• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    珠江口盆地陆丰凹陷古近系多动力‒多期次‒多要素复合成藏区定量预测与评价

    刘军 蔡哲 庞雄奇 胡涛 游婷婷 徐帜 刘阳 于飒 李洪博

    刘军, 蔡哲, 庞雄奇, 胡涛, 游婷婷, 徐帜, 刘阳, 于飒, 李洪博, 2022. 珠江口盆地陆丰凹陷古近系多动力‒多期次‒多要素复合成藏区定量预测与评价. 地球科学, 47(7): 2481-2493. doi: 10.3799/dqkx.2022.254
    引用本文: 刘军, 蔡哲, 庞雄奇, 胡涛, 游婷婷, 徐帜, 刘阳, 于飒, 李洪博, 2022. 珠江口盆地陆丰凹陷古近系多动力‒多期次‒多要素复合成藏区定量预测与评价. 地球科学, 47(7): 2481-2493. doi: 10.3799/dqkx.2022.254
    Liu Jun, Cai Zhe, Pang Xiongqi, Hu Tao, You Tingting, Xu Zhi, Liu Yang, Yu Sa, Li Hongbo, 2022. Quantitative Prediction and Evaluation of Paleogene Favorable Hydrocarbon Accumulation Areas with Multi-Dynamic-Stage-Factor Combination in Lufeng Sag, Pearl River Mouth Basin. Earth Science, 47(7): 2481-2493. doi: 10.3799/dqkx.2022.254
    Citation: Liu Jun, Cai Zhe, Pang Xiongqi, Hu Tao, You Tingting, Xu Zhi, Liu Yang, Yu Sa, Li Hongbo, 2022. Quantitative Prediction and Evaluation of Paleogene Favorable Hydrocarbon Accumulation Areas with Multi-Dynamic-Stage-Factor Combination in Lufeng Sag, Pearl River Mouth Basin. Earth Science, 47(7): 2481-2493. doi: 10.3799/dqkx.2022.254

    珠江口盆地陆丰凹陷古近系多动力‒多期次‒多要素复合成藏区定量预测与评价

    doi: 10.3799/dqkx.2022.254
    基金项目: 

    中海油深圳分公司重大生产科研项目 SCKY-2020-SZ-21

    详细信息
      作者简介:

      刘军(1973-),男,高级工程师,硕士,从事油气勘探研究.ORCID:0000⁃0003⁃2014⁃4653.E⁃mail:liujun1@cnooc.com.cn

      通讯作者:

      庞雄奇,E⁃mail: pangxq@cup.edu.cn

    • 中图分类号: P618.13

    Quantitative Prediction and Evaluation of Paleogene Favorable Hydrocarbon Accumulation Areas with Multi-Dynamic-Stage-Factor Combination in Lufeng Sag, Pearl River Mouth Basin

    • 摘要: 珠江口盆地陆丰凹陷古近系油气成藏受多种动力多种要素联合控制,因此不能完全依照经典的浮力成藏理论预测有利成藏区带. 通过剖析研究区已经发现的油气藏揭示出三种动力对油气成藏起到了关键作用,包括低位能(背斜类油气藏)、低压能(断块类油气藏)、低界面能(岩性地层类油气藏);在每一种动力作用下,油气成藏受到有效烃源层、优相储层、区域盖层、低势区带4个功能要素及其时空组合的控制. 通过建立多动力‒多要素复合成藏模式,对陆丰凹陷古近系4个目的层有利成藏区带进行了预测评价,优选出10个最有利目标,为研究区油气深化勘探和钻探目标优选提供了科学依据.

