Quantitative Pickup of High Frequency Sequence-Time Units under Restriction of Milankovitch Sedimentary Rate in Continental Shallow Lake Basin: A Case Study of Huagang Formation in Huangyan Area, Xihu Sag
-
摘要: 旋回地层学的研究对象由海相地层逐渐转移到陆相深水地层.为了探究通过旋回地层学研究方法在陆相浅水湖盆建立高频层序格架的可能,采用频谱分析、天文调谐、“米氏”沉积速率拾取等手段对东海陆架盆地西湖凹陷黄岩区渐新统坳陷湖盆的岩相敏感曲线-GR数据开展研究.频谱分析结果显示黄岩区花港组受405 ka长偏心率周期(E)、121 ka和97 ka短偏心率周期(e)、28 ka斜率周期(O)以及约22 ka岁差周期(P)的调控.在浅水湖泊环境的富泥区,以La2004天文解决方案给出的65°N平均日照序列为参照进行天文调谐,建立了浮动天文年代标尺;在浅水三角洲环境的富砂区,通过滑动窗口频谱分析得到“米氏”沉积速率曲线,结合锆石铀铅测年资料的校验和岩石组合类型联合约束,完成高频层序格架划分.研究表明:黄岩区花港组持续时间约为10.9 Ma,可识别出27个405 ka长偏心率周期,根据偏心率滤波曲线和日照量各级次包络面的对应关系共划分11个四级层序,27个五级层序,分别对应着0.8~1.6 Ma和0.4 Ma的基准面旋回,每个旋回在沉积速率曲线上表现为高‒低‒高的特征.本次研究提供了一种利用“米氏”沉积速率进行高频层序格架搭建及层序‒时间单元拾取的新方法,拓宽了旋回地层学的应用范围.Abstract: The research object of cyclostratigraphy has gradually shifted from marine strata to continental deep-water strata. In order to explore the possibility of establishing high frequency sequence framework in continental shallow lake basin by means of cyclicstratigraphy, spectral analysis, astronomical tuning and "Milankovitch" sedimentation rate picking were used to study the lithofacies sensitive curve-GR logging data of the Oligocene depression lake basin in Huangyan area of the Xihu sag, East China Sea shelf basin. The results of spectrum analysis show that the Huagang Formation in Huangyan area is regulated by 405 ka long eccentricity period (E), 121 ka and 97 ka short eccentricity period (e), 28 ka slope period (O) and about 22 ka precession period (P). Taking the 65°N average sunshine sequence given by La2004 astronomical solution as the reference for astronomical tuning, a floating astronomical chronometer scale is established in the mud-rich areas of the lake environment. In the sand-rich area of the shallow-water delta environment, the Milankovitch sedimentation rate curve was obtained through the sliding window spectrum analysis, combined with the zircon U-Pb dating data verification and joint constraints of rock assemblage type, the high-frequency sequence framework was set up. This study shows that the duration of Huagang Formation in Huangyan area is about 10.9 Ma, and 27 long 405 ka eccentricity cycles can be identified. According to the correspondence between the eccentricity filtering curve and the sub-envelope surface of sunshine amount, there are 11 fourth-order sequences and 27 fifth-order sequences, which correspond to the base level cycles of 0.8-1.6 Ma and 0.4 Ma respectively, and each cycle is characterized by high-low-high characteristics on the deposition rate curve. This study provides a new method to construct high frequency sequence framework and pick up the interface based on the "Milankovitch sedimentation rate", which broadens the application scope of cyclostratigraphy.
