Taxonomic Diversity and Functional Diversity of Benthic Communities during Permian-Triassic Crisis at Zhonghe Section, Shuicheng, Guizhou Province
-
摘要: 为了定量化恢复晚二叠世末期生物大灭绝对底栖群落的物种多样性和功能多样性的影响,对浅海碎屑岩台地相区的贵州水城仲河剖面开展宏体化石采集和分析,识别和划分古群落,选择优势度、香农指数、均匀度等代表物种多样性指数,生态功能群数量和功能均匀度代表功能多样性指数. 共采集1 340枚化石标本,经鉴定得到30属33种,其中双壳类可归纳为两个生物带:晚二叠世长兴期的Hunanopecten exilis顶峰带和早三叠世Griesbachian早期的Pteria ussurica variabilis顶峰带. 根据化石属种的地层分布、保存状况,结合聚类分析方法识别出3个古群落:Astartella obliqua-Tethyochonetes quadrata群落、Pteria ussurica variabilis-Claraia wangi群落和Pteria ussurica variabilis-Unionites canalensis群落. 自晚二叠世长兴期末期至早三叠世Griesbachian早期,古群落的优势度上升、香农指数降低、均匀度下降,功能群丰富度降低,功能均匀度上升,这指示晚二叠世末生物大灭绝对浅海碎屑岩相区的底栖群落的组成和功能均有显著的破坏. 此外,结合华南浅海和深海相区的古群落数据,发现底栖群落的物种多样性指数和功能多样性指数在晚二叠世末生物大灭绝中均遭受损失,但是浅海底栖群落受影响较高.
-
关键词:
- 晚二叠世末生物大灭绝 /
- 底栖群落 /
- 物种多样性 /
- 功能多样性 /
- 古生物学
Abstract: In order to evaluate the impact of the End-Permian mass extinction on the taxonomic diversity and functional diversity of benthic communities, this study carried out a successive collection of macrofossils through the Permian-Triassic boundary sequence at the Zhonghe Section, Shuicheng, Guizhou Province, and reconstructed the palaeocommunities. The taxonomic diversity is indicative of the Shannon index, dominance index and evenness index, while the functional diversity includes functional group richness and functional evenness. A total of 1 340 fossil specimens were collected in this study, and they could be assigned to 33 species in 30 genera, and could be grouped to two bivalve zones: the Hunanopecten exilisacme zone in the Changhsingian (Late Permian), and the Pteria ussurica variabilisacme zone in the Early Griesbachian (Early Triassic). Three paleocommunities were identified through cluster analysis: Astartella obliqua-Tethyochonetes quadrata community, Pteria ussurica variabilis-Claraia wangi community and Pteria ussurica variabilis-Unionites canalensis community. The Shannon index decreased, dominance increased, evenness decreased, functional group richness decreased and functional evenness increased, indicating that the End-Permian mass extinction significantly damaged the composition, structure and function of the shallow marine benthic community. Besides, in combination with various paleocommunities from South China, it is found that both the species diversity index and the functional diversity index of the benthic community changed synchronously between shallow and deep marine environments. However, the shallow marine paleocommunities were more affected than their counterparts from deep sea. -
图 1 仲河剖面交通位置、古地理位置与野外照片
a. 仲河剖面交通位置图;b. 华南二叠纪‒三叠纪之交古地理图(据Yin et al., 2014修改);c. 龙潭组与飞仙关组界线
Fig. 1. Location and field photo of Zhonghe Section, Shuicheng, Guizhou Province
图 3 仲河剖面龙潭组双壳类化石
a. Astartella oblique Dickins,右壳,编号ZH0104;b. Astartella ambiensis(Waagen),右壳,编号ZH0108;c. Atomodesma sp.,左壳,编号ZH0121;d. Etheripecten fasciculicostatus Liu,右壳,编号ZH0172;e. Edmondia nystroemi Chao,左壳,编号ZH0125;f.Euchondria cancellata Gu and Liu,左壳,编号ZH0142;g. Hunanopecten exilis Zhang,左壳,编号ZH0119;h,i. Liebea Squamosa(Sowerby),右壳,编号ZH0126;j. Modiolus sp.,右壳,编号ZH0123;k. Nuculopsis darlingensis Dickens,左壳,编号ZH0141;l. Parallelodom sp.,右壳,编号ZH0146;m. Pernopecten sichuanensis Chen et al., 右壳,编号ZH0129;n. Pernopecten huayingshanensis Chen et al., 左壳,编号ZH0109;o. Promyalina schamarae Bittner,左壳,编号ZH0133;p. Ptychopteria peoblematica Chen,左壳,编号ZH0128;q. Taimyria ledaeformis Chen and Lan,左壳,编号ZH0137;r. Towapteria intermedia Wu,左壳,编号ZH0156;s. Wilkingia subsplendens Liu,右壳,编号ZH0103