       

    • 图  1  研究区地理位置

      Fig.  1.  Geographical location of the study area

      图  2  陆丰凹陷古近系油藏分布

      Fig.  2.  Distribution of Paleogene reservoirs in Lufeng Sag

      图  3  陆丰凹陷排烃强度及其控油气成藏特征

      a. 陆丰凹陷现今累计排烃强度(104 t/km2)图;b. 排烃中心相对距离与储量占比的关系

      Fig.  3.  Hydrocarbon expulsion intensity and hydrocarbon accumulation control characteristics in Lufeng Sag

      图  4  陆丰凹陷储层控藏(a)及砂地比与含油气性的关系(b)

      Fig.  4.  Reservoir control (a) and relationship between sand ground ratio and oil-gas potential (b) in Lufeng Sag

      图  5  陆丰凹陷盖层控藏(a)及盖层厚度与储量的关系(b)

      Fig.  5.  Cap rock controlling reservoir (a) and relationship between cap rock thickness and petroliferous property (b) in Lufeng Sag

      图  6  陆丰凹陷古隆起控藏及其控油气特征

      a. T40沉积时期文昌组古构造图;b. 古隆起不同位置与油气储量的关系

      Fig.  6.  Reservoir control of paleo-uplift in Lufeng Sag and its oil and gas control characteristics

      图  7  陆丰凹陷低压能控藏及其控油气特征

      a. 陆丰凹陷古近系断裂与油藏平面分布图;b. 油气藏距断裂距离与油气储量的关系

      Fig.  7.  Low pressure controllable reservoirs and their hydrocarbon controlling characteristics in Lufeng Sag

      图  8  陆丰凹陷低界面能展布及其控油气特征

      a. 陆丰凹陷上文昌组势差分布图;b. 陆丰凹陷势差与含油气性的关系

      Fig.  8.  Low interface energy distribution and oil and gas control characteristics in Lufeng Sag

      图  9  功能要素组合控油气分布概念模型

      Fig.  9.  Conceptual model of oil and gas distribution controlled by combination of functional elements

      图  10  陆丰凹陷多要素和多动力分别控油气成藏分布预测评价结果

      a.上恩平组源控油气成藏概率平面分布图;b.上恩平组相控油气成藏概率平面分布图;c.上恩平组盖控油气成藏概率平面分布图;d1.上恩平组断裂带低压能控油气成概率平面分布图;d2.上恩平组砂岩体毛细管力差低界面能控油气成藏概率平面分布图;d3.上恩平组古隆起低位能控概率平面分布图

      Fig.  10.  Prediction and evaluation results of reservoir formation and distribution controlled by multi⁃factor and multi⁃dynamic in Lufeng Sag

      图  11  陆丰凹陷多动力‒多要素组合成藏模式(T-CDPS)预测评价油气藏分布结果

      a.背斜油气藏概率平面分布图;b.断块油气藏概率平面分布图;c.岩性油气藏概率平面分布图;d.综合预测油气成藏概率平面分布图

      Fig.  11.  Prediction and evaluation of reservoir distribution by multi⁃dynamic⁃factor combination reservoir forming model (T⁃CDPS) in Lufeng Sag

      图  12  研究区流体定年图和排烃量

      Fig.  12.  Fluid dating map and hydrocarbon expulsion in the study area

      图  13  上恩平组(a) 和下恩平组(b) “多动力‒多期次‒多要素”组合成藏预测结果

      Fig.  13.  Reservoir forming prediction results of "multi⁃dynamic⁃factor" combination of upper Enping Formation (a) and lower Enping Formation (b)

      图  14  上文昌组(a)和下文昌组(b)“多动力‒多期次‒多要素”组合成藏预测结果

      Fig.  14.  Reservoir forming prediction results of "multi⁃dynamic⁃factor" combination of upper Wenchang Formation (a) and lower Wenchang Formation (b)

      图  15  有利区成功失利井检验

      Fig.  15.  Inspection of successful and failed wells in favorable areas

      表  1  部分探井功能要素成藏概率

      Table  1.   Reservoir forming probability of functional elements of some exploration wells

