• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东海丽水凹陷早新生代沉积特征及物源演化

    刘正华 侯元立 陈淑慧 廖凯飞 邵磊 朱伟林

    刘正华, 侯元立, 陈淑慧, 廖凯飞, 邵磊, 朱伟林, 2022. 东海丽水凹陷早新生代沉积特征及物源演化. 地球科学, 47(7): 2562-2572. doi: 10.3799/dqkx.2022.244
    引用本文: 刘正华, 侯元立, 陈淑慧, 廖凯飞, 邵磊, 朱伟林, 2022. 东海丽水凹陷早新生代沉积特征及物源演化. 地球科学, 47(7): 2562-2572. doi: 10.3799/dqkx.2022.244
    Liu Zhenghua, Hou Yuanli, Chen Shuhui, Liao Kaifei, Shao Lei, Zhu Weilin, 2022. Early Cenozoic Sedimentary Characteristics and Provenance Evolution of Lishui Depression, East China Sea. Earth Science, 47(7): 2562-2572. doi: 10.3799/dqkx.2022.244
    Citation: Liu Zhenghua, Hou Yuanli, Chen Shuhui, Liao Kaifei, Shao Lei, Zhu Weilin, 2022. Early Cenozoic Sedimentary Characteristics and Provenance Evolution of Lishui Depression, East China Sea. Earth Science, 47(7): 2562-2572. doi: 10.3799/dqkx.2022.244

    东海丽水凹陷早新生代沉积特征及物源演化

    doi: 10.3799/dqkx.2022.244
    基金项目: 

    国家科技重大计划 2018YFE0202400

    国家自然科学基金项目 42076066

    国家自然科学基金项目 92055203

    详细信息
      作者简介:

      刘正华(1978-),女,助理研究员,博士,从事油气成藏、沉积学和地球化学研究. ORCID:0000-0001-9839-1967. E-mail:liuzhtongji@tongji.edu.cn

    • 中图分类号: P618.13

    Early Cenozoic Sedimentary Characteristics and Provenance Evolution of Lishui Depression, East China Sea

    • 摘要: 东海陆架盆地新生代发育大型弧后盆地,接受了海相及陆相沉积,油气资源丰富,勘探前景广阔. 其中,丽水凹陷发育了古新统‒始新统扇三角洲、河流三角洲及滨浅海相沉积,其沉积环境及沉积物源研究一直存在争议. 通过古生物学和碎屑锆石U-Pb年龄谱系综合分析,对丽水凹陷古新统‒始新统沉积环境及潜在源区进行系统的源汇对比研究. 结果表明,丽水凹陷古新统及下中始新统以滨浅海相为特征,凹陷东侧海水较深,沉积物主要来自周边燕山期岩浆岩古隆起. 然而,凹陷东、西次凹在沉积物源上存在明显差异,西次凹沉积物锆石U-Pb年龄谱系仅发育燕山期单峰,东次凹还存在明显的印支期物源;特别是进入始新世,东次凹温州组物源发生明显改变,出现大量古老锆石,沉积物来自北部渔山低隆起,显示该时期在凹陷北侧发育较大规模的三角洲沉积. 晚始新世,由于玉泉运动,丽水凹陷发生隆升剥蚀,直到中新世再次接受沉积. 丽水凹陷古新统‒始新统以海陆过渡环境为主,有利于烃源岩及储集体的发育,具有良好的油气勘探潜力.

       

    • 图  1  东海陆架盆地构造区划图及研究样品分布

      LSS. 丽水凹陷;JJS. 椒江凹陷;XHS. 西湖凹陷;FZS. 福州凹陷;DBS. 钓北凹陷;QTS. 钱塘凹陷

      Fig.  1.  Simplified geological map and sample location of the East China Sea Shelf Basin

      图  2  丽水凹陷古新‒始新世地层构造演化综合图

      Fig.  2.  Paleocene-Eocene stratigraphic framework of the Lishui Depression

      图  3  丽水凹陷基底及周边潜在源区锆石年龄谱系特征

      Fig.  3.  Zircon U-Pb spectra of the Lishui Depression basement and potential source terranes

      图  4  丽水凹陷的海洋化石记录和海平面变化

      Fig.  4.  Marine fossil records and sea-level changes of the Lishui Depression

      图  5  丽水凹陷白垩纪到晚始新世样品的碎屑锆石U-Pb年龄谱图(n代表有效数据点)

      Fig.  5.  Detrital zircon U-Pb age spectra of Cretaceous to Late Eocene samples from the Lishui Depression (n represents effective analyses)

