Geohazard Effect of Plate Suture Zone along Sichuan-Tibet Traffic Corridor
-
摘要:
板块缝合带作为特殊类型的“断层”,其地质灾害效应是工程地质与灾害地质研究的重要内容,对工程建设具有重大现实意义.受特提斯洋复杂而漫长的构造演化制约,川藏交通廊道穿越了7条板块缝合带,但对其地质灾害效应的研究却鲜有涉及.为此,在搜集整理已有研究成果的基础上,结合野外地质调查和室内研究,简要分析了川藏交通廊道沿线板块缝合带的地质灾害效应,并探讨其内在机理.结果表明:板块缝合带地质灾害效应主要表现在塑造地貌、创造地形条件,劣化岩体、提供物质来源,控制地质灾害的分布和诱发地质灾害(链)等4方面.构造混杂岩因其复杂的地质演化过程和特殊的岩石类型与组合特征,使其天然具有易灾性,而板块缝合带就位过程中的构造运动是地质灾害效应的内生动力.板块缝合带的地质灾害效是贯穿于川藏交通廊道沿线板块缝合带构造演化过程中的内、外动力地质作用耦合的外在表现形式.板块缝合带地质灾害效应研究目前处于起步阶段,建议在加强基础地质与灾害地质精细化调查的基础上深化其认识;川藏交通建设工程应加强板块缝合带工程效应研究,加大地质灾害监测预警系统研发,以确保其安全施工与后期平稳运行.
Abstract:Plate suture zone, a special type of "fault", its geohazard effect is an indispensable content in the study of engineering geology and hazard geology, and has great practical significance for engineering construction. Constrained by the complex and long tectonic evolution of the Tethys Ocean, there are 7 plate suture zones along the Sichuan-Tibet traffic corridor, but the study on their geohazard effect is rarely involved. Based on collecting and sorting out the existing research results, combined with field geological survey and laboratory research, in this paper it briefly analyzes the geohazard effect of plate suture zone along the Sichuan-Tibet traffic corridor, and discusses its internal mechanism. The results show that the geohazard effect of plate suture zone is mainly reflected in four aspects, namely shaping landform, creating topographic conditions, degrading rock mass, providing material sources, controlling the distribution and inducing geohazards (chain). Tectonic mélange is of natural disaster prone because of its complicated geological evolution process and special lithologic type and assemblage characteristics, and the tectonic movement during the emplacement of plate suture zone is the endogenous driving force of geohazard effect. The geohazard effect of the plate suture zone is the external manifestation of the coupling of internal and external dynamic geological processes during the tectonic evolution of the plate suture zone along the Sichuan-Tibet traffic corridor. The study on the geohazard effect of plate suture zone is at the initial stage, and it is suggested to deepen the understanding on the basis of detailed investigation of both basic geology and hazardous geology. For the construction of Sichuan-Tibetan traffic corridor, it is quite necessary to strengthen the research on engineering effect of plate suture zone and the research and development of geohazard monitoring and early warning system to ensure its safe construction and smooth operation.
-
图 3 青藏高原大地构造单元区划(据许志琴等,2011修改)
Fig. 3. Tectonic units of Qinghai⁃Tibet plateau(modified from Xu et al., 2011)
图 6 川藏交通廊道沿线典型板块缝合带地质灾害分布
a.澜沧江缝合带(LCS)地质灾害分布;b.班公湖-怒江缝合带(BNS)地质灾害分布;c.帕隆藏布缝合带(PLS)地质灾害分布;d.金沙江缝合带(JSJS)地质灾害分布;▲.滑坡;■.崩塌;●.泥石流;地质底图引自成都地质矿产研究所(2003)和西藏自治区地质调查院(2007)
Fig. 6. Geohazard distribution map of typical plate suture zone along Sichuan⁃Tibet traffic corridor
图 8 川藏交通廊道沿线典型板块缝合带地质灾害运动方向玫瑰花图
a.澜沧江缝合带(LCS)崩塌主崩方向玫瑰花图;b.澜沧江缝合带(LCS)滑坡主滑方向玫瑰花图;c.金沙江缝合带(JSJS)崩塌主崩方向玫瑰花图;d.金沙江缝合带(JSJS)滑坡主滑方向玫瑰花图;数据源引自图 6缝合带边界内部的地质灾害点
Fig. 8. Rosette plots of geohazards' movement direction of typical plate suture zone along Sichuan⁃Tibet traffic corridor
图 9 板块缝合带诱发地质灾害(链)(据Fan et al.,2019)
Fig. 9. Geohazard (chain) triggered by plate suture zone(modified from Fan et al., 2019)
图 11 逆断层形成机制及相关结构面分布
图据Jones(1942);a.逆断层应力状态;b.上、下盘运动示意图;c.标志层错动示意图;d.应力迹线图及视断层分布图;e.逆断层派生结构面示意图;f.逆断层应变椭球体及伴生结构面示意图
Fig. 11. Forming mechanism of reverse fault and distribution map of related structural plane
图 12 挤压应力改造岩体结构实例