      井号 层位 各要素成藏概率
      C
      (区域盖层)
      D
      (沉积相)
      L、M、F
      (低势区)
      S
      (烃源灶)
      D-1 上文昌 0.8 0.3 0.1 0.95
      D-2 上文昌 0.9 0.5 0.35 0.7
      D-3 上文昌 0.1 / / 0.65
      D-4 上文昌 0.1 / / 0.6
      D-5 上文昌 0.1 / 0.1 0.7
      D-6 上文昌 0.75 0.4 0.3 0.85
      D-7 上文昌 0.27 0.8 0.2 0.4
      D-8 上文昌 0.3 0.85 0.2 0.65
      D-9 下文昌 0.3 0.4 0.1 0.85
      A-6 下文昌 0.4 0.3 0.3 0.8
      E-1 下文昌 0.4 0.3 0.45 0.7
      E-2 下文昌 0.65 0.3 / /
      E-3 下文昌 0.4 0.2 0.3 0.85
      E-4 下文昌 0.2 0.5 / 0.7
      E-5 下文昌 / / / 0.7
      E-6 下文昌 0.6 0.3 0.55 0.95
      E-7 下文昌 0.2 0.5 0.2 0.7
      E-8 下文昌 0.4 0.3 0.45 0.8
      E-9 下文昌 0.4 0.4 0.3 0.8
      F-1 下文昌 0.7 0.3 0.55 0.95
      F-2 下文昌 0.5 0.2 0.45 0.82
      F-3 下文昌 0.4 0.3 0.55 0.85
      F-4 下文昌 0.2 0.6 0.1 0.7
      A-2 下文昌 0.3 0.5 0.1 0.85
      F-5 下文昌 0.3 0.5 0.45 0.85
      F-6 下文昌 0.2 0.5 0.35 0.6
      F-7 下文昌 0.2 0.5 0.2 0.65
      A-5 下文昌 0.4 0.4 0.4 0.7
      A-4-1 下文昌 0.3 0.37 0.3 0.9
      A-4-2 下文昌 0.3 0.37 0.3 0.9
      F-8 下文昌 0.6 0.3 0.6 0.9
      下载: 导出CSV
    • [1] Beglinger, S. E., Doust, H., Cloetingh, S., 2012. Relating Petroleum System and Play Development to Basin Evolution: West African South Atlantic Basins. Marine and Petroleum Geology, 30(1): 1-25. https://doi.org/10.1016/j.marpetgeo.2011.08.008
      [2] Cheng, Y. J., Wu, Z. P., Zhang, J., et al., 2020. Early Cenozoic Evolution of Fault System in Xijiang Sag and Its Implication to Clockwise Rotation of Extension Stress in Northern Margin of South China Sea. Earth Science, 45(6): 2199-2209 (in Chinese with English abstract).
      [3] Dai, J. X., Song, Y., Zhang, H. F., 1996. The Main Controlling Factors for the Formation of Large and Medium⁃Sized Gas Fields in China. Scientia Sinica Terrae, 26(6): 481-487 (in Chinese).
      [4] Dai, Y. D., Niu, Z. C., Wang, X. D., et al., 2019. Difference of Oil and Gas Enrichment Law between Paleogene and Neogene in Lufeng Sag of Pearl River Mouth Basin and Its Main Controlling Factors. Journal of Petroleum, 40 (Supplement 1): 41-52.
      [5] Davis, R. W., 1987. Analysis of Hydrodynamic Factors in Petroleum Migration and Entrapment. AAPG Bulletin, 71(6): 643-649. https://doi.org/10.1306/94887884⁃1704⁃11d7⁃8645000102c1865d
      [6] Downey, M. W., 1984. Evaluating Seals for Hydrocarbon Accumulations. AAPG Bulletin, 68(11): 1752-1763. https://doi.org/10.1306/ad461994⁃16f7⁃11d7⁃8645000102c1865d
      [7] England, W. A., MacKenzie, A. S., Mann, D. M., et al., 1987. The Movement and Entrapment of Petroleum Fluids in the Subsurface. Journal of the Geological Society, 144(2): 327-347. https://doi.org/10.1144/gsjgs.144.2.0327
      [8] Evamy, B. D., Haremboure, J., Kamerling, P., et al., 1978. Hydrocarbon Habitat of Tertiary Niger Delta. AAPG Bulletin, 62(1): 1-39. https://doi.org/10.1306/c1ea47ed⁃16c9⁃11d7⁃8645000102c1865d