-
图 2 西湖凹陷层序地层综合柱状图(据Zhang et al., 2018)
Fig. 2. Comprehensive histogram of sequence stratigraphy in Xihu sag (modified from Zhang et al., 2018)
-
[1] Arnaut, L. G., Ibáñez, S., 2020. Self-Sustained Oscillations and Global Climate Changes. Scientific Reports, 10(1): 11200. https://doi.org/10.1038/s41598-020-68052-9 [2] Cai, Q. S., Hu, M. Y., 2013. Diagenesis of Sandstone of Huagang Formation in Huangyan Tectonic Belt, Xihu Sag. Science Technology and Engineering, 13(30): 9012-9017 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-1815.2013.30.029 [3] Chen, G., Gang, W. Z., Tang, H. Z., et al., 2019. Astronomical Cycles and Variations in Sediment Accumulation Rate of the Terrestrial Lower Cretaceous Xiagou Formation from the Jiuquan Basin, NW China. Cretaceous Research, 109: 104156. [4] Chen, H. H., Zhu, X. M., Wood, L. J., et al., 2020. Evolution of Drainage, Sediment‐Flux and Fluvio‐Deltaic Sedimentary Systems Response in Hanging Wall Depocentres in Evolving Non‐Marine Rift Basins: Paleogene of Raoyang Sag, Bohai Bay Basin, China. Basin Research, 32(1): 116. doi: 10.1111/bre.12371 [5] Du, X. B., Lu, Y. C., Cao, Q., et al., 2020. Grading Evaluation of Deep Reservoir in Xihu Depression, East China Sea Basin. Bulletin of Geological Science and Technology, 39(3): 10-19 (in Chinese with English abstract). [6] Fang, Q., Wu, H. C., Hinnov, L. A., et al., 2017. Astronomical Cycles of Middle Permian Maokou Formation in South China and Their Implications for Sequence Stratigraphy and Paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology, 474: 130-139. doi: 10.1016/j.palaeo.2016.07.037 [7] Gong, Y. M., Du, Y. S., Tong, J. N., et al., 2008. Cyclostratigraphy: The Third Milestone of Stratigraphy in Understanding Time. Earth Science, 33(4): 443-457 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2008.04.002 [8] Hinnov, L. A., 2018. Cyclostratigraphy and Astrochronology in 2018. Stratigraphy & Timescales, 3: 1-80. [9] Hinnov, L. A., Hilgen, F. J., 2012. Cyclostratigraphy and Astrochronology. Geologic Time Scale, 4: 63-83. [10] Huang, C. J., 2014. The Current Status of Cyclostratigraphy and Astrochronology in the Mesozoic. Earth Science Frontiers, 21(2): 48-66 (in Chinese with English abstract). [11] Huang, X., Lin, C. Y., Huang, D. W., et al., 2022. Diagenetic Differential Evolution of Huagang Formation Sandstone Reservoir in North-Central Part of Central Reversal Structural Belt in Xihu Sag. Petroleum Geology and Recovery Efficiency, 28(2): 1-14 (in Chinese with English abstract). [12] Jiang, Y. M., Shao, L. Y., Li, S., et al., 2020. Deposition System and Stratigraphy of Pinghu Formation in Pinghu Tectonic Belt, Xihu Sag. Geoscience, 34(1): 141-153 (in Chinese with English abstract). [13] Jin, F. M., Huang, J., Pu, X. G., 2020. Characteristics of the Cretaceous Magmatism in Huanghua Depression and Their Relationships with Hydrocarbon Enrichment. Journal of Earth Science, 31(6): 1273-1292. https://doi.org/10.1007/s12583-020-1308-8 [14] Laskar, J., Fienga, A., Gastineau, M., et al., 2011. La2010: A New Orbital Solution for the Long-Term Motion of the Earth. Astronomy & Astrophysics, 532: A89. [15] Laskar, J., Robutel, P., Joutel, F., et al., 2004. A Long-Term Numerical Solution for the Insolation Quantities of the Earth. Astronomy & Astrophysics, 428: 261-285. [16] Li, J., Liu, H., Huang, J. Y., et