a.班公湖-怒江缝合带(BNS)右侧沿原生层理S0发育的小褶皱及派生拉张轴面劈理S1;b.班公湖-怒江缝合带(BNS)右侧花岗岩中发育的3组结构面将岩体切割为菱面体碎块;c.班公湖-怒江缝合带(BNS)内花岗片麻岩中发育的劈理S1切割岩体为板状碎块;d~e.班公湖-怒江缝合带(BNS)千枚岩中千枚理S1与“X”型共轭剪节理S2、S3将岩石切割为菱形碎片;f.澜沧江缝合带(LCS)右侧侏罗系红层中劈理面S1构造置换原生层理S0,形成铅笔构造,将岩石切割为极为破碎的短柱状块体;g.板理S1及卸荷裂隙S2切割板岩为碎片;h.板岩中发育的板理、剪节理和卸荷裂隙将岩石切割为碎片在原地或近原地堆积形成松散的残、坡积物;i.雅鲁藏布江缝合带(IYS)左侧某支沟中的酸性火山岩经构造破碎后叠加后期冰川刨蚀、搬运形成的大量松散冰碛物堆积
Fig. 12. Example of rock mass structure modified by compressive stress
-
[1] Abrahamson, N. A., Somerville, P. G., 1996. Effects of the Hanging Wall and Footwall on Ground Motions Recorded during the Northridge Earthquake. Bulletin of the Seismological Society of America, 86(1B): 93-99. https://doi.org/10.1785/bssa08601b0s93 [2] Bai, Y. J., Ni, H. Y., Ge, H., 2019. Advances in Research on the Geohazard Effect of Active Faults on the Southeastern Margin of the Tibetan Plateau. Journal of Geomechanics, 25(6): 1116-1128(in Chinese with English abstract). [3] Chengdu Institute of Geology and Mineral Resources, 2003. Regional Geological Survey Report of the People's Republic of China (Motuo County) (Report). Geological Research Department of Qinghai⁃Tibet Plateau, Chengdu Institute of Geology and Mineral Resources, Chengdu(in Chinese). [4] Cui, P., Guo, J., 2021. Evolution Models, Risk Prevention and Control Counter Measures of the Valley Disaster Chain. Advanced Engineering Sciences, 53(3): 5-18(in Chinese with English abstract). [5] Deng, J., Wang, C. M., Zi, J. W., et al., 2018. Constraining Subduction-Collision Processes of the Paleo-Tethys along the Changning⁃Menglian Suture: New Zircon U⁃Pb Ages and Sr⁃Nd⁃Pb⁃Hf⁃O Isotopes of the Lincang Batholith. Gondwana Research, 62: 75-92. https://doi.org/10.1016/j.gr.2017.10.008 [6] Fan, J. J., Li, C., Niu, Y. L., et al., 2021. Identification Method and Geological Significance of Intraplate Ocean Island⁃Seamount Fragments in Orogenic Belt. Earth Science, 46(2): 381-404(in Chinese with English abstract). [7] Fan, X. M., Scaringi, G., Korup, O., et al., 2019. Earthquake⁃Induced Chains of Geologic Hazards: Patterns, Mechanisms, and Impacts. Reviews of Geophysics, 57(2): 421-503. https://doi.org/10.1029/2018rg000626 [8] Feng, Y. M., Zhang, Y., 2018. Introduction and Commentary on Ocean Plate Stratigrapgy. Geological Bulletin of China, 37(4): 523-531(in Chinese with English abstract). [9] Gao, Y. J., Zhao, S. Y., Deng, J. H., 2020. Developing Law of Damming Landslide and Challenges for Disaster Prevention and Mitigation in the Three⁃River⁃Parallel Territory in the Tibetan Plateau. Advanced Engineering Sciences, 52(5): 50-61(in Chinese with English abstract). [10] Geological Survey Institute of Tibet Autonomous Region, 2007. Regional Geological Survey Report of the People's Republic of China (Basu County, Gongjue County, Ranwu District and Mangkang County). The First Branch of Geological Survey Institute of Tibet Autonomous Region, Lhasa(in Chinese). [11] Guo, C. B., Zhang, Y. S., Jiang, L. W., et al., 2017. Discussion on the Environmental and Engineering Geological Problems along the Sichuan⁃Tibet Railway and Its Adjacent Area. Geoscience, 31(5): 877-889(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2017.05.001 [12] Hu, X. M., An, W., Garzanti, E., et al., 2020. Recognition of Trench Basins in Collisional Orogens: Insights from the Yarlung Zangbo Suture Zone in Southern Tibet. Science China: Earth Sciences, 50(12): 1893-1905(in Chinese). [13] Huang, R. Q., Li, W. L., 2009. Fault Effect Analysis of Geo⁃Hazard Triggered by Wenchaun Earthquake. Journal of Engineering Geology, 17(1): 19-28(in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2009.01.003 [14] Jones, O. T., 1942. The Dynamics of Faulting and Dyke Formation: With Applications to Britain. Nature, 149: 651-652. https://doi.org/10.1038/149651b0 [15] Jibson, R. W., Harp, E. L., Schulz, W., et al., 2004. Landslides Triggered by the 2002 Denali Fault, Alaska, Earthquake and the Inferred Nature