Fig. 3. Bivalve fossils from the Longtan Formation at the Zhonghe Section
图 4 仲河剖面龙潭组腕足类、腹足类等化石
a. Neochonetes(Neochonetes)liaoi He and Shi,腹壳,编号ZH0181;b. Tethyochonetes longaneusis Liao,腹壳,编号ZH01101;c. Tethyochonetes sp.,腹壳,编号ZH0193;d. Kotlaia sp.,腹壳,编号ZH01103;e. Tethyochonetes quadrata Zhan,腹壳,编号ZH0182;f. Spinomarginifera semicircridge He et al., 背壳,编号ZH0178;g. Tainoceras hunanense Zhao,编号ZH01116;h. Orbicoelia flabelliformis Liao,腹壳,编号ZH0195;i. Araeonema panthalassica Nützel and Nakazawa,编号ZH01113;j. Euphemites wynnensis Dickins,编号ZH01112;k. 海百合茎,编号ZH01108;l. 海百合茎,编号ZH01109;m. 苔藓虫碎片,编号ZH01106;n. 苔藓虫碎片,编号ZH01107
Fig. 4. Brachiopod, gastropod and other fossils from the Longtan Formation at the Zhonghe Section
图 6 华南晚二叠世末生物大灭绝前后的底栖群落的物种多样性指标和功能多样性指标对比
a.香农指数;b.优势度;c. 功能群丰富度;d. 功能均匀度;e. 各剖面水深简略示意图. 据Chen et al., 2010修改
Fig. 6. Comparison of taxonomic diversity and functional diversity of benthic communities in South China prior to and after the End-Permian mass extinction
表 1 贵州水城仲河剖面底栖生物生态功能群类型
Table 1. Various functional groups identified among benthic fossils from Zhonghe Section
序号 生态功能群 典型化石结构与构造 代表性属 1 表栖固着食悬浮物型 足丝凹口或茎孔, 纹饰多样 Hunanopecten, Leptochondria, Towapteria, Tethyochonetes, Neochonetes, Spinomarginifera 2 表栖间歇移动食悬浮物型 壳两侧较对称 Pernopecten, Liebea, Promyalina 3 内栖浅掘穴食悬浮物型 无固着构造, 纹饰简单 Edmondia 4 内栖深掘穴食悬浮物型 无固着构造, 壳横向伸长, 纹饰弱 Wilkingia 5 半内栖食悬浮物型 壳体延长, 后部扩大 Modiolus 6 内栖间歇移动兼食型 无固着构造, 纹饰简单 Nuculopsis -
[1] Alroy, J., Aberhan, M., Bottjer, D.J., et al., 2008. Phanerozoic Trends in the Global Diversity of Marine Invertebrates. Science, 321(5885): 97-100. https://doi.org/10.1126/science.1156963 [2] Cao, Y.R., Wang, Y., Miao, X., et al., 2022. Organic Carbon Isotopes and Biostratigraphic Corelation during Permian Triassic Transition in Western Guizhou and Eastern Yunnan. Earth Science, 47(6): 2264-2274 (in Chinese with English abstract). [3] Chen, Z.Q., Benton, M.J., 2012. The Timing and Pattern of Biotic Recovery Following the End-Permian Mass Extinction. Nature Geoscience, 5(6): 375-383. https://doi.org/10.1038/ngeo1475 [4] Chen, Z.Q., Tong, J.N., Liao, Z.T., et al., 2010. Structural Changes of Marine Communities over the Permian-Triassic Transition: Ecologically Assessing the End-Permian Mass Extinction and Its Aftermath. Global and Planetary Change, 73: 123-140. https://doi.org/10.1016/j.gloplacha.2010.03.011 [5] de Bello, F., Lavorel, S., Díaz, S., et al., 2010. Towards an Assessment of Multiple Ecosystem Processes and Services via Functional Traits. Biodiversity and Conservation, 19(10): 2873-2893. https://doi.org/10.1007/s10531-010-9850-9 [6] Dineen, A.A., Fraiser, M.L., Sheehan, P.M., 2014. Quantifying Functional Diversity in Pre- and Post-Extinction Paleocommunities: A Test of Ecological Restructuring after the End-Permian Mass Extinction. Earth-Science Reviews, 136: 339-349. https://doi.org/10.1016/j.earscirev.2014.06.002 [7] Edie, S.M., Jablonski, D., Valentine, J.W., 2018. Contrasting Responses of Functional Diversity to Major Losses in Taxonomic Diversity. Proceedings of the National Academy of Sciences of the United States of America, 115(4): 732-737. https://doi.org/10.1073/pnas.1717636115 [8] Fan, J.X., Shen, S.Z., Erwin, D.H., et al., 2020. A High-Resolution Summary of Cambrian to Early Triassic Marine Invertebrate