al., 2020. Discovery of Norian Conodonts from Mujiucuo Formation in Konglong Area of Ngamring County in Tibet and Its Geological Significance. Earth Science, 45(8): 2957-2963 (in Chinese with English abstract). [17] Li, M. S., Hinnov, L. A., Kump, L. R., 2019. Acycle: Time-Series Analysis Software for Paleoclimate Projects and Education. Computers & Geosciences, 127: 12-22. [18] Li, M. S., Kump, L. R., Hinnov, L. A., et al., 2018. Tracking Variable Sedimentation Rates and Astronomical Forcing in Phanerozoic Paleoclimate Proxy Series with Evolutionary Correlation Coefficients and Hypothesis Testing. Earth and Planetary Science Letters, 501: 165-179. doi: 10.1016/j.epsl.2018.08.041 [19] Li, X. Q., Liu, J. S., Lu, Y. C., et al., 2018. Prototype Basin Chracterization of Huagang Formation of Xihu Depression, East China Sea Shelf Basin. Earth Science, 43(2): 502-513 (in Chinese with English abstract). [20] Liang, J. T., Wang, H. L., 2019. Cenozoic Tectonic Evolution of the East China Sea Shelf Basin and Its Coupling Relationships with the Pacific Plate Subduction. Journal of Asian Earth Sciences, 171: 376-387. doi: 10.1016/j.jseaes.2018.08.030 [21] Liu, X., Ge, J. W., Zhao, X. M., et al., 2022. Time Scale and Quantitative Identification of Sequence Boundaries for the Oligocene Huagang Formation in the Xihu Sag, East China Sea Shelf Basin. Oil & Gas Geology, 43(4): 990-1004 (in Chinese with English abstract). [22] Liu, Z. H., Huang, C. J., Algeo, T. J., et al., 2018. High-Resolution Astrochronological Record for the Paleocene-Oligocene (66-23 Ma) from the Rapidly Subsiding Bohai Bay Basin, Northeastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 510: 78-92. doi: 10.1016/j.palaeo.2017.10.030 [23] Mei, M. X., 2015. Conceptual Change from Depositional Sequences to Eustatic Sequences: An Important Development in Sequence Stratigraphy. Journal of Stratigraphy, 39(1): 58-73 (in Chinese with English abstract). [24] Meyers, S., 2015. The Evaluation of Eccentricity-Related Amplitude Modulation and Bundling in Paleoclimate Data: An Inverse Approach for Astrochronologic Testing and Time Scale Optimization. Paleoceanography, 30(12): 1625-1640. doi: 10.1002/2015PA002850 [25] Shi, J. Y., Jin, Z. J., Liu, Q. Y., et al., 2019. Quantitative Classification of High-Frequency Sequences in Fine-Grained Lacustrine Sedimentary Rocks Based on Milankovitch Theory. Oil & Gas Geology, 40(6): 1205-1214 (in Chinese with English abstract). [26] Song, C. Y., Lü, D. W., 2022. Advances in Time Series Analysis Methods for Milankovitch Cycles. Acta Sedimentologica Sinica, 40(2): 380-395 (in Chinese with English abstract). [27] Sun, Z. H., 2021. Fluvial to Lacustrine Alternating Sedimentary System in Bodong Area, Bohai Bay Basin and Implications for Predicting Favorable Reservoir Zone (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [28] Vail, P. R., Audemard, F., Bowman, S. A., 1991. The Stratigraphic Signatures of Tectonics, Eustasy and Sedimentology: Cycles and Events in Stratigraphy. AAPG Bulletin, 11(3): 617-659. [29] Wang, Y., Dong, J., Yang, J. S., 2020. Quaternary Stratigraphy of the Huangshan Section in Harbin. Earth Science, 45(7): 2662-2672 (in Chinese with English abstract). [30] Wei, X. S., Lu, J., Liu, L., et al., 2018. Astronomical Cycle Identification and High Frequency Sequence Division of the 1st Member of