of the Strong Shaking. Earthquake Spectra, 20(3): 669-691. https://doi.org/10.1193/1.177817 [16] Keefer, D. K., 1984. Landslides Caused by Earthquakes. Geological Society of America Bulletin, 95(4): 406. https://doi.org/10.1130/0016⁃7606(1984)95406:lcbe>2.0.co;2 doi: 10.1130/0016⁃7606(1984)95406:lcbe>2.0.co;2 [17] Kusky, T. M., Windley, B. F., Safonova, I., et al., 2013. Recognition of Ocean Plate Stratigraphy in Accretionary Orogens through Earth History: A Record of 3.8 Billion Years of Sea Floor Spreading, Subduction, and Accretion. Gondwana Research, 24(2): 501-547. https://doi.org/10.1016/j.gr.2013.01.004 [18] Li, C., 2008. A Review on 20 Years' Study of the Longmu Co⁃Shuanghu⁃Lancang River Suture Zone in Qinghai⁃Xizang (Tibet) Plateau. Geological Review, 54(1): 105-119(in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2008.01.012 [19] Li, H. L., Chen, L., Yang, D., et al., 2022a. Geological Genesis Analysis of the Juexue Red Strata Landslide in Qamdo, Eastern Tibet. Sedimentary Geology and Tethyan Geology (in press) (in Chinese with English abstract). [20] Li, H. L., Gao, B., Zhang, J. J., et al., 2022b. Mechanism of Rockfall Coupled with Endogenic and Exogenic Geological Processes: A Case Study in Upper Triassic Limestone Mine in Qamdo Area, Eastern Tibet. Journal of Geomechanics 28(6): 995-1011(in Chinese with English abstract). [21] Li, H. L., Li, G. M., Liu, H., et al., 2019. Petrogenesis of Paleocene Granite Porphyry of Daruo Area in Western Lhasa Block, Tibet: Constraints from Geochemistry, Zircon U⁃Pb Chronology and Sr⁃Nd⁃Pb⁃Hf Isotopes. Earth Science, 44(7): 2275-2297(in Chinese with English abstract). [22] Li, H. L., Li, G. M., Zhang, Z., et al., 2021a. Genesis of Jienagepu Gold Deposit in Zhaxikang Ore Concentration Area, Eastern Tethys Himalayas: Constraints from He-Ar and In-Situ S Isotope of Pyrite. Earth Science, 46(12): 4291-4315(in Chinese with English abstract). [23] Li, H. L., Shi, F. Q., Wang, L. J., et al., 2021b. Emergency Surveying and Mapping of the Jinsha River "11·03" Baige Dammed Lake Based on 3D Laser Scanning Technology. Metal Mine, (4): 154-159(in Chinese with English abstract). [24] Li, J. Y., Zhang, J., Zhao, X. X., et al., 2016. Mantle Subduction and Uplift of Intracontinental Mountains: A Case Study from the Chinese Tianshan Mountains within Eurasia. Scientific Reports, 6(1): 28831. https://doi.org/10.1038/srep28831 [25] Li, X., Li, S. D., Chen, J., et al., 2008. Coupling Effect Mechanism of Endogenic and Exogenic Geological Processes of Geological Hazards Evolution. Chinese Journal of Rock Mechanics and Engineering, 27(9): 1792-1806(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2008.09.006 [26] Li, Y. S., Yi, S. J., Jiang, L. W., et al., 2016. Research on the Stress Deformation and Engineering Effect of the Lancangjiang Fault in Sichuan-Tibet Railway. Journal of Railway Engineering Society, 33(5): 6-10, 17(in Chinese with English abstract). doi: 10.3969/j.issn.1006-2106.2016.05.002 [27] Li, Z. P., Wu, L., Yan, L. L., 2020. Spatial and Temporal Distribution of Ophiolites and Regional Tectonic Evolution in Northwest China. Geological Bulletin of China, 39(6): 783-817(in Chinese with English abstract). [28] Liu, C. Z., Lü, J. T., Tong, L. Q., et al., 2019. Research on Glacial/Rock Fall⁃Landslide⁃Debris Flows in Sedongpu Basin along Yarlung Zangbo River in Tibet. Geology in China, 46(2): 219-234(in Chinese with English abstract). [29] Liu, F., Yang, J. S., Lian, D. Y., et al., 2020. Geological Features of Neothyan Ophiolites in Tibetan Plateau and Its Tectonic Evolution. Acta Petrologica Sinica, 36(10): 2913-2945(in Chinese with English abstract). doi: 10.18654/1000-0569/2020.10.01 [30] Liu, W., 2002. Study on the Characteristics of