Failure Mechanism of Main Controlling Weak Structural Plane of Slope under Blasting Stress Wave
-
摘要:
爆破强震扰动影响下受软弱结构面控制型边坡易出现滑移破坏,其破坏机制研究是滑坡灾害防护的重要内容.利用波函数解析方法建立了应力波入射岩-结构面-岩模型,分析了爆破P波透反射规律与软弱结构面应力响应,结合自主研发的爆破应力波扰动结构面剪切强度仪得到了抗剪强度劣化规律,构建结构面动应力与扰动后抗剪强度量化关系,提出结构面内部剪切强度失效模型.研究表明:计算模型的P波在两个界面产生的透射系数均随着入射角增加而降低;振动台加载后软弱结构面的剪切强度存在明显的劣化,加载振幅为0.2 mm时,内聚力由68.75 kPa降低至9.69 kPa.结合建立的剪切强度失效模型与试验得到的剪切强度劣化规律,确定振幅在0.15 mm内时软弱结构面的安全性可以得到保证.
Abstract:The slope controlled by weak structural plane is prone to slip failure under the influence of blasting strong earthquake disturbance, and its failure mechanism is an important part of landslide disaster protection. Combined with the self-developed blasting stress wave disturbance shear strength instrument of structural plane, the deterioration law of shear strength was obtained, the quantitative relationship between dynamic stress of structural plane and shear strength after disturbance was constructed, and the failure model of internal shear strength of structural plane was proposed. The study shows that the transmission coefficient of P wave generated by the calculation model at the two interfaces decreases with the increase of incident angle. After loading, the shear strength of the weak structural plane was obviously deteriorated. When the loading amplitude was 0.2 mm, the cohesion decreased from 68.75 kPa to 9.69 kPa. Combined with the established shear strength failure model and the shear strength degradation law obtained from the test, the safety of the weak structural plane can be guaranteed when the amplitude is within 0.15 mm.
-
表 1 岩屑夹泥型软弱结构面配比及粒径
Table 1. Proportion and particle size of mud⁃filled weak structural plane
试样 石英砂
2~4 mm蒙脱石
200目坡缕石
400目方解石
20目质量(g) 138 414 276 552 表 2 振动台输入参数
Table 2. Input parameters of shaking table
序号 时间(s) 振幅(mm) 1 5(250) 0.01 2 10(500) 0.05 3 15(750) 0.10 4 20(1 000) 0.15 5 25(1 250) 0.20 表 3 剪切强度计算统计结果
Table 3. Statistical results of shear strength calculation
入射角度 σ(kPa) τ(kPa) τ5(kPa) τ10(kPa) τ15(kPa) τ20(kPa) τ25(kPa) 0° 9.22 1.43 71.44 63.92 53.30 39.31 30.54 10° 9.1 1.84 71.41 63.89 53.26 39.28 30.51 20° 8.91 2.26 71.35 63.84 53.21 39.22 30.46 30° 8.67 2.58 71.28 63.77 53.14 39.16 30.40 40° 8.88 2.91 71.34 63.83 53.20 39.22 30.45 50° 8.29 3.06 71.17 63.66 53.03 39.06 30.30 60° 7.34 2.95 70.89 63.40 52.75 38.80 30.05 70° 5.62 2.46 70.39 62.92 52.25 38.33 29.59 80° 3.17 1.5 69.68 62.23 51.55 37.66 28.94 90° 0 0 68.75 61.35 50.63 36.80 28.10 表 4 各频率下控制振动速度
Table 4. Control vibration velocity at different frequencies
频率(Hz) 10 30 50 70 100 控制速度
(cm/s)0.7 2.0 3.3 4.7 6.7 -
[1] Azizabadi, H. R., Mansouri, H., Fouché, O., 2014. Coupling of Two Methods, Waveform Superposition and Numerical, to Model Blast Vibration Effect on Slope Stability in Jointed Rock Masses. Computers and Geotechnics, 61: 42-49. https://doi.org/10.1016/j.compgeo.2014.04.008 [2] Chai, B., Tao, Y. Y., Du, J., et al., 2020. Hazard Assessment of Debris Flow Triggered by Outburst of Jialong Glacial Lake in Nyalam County, Tibet. Earth Science, 45(12): 4630-4639(in Chinese with English abstract). [3] Chen, W. Y., Wang, D., Mou, Y. M., et al., 2021. Effect of Flow⁃Independent Viscosity on the Propagation of Rayleigh Wave in Porous Media. Soil Dynamics and Earthquake Engineering, 142: 106564. https://doi.org/10.1016/j.soildyn.2020.106564. [4] Chen, Z. R., Song, D. Q., Liu, X. L., et al., 2022. Seismic Dynamic