      [9] Grunau, H. R., 1987. A Worldwide Look at the Cap⁃Rock Problem. Journal of Petroleum Geology, 10(3): 245-265. https://doi.org/10.1111/j.1747⁃5457.1987.tb00945.x
      [10] He, M., Graham, S., Scheirer, A. H., et al., 2014. A Basin Modeling and Organic Geochemistry Study in the Vallecitos Syncline, San Joaquin Basin, California. Marine and Petroleum Geology, 49: 15-34. https://doi.org/10.1016/j.marpetgeo.2013.09.001
      [11] Hu, C. Y., 2005. Research on the Appliance Extent of "Source Control Theory" by Semi⁃Quantitative Statistics Characteristics of Oil and Gas Migration Distance. Natural Gas Industry, 25(10): 1-3 (in Chinese with English abstract).
      [12] Hu, J. Y., Xu, S. B., Tong, X. G., 1986. Formation and Distribution of Complex Petroleum Accumulation Zones in Bohaiwan Basin. Petroleum Expoloration and Development, 13(1): 1-8 (in Chinese with English abstract).
      [13] Hubbert, M. K., 1953. Entrapment of Petroleum under Hydrodynamic Conditions. AAPG Bulletin, 37(8): 1954-2026. https://doi.org/10.1306/5ceadd61⁃16bb⁃11d7⁃8645000102c1865d
      [14] Jiang, Z. X., Yang, H. J., Li, Z., et al., 2010. Differences of Hydrocarbon Enrichment between the Upper and the Lower Structural Layers in the Tazhong Paleouplift. Acta Geologica Sinica (English Edition), 84(5): 1116-1127. https://doi.org/10.1111/j.1755⁃6724.2010.00284.x
      [15] Klemme, H. D., Ulmishek, G. F., 1991. Effective Petroleum Source Rocks of the World: Stratigraphic Distribution and Controlling Depositional Factors. AAPG Bulletin, 75(12): 1809-1851. https://doi.org/10.1306/0c9b2a47⁃1710⁃11d7⁃8645000102c1865d
      [16] Li, J. H., 2012. Oil and Gas Distribution Model Controlled by Functional Element Combination and Its Application in Damintun Sag (Dissertation). China University of Petroleum, Beijing (in Chinese with English abstract).
      [17] Magoon, L. B., Dow, W. G., 1994. The Petroleum System: From Source to Trap. AAPG Memoir 60. AAPG, Tulsa.
      [18] Meng, Q. Y., Pang, X. Q., Gao, J. B., 2008. The Multi⁃Factor Recombination and Processes Superimposition Model for Hydrocarbon Accumulation: Application to the Silurian in the Tarim Basin. Petroleum Science, 5(1): 13-19. https://doi.org/10.1007/s12182⁃008⁃0002⁃8
      [19] Mi, L. J., Zhang, X. T., Chen, W. T., et al., 2018. Hydrocarbon Enrichment Law of Paleogene Zhu1 Depression and Its next Exploration Strategy in Pearl River Mouth Basin. China Offshore Oil and Gas, 30(6): 1-13 (in Chinese with English abstract).
      [20] Pang, H., Chen, J. Q., Pang, X. Q., et al., 2013. Key Factors Controlling Hydrocarbon Accumulations in Ordovician Carbonate Reservoirs in the Tazhong Area, Tarim Basin, Western China. Marine and Petroleum Geology, 43: 88-101. https://doi.org/10.1016/j.marpetgeo.2013.03.002