      图  6  碎屑锆石Th/U比值与U-Pb年龄分布

      Fig.  6.  Distribution of Th/U ratios and U-Pb ages of detrital zircon

      图  7  古新世到始新世古环境演化阶段

      Fig.  7.  Evolutionary stages of sedimentary environment from Paleocene to Eocene

    • [1] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/S0009-2541(02)00195-X
      [2] Cao, L. C., Shao, L., Qiao, P. J., et al., 2017. Geochemical Evolution of Oligocene-Middle Miocene Sediments in the Deep-Water Area of the Pearl River Mouth Basin, Northern South China Sea. Marine and Petroleum Geology, 80: 358-368. https://doi.org/10.1016/j.marpetgeo.2016.12.010
      [3] Chen, B., Wang, J. L., Wu, J. S., et al., 2002. Study on the Basement Properties of the South Haijiao Uplift in the East China Sea Shelf Basin. Experimental Petroleum Geology, 24(4): 301-305 (in Chinese with English abstract).
      [4] Chen, C. F., Zhong, K., Zhu, W. L., et al., 2017. Provenance of Sediments and Its Effects on Reservoir Physical Properties in Lishui Sag, East China Sea Shelf Basin. Oil & Gas Geology, 38(5): 963-972 (in Chinese with English abstract).
      [5] Cui, Y. C., Cao, L. C., Qiao, P. J., et al., 2018. Provenance Evolution of Paleogene Sequence (Northern South China Sea) Based on Detrital Zircon U-Pb Dating Analysis. Earth Science, 43(11): 4169-4179 (in Chinese with English abstract).
      [6] Cui, Y. C., Shao, L., Li, Z. X., et al., 2021. A Mesozoic Andean-Type Active Continental Margin along Coastal South China: New Geological Records from the Basement of the Northern South China Sea. Gondwana Research, 99: 36-52. https://doi.org/10.1016/j.gr.2021.06.021
      [7] Cui, Y. C., Shao, L., Qiao, P. J., et al., 2019. Upper Miocene-Pliocene Provenance Evolution of the Central Canyon in Northwestern South China Sea. Marine Geophysical Research, 40(2): 223-235. https://doi.org/10.1007/s11001-018-9359-2
      [8] Gradstein, F. M., Ogg, J. G., Hilgen, F. J., 2012. On the Geologic Time Scale. Newsletters on Stratigraphy, 45(2): 171-188. https://doi.org/10.1127/0078-0421/2012/0020
      [9] Guo, Z., Gao, S. L., Wang, J. Q., et al., 2015. U-Pb Dating of the Zircon from Cenozoic Basement Rock and Its Tectonic Significance in the Lishui Sag of the East China Sea Shelf Basin. Marine Science Bulletin, 34(6): 675-687 (in Chinese with English abstract).
      [10] Hou, Y. L., Zhu, W. L., Qiao, P. J., et al., 2021. Sediment Source and Environment Evolution in Taiwan Island during the Eocene-Miocene. Acta Oceanologica Sinica, 40(2): 114-122. https://doi.org/10.1007/s13131-021-1756-8
      [11] Jiang, L., 2003. Exploration Status and Perspective of Petroleum Resources in East China Sea Shelf Basin. China Offshore Oil and Gas (Geology), 17(1): 1-5 (in Chinese with English abstract).
      [12] Jiang, Y. M., Zou, W., Liu, J. S., et al., 2020. Genetic Mechanism of Inversion Anticline Structure at the End of Miocene in Xihu Sag, East China Sea: A New Understanding of Basement Structure Difference. Earth Science, 45(3): 968-979 (in Chinese with English abstract).
      [13] Kwon, Y. I., Jr Boggs, S., 2002. Provenance Interpretation of Tertiary Sandstones from the Cheju Basin (NE East China Sea): A Comparison of Conventional Petrographic and Scanning Cathodoluminescence Techniques. Sedimentary Geology, 152(1-2): 29-43. https://doi.org/10.1016/S0037-0738(01)00284-6
      [14] Li, J. B., Ding, W. W., Wu, Z. Y., et al., 2017. Origin of the East China Sea. Scientia Sinica Terrae, 47(4): 406-411 (in Chinese). doi: 10.1360/N072017-00006
