T., Ng, C. W. W., 2004. Analytical Analysis of Rainfall Infiltration Mechanism in Unsaturated Soils. International Journal of Geomechanics, 4(4): 273-284. https://doi.org/10.1061/(ASCE)1532-3641(2004)4: 4(273) doi: 10.1061/(ASCE)1532-3641(2004)4:4(273
      [163] Zhang, J. M., Luo, Y., Zhou, Z., et al., 2021. Effects of Preferential Flow Induced by Desiccation Cracks on Slope Stability. Engineering Geology, 288: 106164. https://doi.org/10.1016/j.enggeo.2021.106164
      [164] Zhang, Z. B., Zhou, H., Zhao, Q. G., et al., 2014. Characteristics of Cracks in Two Paddy Soils and Their Impacts on Preferential Flow. Geoderma, 228/229: 114-121. https://doi.org/10.1016/j.geoderma.2013.07.026
      [165] Zheng, J. L., Zhang, R., 2015. Prediction and Control Method for Deformation of Highway Expansive Soil Subgrade. China Journal of Highway and Transport, 28(3): 1-10(in Chinese with English abstract).
      [166] Zhu, H., Zhang, L. M., Garg, A., 2018. Investigating Plant Transpiration-Induced Soil Suction Affected by Root Morphology and Root Depth. Computers and Geotechnics, 103: 26-31. https://doi.org/10.1016/j.compgeo.2018.06.019
      [167] Zhu, W., Chen, X. D., Zhong, X. C., 2006. Observation and Analysis of Rainfall Infiltration. Rock and Soil Mechanics, 27(11): 1873-1879(in Chinese with English abstract).
      [168] Zhu, Y., Cheng, Z. F., Feng, K., et al., 2022. Influencing Factors for Transpiration Rate: A Numerical Simulation of an Individual Leaf System. Thermal Science and Engineering Progress, 27: 101-110. https://doi.org/10.1016/j.tsep.2021.101110
      [169] Zimmermann, M., Haeberli, W., 1992. Climatic Change and Debris Flow Activity in High-Mountain Areas: A Case Study in the Swiss Alps. Catena Supplement, 22: 59-72.
      [170] 包承纲, 2004. 非饱和土的性状及膨胀土边坡稳定问题. 岩土工程学报, 26(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200401001.htm
      [171] 陈建斌, 孔令伟, 郭爱国, 等, 2007. 大气作用下膨胀土边坡的动态响应数值模拟. 水利学报, 38(6): 674-682. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200706005.htm
      [172] 付兴涛, 2012. 坡面径流侵蚀产沙及动力学过程的坡长效应研究(博士学位论文). 杭州: 浙江大学.
      [173] 郭子正, 殷坤龙, 刘庆丽, 等, 2020. 基于位移比模型的三峡库区云阳县域内蠕变型滑坡降雨预警. 地球科学, 45(2): 672-684. doi: 10.3799/dqkx.2019.005
      [174] 黄荣辉, 周连童, 2002. 我国重大气候灾害特征、形成机理和预测研究. 自然灾害学报, 11(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH200201000.htm
      [175] 黄润秋, 2007. 20世纪以来中国的大型滑坡及其发生机制. 岩石力学与工程学报, 26(3): 433-454. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200703000.htm
      [176] 黄润秋, 戚国庆, 2002. 非饱和渗流基质吸力对边坡稳定性的影响. 工程地质学报, 10(4): 343-348. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ200204001.htm
      [177] 金会军, 李述训, 王绍令, 等, 2000. 气候变化对中国多年冻土和寒区环境的影响. 地理学报, 55(2): 161-173. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB200002003.htm
      [178] 孔令伟, 陈正汉, 2012. 特殊土与边坡技术发展综述. 土木工程学报, 45(5): 141-161. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201205016.htm
      [179] 兰恒星, 周成虎, 李焯芬, 等, 2003. 瞬时孔隙水压力作用下的降雨滑坡稳定性响应分析: 以香港天然降雨滑坡为例. 中国科学E辑: 技术科学, 33(增刊1): 119-136. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK2003S1013.htm