      [21] Pang, X. Q., 1995. Theory and Application of Hydrocarbon Expulsion Threshold Oil and Gas Control. Petroleum Industry Press, Beijing (in Chinese).
      [22] Pang, X. Q., Jia, C. Z., Chen, J. Q., et al., 2021a. A Unified Model for the Formation and Distribution of Both Conventional and Unconventional Hydrocarbon Reservoirs. Geoscience Frontiers, 12(2): 695-711. https://doi.org/10.1016/j.gsf.2020.06.009
      [23] Pang, X. Q., Jia, C. Z., Wang, W. Y., et al., 2021b. Buoyance⁃Driven Hydrocarbon Accumulation Depth and Its Implication for Unconventional Resource Prediction. Geoscience Frontiers, 12(4): 101133. https://doi.org/10.1016/j.gsf.2020.11.019
      [24] Pang, X. Q., Shao, X. H., Li, M. W., et al., 2021c. Correlation and Difference between Conventional and Unconventional Reservoirs and Their Unified Genetic Classification. Gondwana Research, 97: 73-100. https://doi.org/10.1016/j.gr.2021.04.011
      [25] Pang, X. Q., Jin, Z. J., Jiang, Z. X., et al., 2002. Evaluation of Hydrocarbon Resources of Superimposed Basin and Its Significance. Petroleum Exploration and Development, 29(1): 9-13 (in Chinese with English abstract).
      [26] Pang, X. Q., Luo, X. R., Jiang, Z. X., et al., 2007. Advancements and Problems on Hydrocarbon Accumulation Research of Complicated Superimposed Basins in Western China. Advances in Earth Science, 22(9): 879-887 (in Chinese with English abstract).
      [27] Pang, X. Q., Zhou, X. Y., Jiang, Z. X., et al., 2012. Hydrocarbon Reservoirs Formation, Evolution, Prediction and Evaluation in the Superimposed Basins. Acta Geologica Sinica, 86(1): 1-103 (in Chinese with English abstract). doi: 10.1111/j.1755-6724.2012.00606.x
      [28] Pedersen, T. F., Calvert, S. E., 1990. Anoxia vs. Productivity: What Controls the Formation of Organic⁃Carbon⁃Rich Sediments and Sedimentary Rocks? AAPG Bulletin, 74(4): 454-466. https://doi.org/10.1306/0c9b232b⁃1710⁃11d7⁃8645000102c1865d
      [29] Perrodon, A., 1992. Petroleum Systems: Models and Applications. Journal of Petroleum Geology, 15(2): 319-325. https://doi.org/10.1111/j.1747⁃5457.1992.tb00875.x
      [30] Reading, H. G., 1978. Sedimentary Environments and Facies. Palaios, 1(5): 517-518. https://doi.org/10.1017/S0016756800044113
      [31] Sun, Q. L., Wu, S. G., Lü, F. L., et al., 2010. Polygonal Faults and Their Implications for Hydrocarbon Reservoirs in the Southern Qiongdongnan Basin, South China Sea. Journal of Asian Earth Sciences, 39(5): 470-479. https://doi.org/10.1016/j.jseaes.2010.04.002
      [32] Tissot, B. P., Welte, D. H., 1978. Petroleum Formation and Occurrence. Springer⁃Verlag, Berlin.
      [33] Wang, H. J., Pang, X. Q., Wang, Z. M., et al., 2010. Multiple⁃Element Matching Reservoir Formation and Quantitative Prediction of Favorable Areas in Superimposed Basins. Acta Geologica Sinica (English Edition), 84(5): 1035-1054. https://doi.org/10.1111/j.1755⁃6724.2010.00280.x