Biodiversity. Science, 367(6475): 272-277. https://doi.org/10.1126/science.aax4953 [9] Feng, Z.Z., Bao, Z.D., Li, S.W., et al., 1997. Lithofacies Palaeogeography of the Early and Middle Triassic of South China. Petroleum Industry Press, Beijing (in Chinese). [10] Foster, W.J., Twitchett, R.J., 2014. Functional Diversity of Marine Ecosystems after the Late Permian Mass Extinction Event. Nature Geoscience, 7(3): 233-238. https://doi.org/10.1038/ngeo2079 [11] Fraiser, M.L., Bottjer, D.J., 2007. When Bivalves Took over the World. Paleobiology, 33(3): 397-413. https://doi.org/10.1666/05072.1 [12] Hallam, A., Wignall, P.B., 1997. Mass Extinctions and Their Aftermath. Oxford University Press, New York. [13] He, W.H., Shi, G.R., Twitchett, R.J., et al., 2015. Late Permian Marine Ecosystem Collapse Began in Deeper Waters: Evidence from Brachiopod Diversity and Body Size Changes. Geobiology, 13(2): 123-138. https://doi.org/10.1111/gbi.12119 [14] He, W.H., Shi, G.R., Yang, T.L., et al., 2016. Patterns of Brachiopod Faunal and Body-Size Changes across the Permian-Triassic Boundary: Evidence from the Daoduishan Section in Meishan Area, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 448: 72-84. https://doi.org/10.1016/j.palaeo.2015.11.023 [15] Huang, Y.F., Tong, J.N., 2014. Advance in the Study of the Permian-Triassic Bivalves. Advances in Earth Science, 29(8): 922-933 (in Chinese with English abstract). [16] Huang, Y.F., Tong, J.N., Fraiser, M.L., et al., 2014. Extinction Patterns among Bivalves in South China during the Permian-Triassic Crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 399: 78-88. https://doi.org/10.1016/j.palaeo.2014.01.030 [17] Liao, W., Bond, D.P.G., Wang, Y.B., et al., 2017. An Extensive Anoxic Event in the Triassic of the South China Block: A Pyrite Framboid Study from Dajiang and Its Implications for the Cause (s) of Oxygen Depletion. Palaeogeography, Palaeoclimatology, Palaeoecology, 486: 86-95. https://doi.org/10.1016/j.palaeo.2016.11.012 [18] Liu, Y., Zhang, M., Peng, W.Q., et al., 2021. Phylogenetic and Functional Diversity Could be Better Indicators of Macroinvertebrate Community Stability. Ecological Indicators, 129: 107892. https://doi.org/10.1016/j.ecolind.2021.107892 [19] Rong, J.Y., Fang, Z.J., Chen, X., et al., 1996. Biotic Recovery First Episode of Evolution after Mass Extinction. Acta Palaeontologica Sinica, 35(3): 259-271 (in Chinese with English abstract). [20] Song, H.J., Song, H.Y., Tong, J.N., et al., 2021. Conodont Calcium Isotopic Evidence for Multiple Shelf Acidification Events during the Early Triassic. Chemical Geology, 562: 120038. https://doi.org/10.1016/j.chemgeo.2020.120038 [21] Song, T., Tong, J.N., Tian, L., et al., 2019. Taxonomic and Ecological Variations of Permian-Triassic Transitional Bivalve Communities from the Littoral Clastic Facies in Southwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 519: 108-123. https://doi.org/10.1016/j.palaeo.2018.02.027 [22] Song, Y.T., Wang, P., Li, G.D., et al., 2014. Relationships between Functional Diversity and Ecosystem Functioning: A Review. Acta Ecologica Sinica, 34(2): 85-91. https://doi.org/10.1016/j.chnaes.2014.01.001 [23] Sun, Y.D., Joachimski, M.M., Wignall, P.B., et al., 2012. Lethally Hot Temperatures during the Early Triassic Greenhouse. Science, 338(6105): 366-370. https://doi.org/10.1126/science.1224126 [24] Tong, J.N., 1997. Ecosystem Recovery