Liushagang Formation in Weixinan Sag, Beibuwan Basin. China Offshore Oil and Gas, 30(6): 99-108 (in Chinese with English abstract). [31] Wei, X. S., Yan, D. T., Luo, P., et al., 2020. Astronomically Forced Climate Cooling across the Eocene-Oligocene Transition in the Pearl River Mouth Basin, Northern South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 558: 109945. doi: 10.1016/j.palaeo.2020.109945 [32] Wu, H. C., Fang, Q., 2020. Cyclostratigraphy and Astrochronozones. Journal of Stratigraphy, 44(3): 227-238 (in Chinese with English abstract). [33] Wu, H. C., Fang, Q., Wang, X. D., et al., 2018. An ~34 m. y. Astronomical Time Scale for the Uppermost Mississippian through Pennsylvanian of the Carboniferous System of the Paleo-Tethyan Realm. Geology, 47(1): 83-86. [34] Wu, H. C., Zhang, S. H., Feng, Q. L., et al., 2012. Milankovitch and Sub-Milankovitch Cycles of the Early Triassic Daye Formation, South China and Their Geochronological and Paleoclimatic Implications. Gondwana Research, 22(2): 748-759. doi: 10.1016/j.gr.2011.12.003 [35] Xu, F., 2012. Characteristics of Cenozoic Structure and Tectonic Migration of the East China Sea Shelf Basin. Journal of Oil and Gas Technology, 34(6): 1-7, 164 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-9752.2012.06.001 [36] Xu, Y. D., Liang, Y. P., Jiang, S. S., et al., 2014. Evolution of Cenozoic Sedimentary Basins in Eastern China. Earth Science, 39(8): 1079-1098 (in Chinese with English abstract). [37] Zhang, G. H., Zhang, J. P., 2015. A Discussion on the Tectonic Inversion and Its Genetic Mechanism in the East China Sea Shelf Basin. Earth Science Frontiers, 22(1): 260-270 (in Chinese with English abstract). [38] Zhang, J. Y., Lu, Y. C., Krijgsman, W., et al., 2018. Source to Sink Transport in the Oligocene Huagang Formation of the Xihu Depression, East China Sea Shelf Basin. Marine & Petroleum Geology, 98: 733-745. [39] Zhang, Y. G., 2010. Petroleum Geology and Hydrocarbon Distribution Pattern of Huagang Formation in the Xihu Sag of the East China Sea. Petroleum Geology & Experiment, 32(3): 223-226, 231 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-6112.2010.03.004 [40] Zhang, Z. L., Zhu, X. M., Zhang, R. F., et al., 2020. Sequence Framework and Sequence Filling Style in Lacustrine Rift Basin: Taking Paleogene in Baxian Sag as an Example. Earth Science, 45(11): 4218-4235 (in Chinese with English abstract). [41] Zhong, Z. H., Zhang, J. P., Sun, Z., et al., 2003. Geological Evolution of Huangyan Area in Xihu Sag and the Influence of Oil and Gas Migration in Fault Zone. Offshore Oil, (B11): 30-35 (in Chinese). [42] Zhou, R. Q., Fu, H., Xu, G. S., et al., 2018. Eocene Pinghu Formation-Oligocene Huagang Formation Sequence Stratigraphy and Depositional Model of Xihu Sag in East China Sea Basin. Acta Sedimentologica Sinica, 36(1): 132-141 (in Chinese with English abstract). [43] Zhou, X. H., 2020. Geological Understanding and Innovation in Xihu Sag and Breakthroughs in Oil and Gas Exploration. China Offshore Oil and Gas, 32(1): 1-12 (in Chinese with English abstract). [44] Zhu, X. M., Chen, H. H., Ge, J. W., et al., 2022. Characterization of Sequence Architectures and Sandbody Distribution in Continental Rift Basins. Oil & Gas Geology, 43(4): 746-762 (in Chinese with English abstract). [45] Zhu, X. M., Kang, A., Wang, G. W., 2003. Sequence Stratigraphic Models of Depression and Faulted-down Lake Basins. Acta Sedimentologica Sinica, 21(2): 283-287 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0550.2003.02.015 [46] 蔡全升, 胡明毅, 2013. 