      [180] 冷挺, 唐朝生, 施斌, 2016. 干湿循环条件下重塑膨胀土的裂隙发育特征及量化研究. 工程地质学报, 24(5): 856-862. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201605015.htm
      [181] 李松林, 许强, 汤明高, 等, 2020. 三峡库区滑坡空间发育规律及其关键影响因子. 地球科学, 45(1): 341-354. doi: 10.3799/dqkx.2017.576
      [182] 李志清, 胡瑞林, 王立朝, 等, 2006. 非饱和膨胀土SWCC研究. 岩土力学, 27(5): 730-734. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200605009.htm
      [183] 刘华强, 殷宗泽, 2010. 膨胀土边坡稳定分析方法研究. 岩土力学, 31(5): 1545-1549, 1554. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201005039.htm
      [184] 牛富俊, 程国栋, 赖远明, 等, 2004. 青藏高原多年冻土区热融滑塌型斜坡失稳研究. 岩土工程学报, 26(3): 402-406. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200403024.htm
      [185] 戚国庆, 黄润秋, 2004. 降雨引起的边坡位移研究. 岩土力学, 25(3): 379-382. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200403008.htm
      [186] 唐朝生, 崔玉军, Anh-Minh Tang, 等, 2011a. 土体干燥过程中的体积收缩变形特征. 岩土工程学报, 33(8): 1271-1279. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201108023.htm
      [187] 唐朝生, 施斌, 2011. 干湿循环过程中膨胀土的胀缩变形特征. 岩土工程学报, 33(9): 1376-1384. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201109013.htm
      [188] 唐朝生, 施斌, 崔玉军, 2018. 土体干缩裂隙的形成发育过程及机理. 岩土工程学报, 40(8): 1415-1423. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201808008.htm
      [189] 唐朝生, 施斌, 顾凯, 2011b. 土中水分的蒸发过程试验研究. 工程地质学报, 19(6): 875-881. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201106011.htm
      [190] 唐朝生, 施斌, 刘春, 2012. 膨胀土收缩开裂特性研究. 工程地质学报, 20(5): 663-673. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201205004.htm
      [191] 吴宏伟, 2017. 大气-植被-土体相互作用: 理论与机理. 岩土工程学报, 39(1): 1-47. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201701002.htm
      [192] 吴宏伟, 陈守义, 庞宇威, 1999. 雨水入渗对非饱和土坡稳定性影响的参数研究. 岩土力学, 20(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX901.000.htm
      [193] 徐永福, 董平, 2002. 非饱和土的水分特征曲线的分形模型. 岩土力学, 23(4): 400-405. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200204002.htm
      [194] 殷坤龙, 1987. 滑坡位移的动态分析—大气降雨对滑坡的影响. 水文地质工程地质, 14(5): 52-54. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG198705017.htm
      [195] 袁俊平, 殷宗泽, 2004. 考虑裂隙非饱和膨胀土边坡入渗模型与数值模拟. 岩土力学, 25(10): 1581-1586. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200410014.htm
      [196] 曾浩, 唐朝生, 刘昌黎, 等, 2019. 膨胀土干燥过程中收缩应力的测试与分析. 岩土工程学报, 41(4): 717-725. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201904020.htm
      [197] 詹良通, 2006. 非饱和膨胀土边坡中土水相互作用机理. 浙江大学学报(工学版), 40(3): 494-500. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC200603027.htm
      [198] 郑健龙, 张锐, 2015. 公路膨胀土路基变形预测与控制方法. 中国公路学报, 28(3): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201503002.htm
      [199] 朱伟, 陈学东, 钟小春, 2006. 降雨入渗规律的实测与分析. 岩土力学, 27(11): 1873-1879. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200611002.htm
    • 加载中
    图(8)
    计量
    • 文章访问数:  411
    • HTML全文浏览量:  152
    • PDF下载量:  181
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-05-16
    • 刊出日期:  2022-10-25

    目录

      /

      返回文章
      返回