      [15] Li, Q. Y., Wu, G. X., Zhang, L. L., et al., 2017. Paleogene Marine Deposition Records of Rifting and Breakup of the South China Sea: An Overview. Science China Earth Sciences, 60(12): 2128-2140. https://doi.org/10.1007/s11430-016-0163-x
      [16] Li, S. Z., Suo, Y. H., Li, X. Y., et al., 2018. Mesozoic Plate Subduction in West Pacific and Tectono- Magmatic Response in the East Asian Ocean-Continent Connection Zone. Chinese Science Bulletin, 63(16): 1550-1593 (in Chinese). doi: 10.1360/N972017-01113
      [17] Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/g23193a.1
      [18] Liu, J. H., Yang, X. H., Wu, Z. X., et al., 2004. Zircon Tracing Application of Paleocene-Eocene in Lishui Sag of the East China Sea Basin. Marine Geology & Quaternary Geology, 24(1): 85-92 (in Chinese with English abstract).
      [19] Liu, J. S., Xu, H. Z., Jiang, Y. M., et al., 2020. Mesozoic and Cenozoic Basin Structure and Tectonic Evolution in the East China Sea Basin. Acta Geologica Sinica, 94(3): 675-691 (in Chinese with English abstract).
      [20] Meng, X. B., Shao, L., Cui, Y. C., et al., 2021. Sedimentary Records from Hengchun Accretionary Prism Turbidites on Taiwan Island: Implication on Late Neogene Migration Rate of the Luzon Subduction System. Marine and Petroleum Geology, 124: 104820. https://doi.org/10.1016/j.marpetgeo.2020.104820
      [21] Qin, L. Z., Liu, J. S., Li, S., et al., 2017. Characteristics of Zircon in the Huagang Formation of the Ccentral Inversion Zone of Xihu Sag and Its Provenance Indication. Petroleum Geology & Experiment, 39(4): 498-504, 526 (in Chinese with English abstract).
      [22] Ren, J. Y., 2018. Genetic Dynamics of China Offshore Cenozoic Basins. Earth Science, 43(10): 3337-3361 (in Chinese with English abstract).
      [23] Shao, L., Cao, L. C., Pang, X., et al., 2016. Detrital Zircon Provenance of the Paleogene Syn-Rift Sediments in the Northern South China Sea. Geochemistry, Geophysics, Geosystems, 17(2): 255-269. https://doi.org/10.1002/2015GC006113
      [24] Shao, L., Cui, Y. C., Qiao, P. J., et al., 2019. Implications on the Early Cenozoic Palaeogeographical Reconstruction of SE Eurasian Margin Based on Northern South China Sea Palaeo-Drainage System Evolution. Journal of Palaeogeography (Chinese Edition), 21(2): 216-231 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GDLX201902003.htm
      [25] Shao, L., Cui, Y. C., Stattegger, K., et al., 2019. Drainage Control of Eocene to Miocene Sedimentary Records in the Southeastern Margin of Eurasian Plate. GSA Bulletin, 131(3-4): 461-478. https://doi.org/10.1130/B32053.1
      [26] Shao, L., Qiao, P. J., Pang, X., et al., 2009. Nd Isotopic Variations and Its Implications in the Recent Sediments from the Northern South China Sea. Chinese Science Bulletin, 54(1): 98-103 (in Chinese) doi: 10.1360/csb2009-54-1-98
      [27] Suo, Y. H., Li, S. Z., Dai, L. M., et al., 2012. Cenozoic Tectonic Migration and Basin Evolution in East Asia and Its Continental Margins. Acta Petrologica Sinica, 28(8): 2602-2618 (in Chinese with English abstract).
      [28] Tang, X. J., Jiang, Y. M., Zhang, S. L., 2018. Tectonic Environment of Volcanic Rocks in the Pinghu Slope Belt and Its Petroleum Geological Significance. Geological Science and Technology Information, 37(1): 27-36 (in Chinese with English abstract).
      [29] Tian, B., Li, X. Y., Pang, G. Y., et al., 2012. Sedimentary Systems of the Superimposed Rift-Subsidence Basin: Taking Lishui-Jiaojiang Sag of the East China Sea as an Example. Acta Sedimentologica Sinica, 30(4): 696-705 (in Chinese with English abstract).