西湖凹陷黄岩构造带花港组砂岩储层成岩作用研究. 科学技术与工程, 13(30): 9012-9017. doi: 10.3969/j.issn.1671-1815.2013.30.029 [47] 杜学斌, 陆永潮, 曹强, 等, 2020. 东海盆地西湖凹陷深部储层"相‒岩‒温"三元分级评价原则与效果. 地质科技通报, 39(3): 10-19. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202003005.htm [48] 龚一鸣, 杜远生, 童金南, 等, 2008. 旋回地层学: 地层学解读时间的第三里程碑. 地球科学, 33(4): 443-457. doi: 10.3321/j.issn:1000-2383.2008.04.002 [49] 黄春菊, 2014. 旋回地层学和天文年代学及其在中生代的研究现状. 地学前缘, 21(2): 48-66. doi: 10.13745/j.esf.2014.02.005 [50] 黄鑫, 林承焰, 黄导武, 等, 2022. 西湖凹陷中央反转带中北部花港组砂岩储层成岩差异演化特征. 油气地质与采收率, 28(2): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS202202001.htm [51] 蒋一鸣, 邵龙义, 李帅, 等, 2020. 西湖凹陷平湖构造带平湖组沉积体系及层序地层研究. 现代地质, 34(1): 141-153. doi: 10.19657/j.geoscience.1000-8527.2020.002 [52] 李俊, 刘函, 黄金元, 等, 2020. 西藏昂仁县孔隆地区木纠错组诺利期牙形石的发现及其地质意义. 地球科学, 45(8): 2957-2963. doi: 10.3799/dqkx.2020.077 [53] 李祥权, 刘金水, 陆永潮, 等, 2018. 东海陆架盆地西湖凹陷花港组原型盆地性质厘定. 地球科学, 43(2): 502-513. doi: 10.3799/dqkx.2017.596 [54] 刘贤, 葛家旺, 赵晓明, 等, 2022. 东海陆架盆地西湖凹陷渐新统花港组年代标尺及层序界面定量识别. 石油与天然气地质, 43(4): 990-1004. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202204019.htm [55] 梅冥相, 2015. 从沉积层序到海平面变化层序: 层序地层学一个重要的新进展. 地层学杂志, 39(1): 58-73. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ201501006.htm [56] 石巨业, 金之钧, 刘全有, 等, 2019. 基于米兰科维奇理论的湖相细粒沉积岩高频层序定量划分. 石油与天然气地质, 40(6): 1205-1214. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906005.htm [57] 宋翠玉, 吕大炜, 2022. 米兰科维奇旋回时间序列分析法研究进展. 沉积学报, 40(2): 380-395. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202202007.htm [58] 孙中恒, 2021. 渤海湾盆地渤东地区浅水河湖交互沉积与有利储集区带预测(博士学位论文). 武汉: 中国地质大学. [59] 王永, 董进, 杨劲松, 2020. 哈尔滨荒山剖面第四纪地层研究. 地球科学, 45(7): 2662-2672. doi: 10.3799/dqkx.2020.171 [60] 魏小松, 陆江, 刘蕾, 等, 2018. 涠西南凹陷流沙港组一段天文旋回识别及高频层序划分. 中国海上油气, 30(6): 99-108. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201806012.htm [61] 吴怀春, 房强, 2020. 旋回地层学和天文时间带. 地层学杂志, 44(3): 227-238. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ202003001.htm [62] 徐发, 2012. 东海陆架盆地新生界结构特征及迁移规律. 石油天然气学报, 34(6): 1-7, 164. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201206001.htm [63] 徐亚东, 梁银平, 江尚松, 等, 2014. 中国东部新生代沉积盆地演化. 地球科学, 39(8): 1079-1098. doi: 10.3799/dqkx.2014.096 [64] 张国华, 张建培, 2015. 东海陆架盆地构造反转特征及成因机制探讨. 地学前缘, 22(1): 260-270. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501025.htm [65] 张银国, 2010. 东海西湖凹陷花港组油气地质条件与油气分布规律. 石油实验地质, 32(3): 223-226, 231. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201003006.htm [66] 张自力, 朱筱敏, 张锐锋, 等, 2020. 典型箕状断陷湖盆层序划分及层序结构样式: 以霸县凹陷古近系为例. 地球科学, 45(11): 4218-4235. doi: 10.3799/dqkx.2020.013 [67] 钟志洪, 张建培, 孙珍, 等, 2003. 西湖凹陷黄岩区地质演化及断层对油气运聚的影响. 海洋石油, (B11): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-HYSY2003S1007.htm [68] 周瑞琦, 傅恒, 徐国盛, 等, 2018. 东海陆架盆地西湖凹陷平湖组‒花港组沉积层序. 沉积学报, 36(1): 132-141. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201801014.htm [69] 周心怀, 2020. 西湖凹陷地质认识创新与油气勘探领域突破. 中国海上油气, 32(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202001001.htm [70] 朱筱敏, 陈贺贺, 葛家旺, 等, 2022. 陆相断陷湖盆层序构型与砂体发育分布特征. 石油与天然气地质, 43(4): 746-762. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202204002.htm [71] 朱筱敏, 康安, 王贵文, 2003. 陆相坳陷型和断陷型湖盆层序地层样式探讨. 沉积学报, 21(2): 283-287. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200302014.htm