Huge Scale⁃Super Highspeed-Long Distance Landslide Chain in Yigong, Tibet. The Chinese Journal of Geological Hazard and Control, 13(3): 9-18(in Chinese with English abstract). doi: 10.3969/j.issn.1003-8035.2002.03.002 [31] Lu, Y. L., 1997. Engineering Geology and Practice on Nankun Railway. Journal of Engineering Geology, 5(2): 97-103(in Chinese with English abstract). [32] Mattern, F., Schneider, W., 2000. Suturing of the Proto⁃ and Paleo⁃Tethys Oceans in the Western Kunlun (Xinjiang, China). Journal of Asian Earth Sciences, 18(6): 637-650. https://doi.org/10.1016/s1367⁃9120(00)00011⁃0 [33] Metcalfe, I., 1996. Gondwanaland Dispersion, Asian Accretion and Evolution of Eastern Tethys. Australian Journal of Earth Sciences, 43(6): 605-623. https://doi.org/10.1080/08120099608728282 [34] Metcalfe, I., 2021. Multiple Tethyan Ocean Basins and Orogenic Belts in Asia. Gondwana Research, 100: 87-130. https://doi.org/10.1016/j.gr.2021.01.012 [35] Mitchell, A., Chung, S. L., Oo, T., et al., 2012. Zircon U⁃Pb Ages in Myanmar: Magmatic⁃Metamorphic Events and the Closure of a Neo⁃Tethys Ocean? Journal of Asian Earth Sciences, 56: 1-23. https://doi.org/10.1016/j.jseaes.2012.04.019 [36] Pan, G. T., Lu, S. N., Xiao, Q. H., et al., 2016. Division of Tectonic Stages and Tectonic Evolution in China. Earth Science Frontiers, 23(6): 1-23(in Chinese with English abstract). [37] Pan, G. T., Ren, F., Yin, F. G., 2020a. Key Zones of Oceanic Plate Geology and Sichuan⁃Tibet Traffic Corridor Project. Earth Science, 45(7): 2293-2304(in Chinese with English abstract). [38] Pan, G. T., Wang, L. Q., Geng, Q. R., et al., 2020b. Space⁃Time Structure of the Bangonghu-Shuanghu-Nujiang-Changning⁃Menglian Mega⁃Suture Zone: A Discussion on Geology and Evolution of the Tethys Ocean. Sedimentary Geology and Tethyan Geology, 40(3): 1-19(in Chinese with English abstract). [39] Pan, G. T., Xiao, Q. H., Zhang, K. X., et al., 2019. Recognition of the Oceanic Subduction-Accretion Zones from the Orogenic Belt in Continents and Its Important Scientific Significance. Earth Science, 44(5): 1544-1561(in Chinese with English abstract). [40] Peng, J. B., Cui, P., Zhuang, J. Q., 2020. Challenges to Engineering Geology of Sichuan⁃Tibet Railway. Chinese Journal of Rock Mechanics and Engineering, 39(12): 2377-2389(in Chinese with English abstract). [41] Peng, J. B., Ma, R. Y., Lu, Q. Z., et al., 2004. Geological Hazards Effects of Uplift of Qinghai⁃Tibet Plateau. Advance in Earth Sciences, 19(3): 457-466(in Chinese with English abstract). [42] Rodrı́guez, C. E., Bommer, J. J., Chandler, R. J., 1999. Earthquake⁃Induced Landslides: 1980—1997. Soil Dynamics and Earthquake Engineering, 18(5): 325-346. https://doi.org/10.1016/s0267⁃7261(99)00012⁃3 [43] Şengör, A. M. C., 1979. Mid⁃Mesozoic Closure of Permo⁃Triassic Tethys and Its Implications. Nature, 279: 590-593. https://doi.org/10.1038/279590a0 [44] Scheingross, J. S., Minchew, B. M., MacKey, B. H., et al., 2013. Fault⁃Zone Controls on the Spatial Distribution of Slow⁃Moving Landslides. Geological Society of America Bulletin, 125(3-4): 473-489. https://doi.org/10.1130/b30719.1 [45] Schulmann, K., 2017. The Central Asian Orogenic Belt: Geology, Evolution, Tectonics and Models. Geoscience Frontiers, 8(2): 411-412. https://doi.org/10.1016/j.gsf.2016.10.003 [46] Sone, M., Metcalfe, I., 2008. Parallel Tethyan Sutures in Mainland Southeast Asia: New Insights for Palaeo⁃Tethys Closure and Implications for the Indosinian Orogeny. Comptes Rendus Geoscience, 340(2-3): 166-179. https://doi.org/10.1016/j.crte.2007.09.008 [47] Song, J., Tang, F. T., Deng, Z. H., et al., 2011. Study on Current Movement Characteristics and Numerical Simulation of the Main Faults around Eastern Himalayan Syntaxis. Chinese