      [30] Wang, P. X., Min, Q. B., Bian, Y. H., 1982. On the Sedimentary Environments of the Paleogene Strata in Oil-Bearing Basins in the Eastern Part of China. Geological Review, 28(5): 402-412 (in Chinese with English abstract).
      [31] Wang, W., Bidgoli, T., Yang, X. H., et al., 2018. Source-to-Sink Links between East Asia and Taiwan from Detrital Zircon Geochronology of the Oligocene Huagang Formation in the East China Sea Shelf Basin. Geochemistry, Geophysics, Geosystems, 19(10): 3673-3688. https://doi.org/10.1029/2018GC007576
      [32] Xu, X. S., O'Reilly, S. Y., Griffin, W. L., et al., 2007. The Crust of Cathaysia: Age, Assembly and Reworking of Two Terranes. Precambrian Research, 158(1-2): 51-78. https://doi.org/10.1016/j.precamres.2007.04.010
      [33] Yang, W. C., He, L. J., Jiang, J. S., et al., 2022. A Synthetic Study of the Crust Structures of Zhejiang Province. Acta Geologica Sinica, 96(1): 95-103 (in Chinese with English abstract).
      [34] Yu, J. H., Wang, L. J., O'Reilly, S. Y., et al., 2009. A Paleoproterozoic Orogeny Recorded in a Long-Lived Cratonic Remnant (Wuyishan Terrane), Eastern Cathaysia Block, China. Precambrian Research, 174(3-4): 347-363. https://doi.org/10.1016/j.precamres.2009.08.009
      [35] Zhang, G. C., Deng, Y. H., Wu, J. F., et al., 2013a. Coal Measure Source-Rock Characteristics and Gas Exploration Directions in Cenozoic Superimposed Faulted Depressions, Offshore China. China Offshore Oil and Gas, 25(6): 15-25 (in Chinese with English abstract).
      [36] Zhang, G. C., Miao, S. D., Chen, Y., et al., 2013b. Distribution of Gas Enrichment Regions Controlled by Source Rocks and Geothermal Heat in China Offshore Basins. Natural Gas Industry, 33(4): 1-17 (in Chinese with English abstract).
      [37] Zhang, G. C., Mi, L. J., Qu, H. J., et al., 2011. A Basic Distributional Framework of Global Deepwater Basins and Hydrocarbon Characteristics. Acta Petrolei Sinica, 32(3): 369-378 (in Chinese with English abstract).
      [38] Zhang, J. P., Li, S. Z., Suo, Y. H., 2016. Formation, Tectonic Evolution and Dynamics of the East China Sea Shelf Basin. Geological Journal, 51(S1): 162-175. https://doi.org/10.1002/gj.2808
      [39] Zhang, L. X., Liu, P. H., Wang, Y. L., et al., 2021. Depositional Timing and Provenance Characteristics of the Cretaceous Linsishan Formation in the Shewopo Area, Jiaolai Basin: New Evidence from Detrital Zircon U-Pb Dating and REE Composition. Earth Science, 46(3): 1119-1132 (in Chinese with English abstract).
      [40] Zhao, M., Shao, L., Liang, J. S., et al., 2015. No Red River Capture since the Late Oligocene: Geochemical Evidence from the Northwestern South China Sea. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 122: 185-194. https://doi.org/10.1016/j.dsr2.2015.02.029
      [41] Zheng, H. B., Clift, P. D., Wang, P., et al., 2013. Pre-Miocene Birth of the Yangtze River. Proceedings of the National Academy of Sciences of the United States of America, 110(19): 7556-7561. https://doi.org/10.1073/pnas.1216241110
      [42] Zhong, K., Zhu, W. L., Gao, S. L., et al., 2018. Key Geological Questions of the Formation and Evolution and Hydrocarbon Accumulation of the East China Sea Shelf Basin. Earth Science, 43(10): 3485-3497 (in Chinese with English abstract).
      [43] Zhou, Z. Y., Jia, J. Y., Li, J. B., et al., 2002. Quantitative Study on Inversion Structures in Xihu Depression, East China Sea: Constraints from Fission Track Analysis Data. Marine Geology & Quaternary Geology, 22(1): 63-67 (in Chinese with English abstract).