      [34] Zhang, Q. Q., Liu, K. Y., Heng, L. Q., et al., 2021. Characteristics and Genetic Distribution Model of Top Calcareous Cementation Layers within Zhujiang Formation in Panyu a Oilfield, Pearl River Mouth Basin. Earth Science, 46(5): 1783-1796 (in Chinese with English abstract).
      [35] Zhang, S. C., Huang, H. P., 2005. Geochemistry of Palaeozoic Marine Petroleum from the Tarim Basin, NW China: Part 1. Oil Family Classification. Organic Geochemistry, 36(8): 1204-1214. https://doi.org/10.1016/j.orggeochem.2005.01.013
      [36] Zhang, S. C., Zhang, B. M., Li, B. L., et al., 2011. History of Hydrocarbon Accumulations Spanning Important Tectonic Phases in Marine Sedimentary Basins of China: Taking the Tarim Basin as an Example. Petroleum Exploration and Development, 38(1): 1-15. https://doi.org/10.1016/S1876⁃3804(11)60010⁃4
      [37] Zhou, X. X., 1997. Essentials about Hydrocarbon Distribution Controlled by Source and Sela. Petroleum Exploration and Development, 24(6): 4-7 (in Chinese with English abstract).
      [38] Zhu, X. M., 2008. Sedimentary Petrology. Petroleum Industry Press, Beijing (in Chinese).
      [39] 程燕君, 吴智平, 张杰, 等, 2020. 西江凹陷早新生代断裂演化及其对南海北缘应力场顺时针旋转的响应. 地球科学, 45(6): 2199-2209. doi: 10.3799/dqkx.2019.250
      [40] 戴金星, 宋岩, 张厚福, 1996. 中国大中型气田形成的主要控制因素. 中国科学: 地球科学, 26(6): 481-487. doi: 10.3321/j.issn:1006-9267.1996.06.001
      [41] 胡朝元, 2005. "源控论"适用范围量化分析. 天然气工业, 25(10): 1-3. doi: 10.3321/j.issn:1000-0976.2005.10.001
      [42] 胡见义, 徐树宝, 童晓光, 1986. 渤海湾盆地复式油气聚集区(带)的形成和分布. 石油勘探与开发, 13(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK198601000.htm
      [43] 李建华, 2012. 功能要素组合控油气分布模式及其在大民屯凹陷的应用(博士学位论文). 北京: 中国石油大学.
      [44] 米立军, 张向涛, 陈维涛, 等, 2018. 珠江口盆地珠一坳陷古近系油气富集规律及下一步勘探策略. 中国海上油气, 30(6): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201806001.htm
      [45] 庞雄奇, 1995. 排烃门限控油气理论与应用. 北京: 石油工业出版社.
      [46] 庞雄奇, 金之钧, 姜振学, 等, 2002. 叠合盆地油气资源评价问题及其研究意义. 石油勘探与开发, 29(1): 9-13. doi: 10.3321/j.issn:1000-0747.2002.01.003
      [47] 庞雄奇, 罗晓容, 姜振学, 等, 2007. 中国西部复杂叠合盆地油气成藏研究进展与问题. 地球科学进展, 22(9): 879-887. doi: 10.3321/j.issn:1001-8166.2007.09.001
      [48] 庞雄奇, 周新源, 姜振学, 等, 2012. 叠合盆地油气藏形成、演化与预测评价. 地质学报, 86(1): 1-103. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201201003.htm
      [49] 张青青, 刘可禹, 衡立群, 等, 2021. 珠江口盆地番禺A油田珠江组"顶钙"发育特征、成因与分布模式. 地球科学, 46(5): 1783-1796. doi: 10.3799/dqkx.2020.139
      [50] 周兴熙, 1997. 源‒盖共控论述要. 石油勘探与开发, 24(6): 4-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK199706001.htm
      [51] 朱筱敏, 2008. 沉积岩石学. 北京: 石油工业出版社.
    • 加载中
    图(15) / 表(1)
    计量
    • 文章访问数:  201
    • HTML全文浏览量:  69
    • PDF下载量:  43
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-05-24
    • 刊出日期:  2022-07-25

    目录

      /

      返回文章
      返回