Journal of Geophysics, 54(6): 1536-1548(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5733.2011.06.013 [48] Tian, Z. H., 2021. Structural Complexity of the Suture Zone: A Case Study from the Multi⁃Phase Modified Suture Zone in the Sulu Area. Chinese Journal of Geology, 56(2): 635-666(in Chinese with English abstract). [49] Wakita, K., Metcalfe, I., 2005. Ocean Plate Stratigraphy in East and Southeast Asia. Journal of Asian Earth Sciences, 24(6): 679-702. https://doi.org/10.1016/j.jseaes.2004.04.004 [50] Wang, B. D., Liu, H., Wang, L. Q., et al., 2020. Spatial⁃Temporal Framework of Shiquanhe⁃Laguoco⁃Yongzhu⁃Jiali Ophiolite Mélange Zone, Qinghai⁃Tibet Plateau and Its Tectonic Evolution. Earth Science, 45(8): 2764-2784(in Chinese with English abstract). [51] Wu, F. Y., Wan, B., Zhao, L., et al., 2020. Tethyan Geodynamics. Acta Petrologica Sinica, 36(6): 1627-1674(in Chinese with English abstract). doi: 10.18654/1000-0569/2020.06.01 [52] Wu, R. A., Guo, C. B., Du, Y. B., et al., 2017. Research on Geohazard Developing Characteristics in Jiacha to Langxian Section of Sichuan-Tibet Railway. Geoscience, 31(5): 956-964(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2017.05.007 [53] Xia, B. D., Zhang, K. J., Kong, Q. Y., et al., 1999. Three Molasse Belts within the Qinghai⁃Tibet Plateau and Their Tectonic Implications. Earth Science Frontiers, 6(3): 173-180(in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.1999.03.017 [54] Xiong, D. Q., Cui, X. F., 2021. The Relationship between Main Geological Hazard and Topography in the Himalayan Seismic Belt: A Case Study in the Xigaze Area. Geological Bulletin of China, 40(11): 1967-1980(in Chinese with English abstract). doi: 10.12097/j.issn.1671-2552.2021.11.014 [55] Xu, C., Dai, F. C., Xiao, J. Z., 2011. Statistical Analysis of Characteristic Parameters of Landslides Triggered by may 12, 2008 Wenchuan Earthquake. Journal of Natural Disasters, 20(4): 147-153(in Chinese with English abstract). [56] Xu, Q., Li, W. L., 2010. Distribution of Large⁃Scale Landslides Induced by the Wenchuan Earthquake. Journal of Engineering Geology, 18(6): 818-826(in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2010.06.002 [57] Xu, Z. Q., Yang, J. S., Li, H. B., et al., 2011. On the Tectonics of the India⁃Asia Collision. Acta Geologica Sinica, 85(1): 1-33(in Chinese with English abstract). doi: 10.1111/j.1755-6724.2011.00375.x [58] Xue, Y. G., Kong, F. M., Yang, W. M., et al., 2020. Main Unfavorable Geological Conditions and Engineering Geological Problems along Sichuan⁃Tibet Railway. Chinese Journal of Rock Mechanics and Engineering, 39(3): 445-468(in Chinese with English abstract). [59] Yan, Z., Fu, C. L., Aitchison, J. C., et al., 2019. Retro⁃Foreland Basin Development in Response to Proto-Tethyan Ocean Closure, NE Tibet Plateau. Tectonics, 38(12): 4229-4248. https://doi.org/10.1029/2019tc005560 [60] Yan, Z., Fu, C. L., Niu, M. L., et al., 2021. Recognition and Significance of Accretionary Prism in Orogenic Belts. Chinese Journal of Geology, 56(2): 430-448(in Chinese with English abstract). [61] Yang, C. L., Chen, N. S., Li, Z. L., 2011. Formation Mode and Mechanism for Debris Flow Induced by Wenchuan Earthquake. Journal of Natural Disasters, 20(3): 31-37(in Chinese with English abstract). [62] Yang, L. M., Song, S. G., Allen, M. B., et al., 2018. Oceanic Accretionary Belt in the West Qinling Orogen: Links between the Qinling and Qilian Orogens, China. Gondwana Research, 64: 137-162. https://doi.org/10.1016/j.gr.2018.06.009 [63] Yang, Z. H., Wu, R. A., Guo, C. B., et al., 2022. Geo⁃Hazard Effects and Typical Landslide Characteristics of the Batang Fault Zone in the Western Sichuan. Geology in China, 49(2): 355-368(in Chinese with English