      [44] 陈冰, 王家林, 吴健生, 等, 2002. 东海陆架盆地海礁凸起南块基底性质研究. 石油实验地质, 24(4): 301-305. doi: 10.3969/j.issn.1001-6112.2002.04.003
      [45] 陈春峰, 钟楷, 朱伟林, 等, 2017. 东海丽水凹陷物源及其对储层物性影响. 石油与天然气地质, 38(5): 963-972. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201705015.htm
      [46] 崔宇驰, 曹立成, 乔培军, 等, 2018. 南海北部古近纪沉积物碎屑锆石U-Pb年龄及物源演化. 地球科学, 43(11): 4169-4179. doi: 10.3799/dqkx.2017.594
      [47] 郭真, 高顺莉, 王建强, 等, 2015. 东海丽水凹陷新生代基底岩体锆石U-Pb年龄及其构造意义. 海洋通报, 34(6): 675-687. https://www.cnki.com.cn/Article/CJFDTOTAL-HUTB201506011.htm
      [48] 姜亮, 2003. 东海陆架盆地油气资源勘探现状及含油气远景. 中国海上油气(地质), 17(1): 1-5. doi: 10.3969/j.issn.1673-1506.2003.01.001
      [49] 蒋一鸣, 邹玮, 刘金水, 等, 2020. 东海西湖凹陷中新世末反转背斜构造成因机制: 来自基底结构差异的新认识. 地球科学, 45(3): 968-979. doi: 10.3799/dqkx.2019.292
      [50] 李家彪, 丁巍伟, 吴自银, 等, 2017. 东海的来历. 中国科学: 地球科学, 47(4): 406-411. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201704004.htm
      [51] 李三忠, 索艳慧, 李玺瑶, 等, 2018. 西太平洋中生代板块俯冲过程与东亚洋陆过渡带构造‒岩浆响应. 科学通报, 63(16): 1550-1593. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201816006.htm
      [52] 刘俊海, 杨香华, 吴志轩, 等, 2004. 东海盆地丽水凹陷古新统锆石示踪作用分析. 海洋地质与第四纪地质, 24(1): 85-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200401012.htm
      [53] 刘金水, 许怀智, 蒋一鸣, 等, 2020. 东海盆地中、新生代盆架结构与构造演化. 地质学报, 94(3): 675-691. doi: 10.3969/j.issn.0001-5717.2020.03.001
      [54] 秦兰芝, 刘金水, 李帅, 等, 2017. 东海西湖凹陷中央反转带花港组锆石特征及物源指示意义. 石油实验地质, 39(4): 498-504, 526. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201704010.htm
      [55] 任建业, 2018. 中国近海海域新生代成盆动力机制分析. 地球科学, 43(10): 3337-3361. doi: 10.3799/dqkx.2018.330
      [56] 邵磊, 崔宇驰, 乔培军, 等, 2019. 南海北部古河流演变对欧亚大陆东南缘早新生代古地理再造的启示. 古地理学报, 21(2): 216-231. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201902003.htm
      [57] 邵磊, 乔培军, 庞雄, 等, 2009. 南海北部近代沉积物钕同位素分布及意义. 科学通报, 54(1): 98-103. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200901019.htm
      [58] 索艳慧, 李三忠, 戴黎明, 等, 2012. 东亚及其大陆边缘新生代构造迁移与盆地演化. 岩石学报, 28(8): 2602-2618.
      [59] 唐贤君, 蒋一鸣, 张绍亮, 2018. 平湖斜坡带火山岩层发育构造环境及油气地质意义. 地质科技情报, 37(1): 27-36. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201801004.htm
      [60] 田兵, 李小燕, 庞国印, 等, 2012. 叠合断陷盆地沉积体系分析: 以东海丽水—椒江凹陷为例. 沉积学报, 30(4): 696-705. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201204010.htm
      [61] 汪品先, 闵秋宝, 卞云华, 1982. 关于我国东部含油盆地早第三纪地层的沉积环境. 地质论评, 28(5): 402-412. doi: 10.3321/j.issn:0371-5736.1982.05.002
      [62] 杨文采, 何良军, 江金生, 等, 2022. 浙江省地壳构造综合研究. 地质学报, 96(1): 95-103. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202201006.htm
      [63] 张功成, 邓运华, 吴景富, 等, 2013a. 中国近海新生代叠合断陷煤系烃源岩特征与天然气勘探方向. 中国海上油气, 25(6): 15-25. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201306003.htm
      [64] 张功成, 苗顺德, 陈莹, 等, 2013b. "源热共控"中国近海天然气富集区分布. 天然气工业, 33(4): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201304002.htm
      [65] 张功成, 米立军, 屈红军, 等, 2011. 全球深水盆地群分布格局与油气特征. 石油学报, 32(3): 369-378. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201103000.htm
      [66] 张连祥, 刘平华, 王义龙, 等, 2021. 胶莱盆地蛇窝泊地区白垩纪林寺山组沉积时代与物源特征: 来自碎屑锆石U-Pb测年与稀土元素组成的新证据. 地球科学, 46(3): 1119-1132. doi: 10.3799/dqkx.2020.403
      [67] 钟锴, 朱伟林, 高顺莉, 等, 2018. 东海陆架盆地形成演化及油气成藏关键地质问题. 地球科学, 43(10): 3485-3497. doi: 10.3799/dqkx.2018.282
      [68] 周祖翼, 贾健谊, 李家彪, 等, 2002. 东海西湖凹陷反转构造定量研究: 来自裂变径迹分析数据的约束. 海洋地质与第四纪地质, 22(1): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200201012.htm
    • 加载中
    图(7)
    计量
    • 文章访问数:  277
    • HTML全文浏览量:  125
    • PDF下载量:  124
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-05-27
    • 刊出日期:  2022-07-25

    目录

      /

      返回文章
      返回