after the Great Extinction at the End of Paleozoic in South China. Earth Science, 22(4): 373-376 (in Chinese with English abstract). [25] Tong, J.N., Chu, D.L., Liang, L., et al., 2019. Triassic Integrative Stratigraphy and Timescale of China. Science China Earth Sciences, 49(1): 194-226 (in Chinese). [26] Tong, J.N., Yin, H.F., 2002. The Lower Triassic of South China. Journal of Asian Earth Sciences, 20(7): 803-815. https://doi.org/10.1016/S1367-9120(01)00058-X [27] Wu, B.J., Li, H.X., Joachimski, M.M., et al., 2021. Roadian-Wordian (Middle Permian) Conodont Biostratigraphy, Sedimentary Facies and Paleotemperature Evolution at the Shuixiakou Section, Xikou Area, Southeastern Qinling Region, China. Journal of Earth Science, 32(3): 534-553. https://doi.org/10.1007/s12583-020-1099-y [28] Wu, H.T., He, W.H., Weldon, E.A., 2018. Prelude of Benthic Community Collapse during the End-Permian Mass Extinction in Siliciclastic Offshore Sub-Basin: Brachiopod Evidence from South China. Global and Planetary Change, 163: 158-170. https://doi.org/10.1016/j.gloplacha.2018.02.010 [29] Yang, F.Q., Gao, Y.Q., 2000. Late Permian Deep Water Strata and Bivalves of South Guizhou. Geoscience, 14(3): 327-332 (in Chinese with English abstract). [30] Yang, T.L., He, W.H., Zhang, K.X., et al., 2016. Palaeoecological Insights into the Changhsingian-Induan (Latest Permian-Earliest Triassic) Bivalve Fauna at Dongpan, Southern Guangxi, South China. Alcheringa: An Australasian Journal of Palaeontology, 40(1): 98-117. https://doi.org/10.1080/03115518.2015.1092283 [31] Yang, Z.Y., Yin, H.F., Wu, S.B., et al., 1987. Permian-Triassic Boundary Stratigraphy and Fauna of in South China. Geological Publishing House, Beijing (in Chinese). [32] Yin, H.F., Jiang, H.S., Xia, W.C., et al., 2014. The End-Permian Regression in South China and Its Implication on Mass Extinction. Earth-Science Reviews, 137: 19-33. https://doi.org/10.1016/j.earscirev.2013.06.003 [33] Yin, H.F., Wu, S.B., Du, Y.S., et al., 1999. South China Defined as Part of Tethyan Archipelagic Ocean System. Earth Science, 24(1): 1-12 (in Chinese with English abstract). [34] Zhang, Y., Shi, G.R., Wu, H.T., et al., 2017. Community Replacement, Ecological Shift and Early Warning Signals Prior to the End-Permian Mass Extinction: A Case Study from a Nearshore Clastic-Shelf Section in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 487: 118-135. https://doi.org/10.1016/j.palaeo.2017.07.042 [35] 曹怡然, 王垚, 缪雪, 等, 2022. 黔西滇东地区二叠纪-三叠纪之交有机碳同位素和生物地层对比. 地球科学, 47(6): 2264-2274. doi: 10.3799/dqkx.2021.262 [36] 冯增昭, 鲍志东, 李尚武, 等, 1997. 中国南方早中三叠世岩相古地理. 北京: 石油工业出版社. [37] 黄云飞, 童金南, 2014. 古-中生代之交双壳类演变研究进展. 地球科学进展, 29(8): 922-933. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201408008.htm [38] 戎嘉余, 方宗杰, 陈旭, 等, 1996. 生物复苏: 大绝灭后生物演化历史的第一幕. 古生物学报, 35(3): 259-271. https://www.cnki.com.cn/Article/CJFDTOTAL-GSWX603.000.htm [39] 童金南, 1997. 华南古生代末大绝灭后的生态系复苏. 地球科学, 22(4): 373-376. http://www.earth-science.net/article/id/524 [40] 童金南, 楚道亮, 梁蕾, 等, 2019. 中国三叠纪综合地层和时间框架. 中国科学: 地球科学, 49(1): 194-226. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201901010.htm [41] 杨逢清, 高勇群, 2000. 黔南晚二叠世深水相地层及双壳类动物群. 现代地质, 14(3): 327-332. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200003017.htm [42] 杨遵仪, 殷鸿福, 吴顺宝, 等, 1987. 华南二叠-三叠系界线地层及其动物群. 北京: 地质出版社. [43] 殷鸿福, 吴顺宝, 杜远生, 等, 1999. 华南是特提斯多岛洋体系的一部分. 地球科学, 24(1): 1-12. http://www.earth-science.net/article/id/749