abstract). [64] Yang, Z. H., Zhang, Y. S., Guo, C. B., et al., 2018. Sensitivity Analysis on Causative Factors of Geohazards in Eastern Margin of Tibetan Plateau. Journal of Engineering Geology, 26(3): 673-683(in Chinese with English abstract). [65] Yu, Y. X., Gao, M. T., 2001. Effects of the Hanging Wall and Footwall on Peak Acceleration during the Chi⁃Chi Earthquake, Taiwan. Acta Seismologica Sinica, 23(6): 615-621(in Chinese with English abstract). doi: 10.3321/j.issn:0253-3782.2001.06.007 [66] Yuan, S. H., Liu, Y. J., Chang, R. H., et al., 2021. A Brief Review on the Tectonic Evolution of the West Tethysides. Sedimentary Geology and Tethyan Geology, 41(2): 316-331(in Chinese with English abstract). [67] Yuan, S. H., Pan, G. T., Ren, F., 2020. Review on Geological Research of Oceanic Island⁃Seamount and Its Significance for Reconstruction of Ocean Plate. Earth Science, 45(8): 2826-2845(in Chinese with English abstract). [68] Yue, C. Y., Dang, Y. M., Yang, Q., et al., 2017. Analysis of the Current Activity in Sichuan⁃Yunnan Region and Its Sub Blocks of Main Faults. Journal of Geodesy and Geodynamics, 37(2): 176-181(in Chinese with English abstract). [69] Zeng, Q. G., Wang, B. D., Xiluo, L. J., et al., 2020. Suture Zones in Tibetan and Tethys Evolution. Earth Science, 45(8): 2735-2763(in Chinese with English abstract). [70] Zhang, J. J., 2007. A Review on the Extensional Structures in the Northern Himalaya and Southern Tibet. Geological Bulletin of China, 26(6): 639-649(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2007.06.003 [71] Zhang, J. J., Gao, B., Liu, J. K., et al., 2021. Early Landslide Detection in the Lancangjiang Region along the Sichuan⁃Tibet Railway Based on SBAS⁃InSAR Technology. Geoscience, 35(1): 64-73(in Chinese with English abstract). [72] Zhang, K. X., He, W. H., Xu, Y. D., et al., 2016. Palaeogeographic Distribution and Tectonic Evolution of OPS in China. Earth Science Frontiers, 23(6): 24-30(in Chinese with English abstract). [73] Zhang, K. X., Li, Y. C., Wang, L. J., et al., 2020. The Division of Mélanges in the Orogenic Belt and Its Associated Terminologies. Geological Bulletin of China, 39(6): 765-782(in Chinese with English abstract). [74] Zhang, W. J., Jiang, L. X., Li, X. J., et al., 2013. Exploration of Mortality and Economy Vulnerability of Wenchuan Earthquake. Journal of Natural Disasters, 22(2): 197-204(in Chinese with English abstract). [75] Zhang, Y. S., Ba, R. J., Ren, S. S., et al., 2020. An Analysis of Geo⁃Mechanism of the Baige Landslide in Jinsha River, Tibet. Geology in China, 47(6): 1637-1645(in Chinese with English abstract). [76] Zhang, Y. S., Guo, C. B., Yao, X., et al., 2016. Research on the Geohazard Effect of Active Fault on the Eastern Margin of the Tibetan Plateau. Acta Geoscientica Sinica, 37(3): 277-286(in Chinese with English abstract). [77] Zhang, Y. S., Ren, S. S., Guo, C. B., et al., 2019. Research on Engineering Geology Related with Active Fault Zone. Acta Geologica Sinica, 93(4): 763-775(in Chinese with English abstract). [78] Zhang, Y. S., Shi, J. S., Sun, P., et al., 2009. Coupling between Endogenic and Exogenic Geological Processes in the Wenchuan Earthquake and Example Analysis of Geo⁃Hazards. Journal of Geomechanics, 15(2): 131-141(in Chinese with English abstract). doi: 10.3969/j.issn.1006-6616.2009.02.003 [79] Zhu, D. C., Mo, X. X., Niu, Y. L., et al., 2009. Geochemical Investigation of Early Cretaceous Igneous Rocks along an East⁃West Traverse throughout the Central Lhasa Terrane, Tibet. Chemical Geology, 268(3-4): 298-312. https://doi.org/10.1016/j.chemgeo.2009.09.008 [80] Zhu, D. C., Wang, Q., Zhan, Q. Y., et al., 2021. Late Triassic Tectono⁃Magmatism of Northern Sanjiang and Associated Several Scientific Problems. Sedimentary Geology and Tethyan Geology, 41(2): 232-245(in Chinese with English abstract). [81] 白永健, 倪化勇, 葛华, 2019. 青藏高原东南缘活动断裂地质灾害效应研究现状. 地质力学学报, 25(6): 1116-1128. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNCS202023030.htm [82] 成都地质矿产研究所, 2003. 中华人民共和国区域地质调查报告(墨脱县幅). 成都: 成都地质矿产研究所青藏高原地质室. [83] 崔鹏, 郭剑, 2021. 沟谷灾害链演化模式与风险防控对策. 工程科学与技术, 53(3): 5-18. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202103003.htm [84] 范建军, 李才, 牛耀龄, 等, 2021. 造山带板内洋岛-海山残片的识别及地质意义. 地球科学, 46(2): 381-404. doi: 10.3799/dqkx.2020.348 [85] 冯益民, 张越, 2018. 大洋板块地层(OPS)简介及评述. 地质通报, 37(4): 523-531. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201804001.htm [86] 高云建, 赵思远, 邓建辉, 2020. 青藏高原三江并流区重大堵江滑坡孕育规律及其防灾挑战. 工程科学与技术, 52(5): 50-61. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH202005005.htm [87] 郭长宝, 张永双, 蒋良文, 等, 2017. 川藏铁路沿线及邻区环境工程地质问题概论. 现代地质, 31(5): 877-889. doi: 10.3969/j.issn.1000-8527.2017.05.001 [88] 胡修棉, 安慰, Garzanti, E., 等, 2020. 碰撞造山带海沟盆地的识别——以雅鲁藏布缝合带为例. 中国科学: 地球科学, 50(12): 1893-1905. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202012012.htm [89] 黄润秋, 李为乐, 2009. 汶川大地震触发地质灾害的断层效应分析. 工程地质学报, 17(1): 19-28. doi: 10.3969/j.issn.1004-9665.2009.01.003 [90] 李才, 2008. 青藏高原龙木错-双湖-澜沧江板块缝合带研究二十年. 地质论评, 54(1): 105-119. doi: 10.3321/j.issn:0371-5736.2008.01.012 [91] 李洪梁, 陈龙, 杨栋, 等, 2022a. 藏东昌都觉学红层滑坡的地质成因分析. 沉积与特提斯地质(待刊). [92] 李洪梁, 高波, 张佳佳, 等, 2022b. 内外动力地质作用耦合的崩塌形成机理研究——以藏东昌都地区上三叠统石灰石矿山采场崩塌为例. 地质力学学报, 28(6): 995-1011. [93] 李洪梁, 李光明, 刘洪, 等, 2019. 拉萨地体西段达若地区古新世花岗斑岩成因: 锆石U-Pb年代学、岩石地球化学和Sr-Nd-Pb-Hf同位素的约束. 地球科学, 44(7): 2275-2297. doi: 10.3799/dqkx.2019.034 [94] 李洪梁, 李光明, 张志, 等, 2021a. 特提斯喜马拉雅东段扎西康矿集区姐纳各普金矿床成因: 黄铁矿He-Ar及原位S同位素约束. 地球科学, 46(12): 4291-4315. doi: 10.3799/dqkx.2021.018 [95] 李洪梁, 施富强, 王立娟, 等, 2021b. 基于三维激光扫描技术的金沙江"11·03"白格堰塞湖应急测绘研究. 金属矿山, 50(4): 154-159. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS202104024.htm [96] 李晓, 李守定, 陈剑, 等, 2008. 地质灾害形成的内外动力耦合作用机制. 岩石力学与工程学报, 27(9): 1792-1806. doi: 10.3321/j.issn:1000-6915.2008.09.006 [97] 李渝生, 易树健, 蒋良文, 等, 2016. 川藏铁路澜沧江断裂应力形变及工程效应研究. 铁道工程学报, 33(5): 6-10, 17. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201605002.htm [98] 李智佩, 吴亮, 颜玲丽, 2020. 中国西北地区蛇绿岩时空分布与构造演化. 地质通报, 39(6): 783-817. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202006002.htm [99] 刘传正, 吕杰堂, 童立强, 等, 2019. 雅鲁藏布江色东普沟崩滑-碎屑流堵江灾害初步研究. 中国地质, 46(2): 219-234. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201902002.htm [100] 刘飞, 杨经绥, 连东洋, 等, 2020. 青藏高原新特提斯蛇绿岩的地质特征及其构造演化. 岩石学报, 36(10): 2913-2945. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202010001.htm [101] 刘伟, 2002. 西藏易贡巨型超高速远程滑坡地质灾害链特征研析. 中国地质灾害与防治学报, 13(3): 9-18. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH200203001.htm [102] 陆玉珑, 1997. 南昆铁路的工程地质与实践. 工程地质学报, 5(2): 97-103. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ702.000.htm [103] 潘桂棠, 陆松年, 肖庆辉, 等, 2016. 中国大地构造阶段划分和演化. 地学前缘, 23(6): 1-23. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201606006.htm [104] 潘桂棠, 任飞, 尹福光, 等, 2020a. 洋板块地质与川藏铁路工程地质关键区带. 地球科学, 45(7): 2293-2304. doi: 10.3799/dqkx.2020.070 [105] 潘桂棠, 王立全, 耿全如, 等, 2020b. 班公湖—双湖—怒江—昌宁—孟连对接带时空结构——特提斯大洋地质及演化问题. 沉积与特提斯地质, 40(3): 1-19. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD202003002.htm [106] 潘桂棠, 肖庆辉, 张克信, 等, 2019. 大陆中洋壳俯冲增生杂岩带特征与识别的重大科学意义. 地球科学, 44(5): 1544-1561. doi: 10.3799/dqkx.2019.063 [107] 彭建兵, 崔鹏, 庄建琦, 2020. 川藏铁路对工程地质提出的挑战. 岩石力学与工程学报, 39(12): 2377-2389. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202012001.htm [108] 彭建兵, 马润勇, 卢全中, 等, 2004. 青藏高原隆升的地质灾害效应. 地球科学进展, 19(3): 457-466. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200403017.htm [109] 宋键, 唐方头, 邓志辉, 等, 2011. 喜马拉雅东构造结周边地区主要断裂现今运动特征与数值模拟研究. 地球物理学报, 54(6): 1536-1548. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201106014.htm [110] 田忠华, 2021. 缝合带结构的复杂性: 以苏鲁地区多期改造缝合带为例. 地质科学, 56(2): 635-666. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202102013.htm [111] 王保弟, 刘函, 王立全, 等, 2020. 青藏高原狮泉河-拉果错-永珠-嘉黎蛇绿混杂岩带时空结构与构造演化. 地球科学, 45(8): 2764-2784. doi: 10.3799/dqkx.2020.083 [112] 吴福元, 万博, 赵亮, 等, 2020. 特提斯地球动力学. 岩石学报, 36(6): 1627-1674. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202006001.htm [113] 吴瑞安, 郭长宝, 杜宇本, 等, 2017. 川藏铁路加查: 朗县段地质灾害发育特征研究. 现代地质, 31(5): 956-964. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201705007.htm [114] 西藏自治区地质调查院, 2007. 中华人民共和国区域地质调查报告(八宿县幅、贡觉县福、然乌区幅和芒康县幅). 拉萨: 西藏自治区地质调查院一分院. [115] 夏邦栋, 张开均, 孔庆友, 等, 1999. 青藏高原内部三条磨拉石带的确定及其构造意义. 地学前缘, 6(3): 173-180. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY199903023.htm [116] 熊德清, 崔笑烽, 2021. 喜马拉雅山脉地震带主要地质灾害与地形地貌关系——以西藏日喀则地区为例. 地质通报, 40(11): 1967-1980. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202111014.htm [117] 许冲, 戴福初, 肖建章, 2011. "5·12"汶川地震诱发滑坡特征参数统计分析. 自然灾害学报, 20(4): 147-153. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201104023.htm [118] 许强, 李为乐, 2010. 汶川地震诱发大型滑坡分布规律研究. 工程地质学报, 18(6): 818-826. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201006002.htm [119] 许志琴, 杨经绥, 李海兵, 等, 2011. 印度-亚洲碰撞大地构造. 地质学报, 85(1): 1-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201101001.htm [120] 薛翊国, 孔凡猛, 杨为民, 等, 2020. 川藏铁路沿线主要不良地质条件与工程地质问题. 岩石力学与工程学报, 39(3): 445-468. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202003003.htm [121] 闫臻, 付长垒, 牛漫兰, 等, 2021. 造山带中增生楔识别与地质意义. 地质科学, 56(2): 430-448. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202102004.htm [122] 杨成林, 陈宁生, 李战鲁, 2011. 汶川地震次生泥石流形成模式与机理. 自然灾害学报, 20(3): 31-37. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201103006.htm [123] 杨志华, 吴瑞安, 郭长宝, 等, 2022. 川西巴塘断裂带地质灾害效应与典型滑坡发育特征. 中国地质, 49(2): 355-368. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202202001.htm [124] 杨志华, 张永双, 郭长宝, 等, 2018. 青藏高原东缘地质灾害影响因子敏感性分析. 工程地质学报, 26(3): 673-683. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201803014.htm [125] 俞言祥, 高孟潭, 2001. 台湾集集地震近场地震动的上盘效应. 地震学报, 23(6): 615-621. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB200106006.htm [126] 袁四化, 刘永江, 常瑞虹, 等, 2021. 从多岛弧盆系构造看西特提斯造山系构造演化. 沉积与特提斯地质, 41(2): 316-331. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD202102016.htm [127] 袁四化, 潘桂棠, 任飞, 2020. 洋岛-海山研究进展及其对于重建洋板块的意义. 地球科学, 45(8): 2826-2845. doi: 10.3799/dqkx.2020.124 [128] 岳彩亚, 党亚民, 杨强, 等, 2017. 川滇地区次级地块及其主要断裂带现今活动研究. 大地测量与地球动力学, 37(2): 176-181. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201702014.htm [129] 曾庆高, 王保弟, 西洛郎杰, 等, 2020. 西藏的缝合带与特提斯演化. 地球科学, 45(8): 2735-2763. doi: 10.3799/dqkx.2020.152 [130] 张进江, 2007. 北喜马拉雅及藏南伸展构造综述. 地质通报, 26(6): 639-649. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200706003.htm [131] 张克信, 何卫红, 徐亚东, 等, 2016. 中国洋板块地层分布及构造演化. 地学前缘, 23(6): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201606007.htm [132] 张克信, 李仰春, 王丽君, 等, 2020. 造山带混杂岩及相关术语. 地质通报, 39(6): 765-782. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202006001.htm [133] 张维佳, 姜立新, 李晓杰, 等, 2013. 汶川地震人员死亡率及经济易损性探讨. 自然灾害学报, 22(2): 197-204. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH201302027.htm [134] 张永双, 巴仁基, 任三绍, 等, 2020. 中国西藏金沙江白格滑坡的地质成因分析. 中国地质, 47(6): 1637-1645. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202006004.htm [135] 张永双, 郭长宝, 姚鑫, 等, 2016. 青藏高原东缘活动断裂地质灾害效应研究. 地球学报, 37(3): 277-286. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201603004.htm [136] 张永双, 任三绍, 郭长宝, 等, 2019. 活动断裂带工程地质研究. 地质学报, 93(4): 763-775. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201904001.htm [137] 张永双, 石菊松, 孙萍, 等, 2009. 汶川地震内外动力耦合及灾害实例. 地质力学学报, 15(2): 131-141. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX200902003.htm [138] 朱弟成, 王青, 詹琼窑, 等, 2021. 三江北段晚三叠世构造—岩浆作用和几个相关的科学问题. 沉积与特提斯地质, 41(2): 232-245. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD202102011.htm