Response Characteristics of a Layered Slope at Tunnel Entrance Using Shaking Table Test. Earth Science, 47(6): 2069-2080(in Chinese with English abstract). [5] Dong, L. J., Wesseloo, J., Potvin, Y., et al., 2016. Discrimination of Mine Seismic Events and Blasts Using the Fisher Classifier, Naive Bayesian Classifier and Logistic Regression. Rock Mechanics and Rock Engineering, 49(1): 183-211. https://doi.org/10.1007/s00603⁃015⁃0733⁃y [6] Fan, L., Wang, L. J., Wu, Z., 2018. Wave Transmission across Linearly Jointed Complex Rock Masses. International Journal of Rock Mechanics and Mining Sciences. 112: 193-200. https://doi.org/10.1016/j.ijrmms.2018.09.004 [7] He, X. L., Xu, C., Qi, W. W., et al., 2021. Landslides Triggered by the 2020 Qiaojia Mw5.1 Earthquake, Yunnan, China: Distribution, Influence Factors and Tectonic Significance. Journal of Earth Science, 32(5): 1056-1068. https://doi.org/10.1007/s12583⁃021⁃1492⁃1 [8] Jia, G. C., Du, C. Q., 2012. Engineering Geological Classification of Weak Structural Plane. Design of Water Resources & Hydroelectric Engineering, 31(2): 9-11(in Chinese). doi: 10.3969/j.issn.1007-6980.2012.02.004 [9] Jia, K. C., Zhuang, J. Q., Zhan, J. W., et al., 2022. Reconstruction of the Dynamic Process of the Holocene Gelongbu Landslide⁃Blocking⁃Flood Geological Disaster Chain Based on Numerical Simulation. Earth Science(in press)(in Chinese with English abstract). [10] Jiang, N., Wu, T. Y., Luo, X. D., et al., 2021. Methods for Studying the Law of Gradual Strength Deterioration of Saturated Soft Structural Plane under Blasting Vibration. China Patent: ZL 201810783935. X. 2021⁃04⁃30(in Chinese). [11] Kang, Y. G., Wei, P. J., Li, Y. Q., et al., 2021. Modeling Elastic Wave Propagation through a Partially Saturated Poroviscoelastic Interlayer by Fractional Order Derivatives. Applied Mathematical Modelling, 100: 612-631. https://doi.org/10.1016/j.apm.2021.07.042. [12] Li, X. B., Lai, H. H., Gu, D. S., 1992. Transmission and Reflection Relation and Slip Criterion of Weak Structural Plane of Rock Mass with Oblique Incidence of Explosion Stress Wave. The Chinese Journal of Nonferrous Metals, 2(1): 9-14(in Chinese). doi: 10.3321/j.issn:1004-0609.1992.01.002 [13] Liu, L. B., Li, J. C., Li, H. B., et al., 2012. Propagation Law of Oblique Incidence of Stress Wave across a Viscoelastic Joint. Chinese Journal of Geotechnical Engineering, 31(Suppl. 2): 3593-3598(in Chinese with English abstract). [14] Liu, X., Hua, X. Z., Huang, Z. G., et al., 2021. Dynamic Instability Mechanism of Rock Mass Collapse with Large Structural Plane under Stress Wave. Chinese Journal of Geotechnical Engineering, 40(10): 2003-2014(in Chinese with English abstract). [15] Rao, Y., Zhao, G., Wu, X. X., et al., 2016. Propagation Characteristics of Stress Waves across Viscoelastic Joints. Chinese Journal of Geotechnical Engineering, 38(12): 2237-2245(in Chinese with English abstract). doi: 10.11779/CJGE201612012 [16] Sun, J. S., Li, Z. C., Liu, G. Y., et al., 2017. Rheological Characteristic of Argillaceous Weak Intercalation under Intermittent Dynamic Shear Loads. Journal of China Coal Society, 42(7): 1724-1731(in Chinese with English abstract). [17] Tang, L., Wu, D. Y., Wei, H., et al., 2021. Experimental Study on the Influence Mechanism of Water Content in Weak Interlayer. Water Power, 47(10): 116-122(in Chinese with English abstract). doi: 10.3969/j.issn.0559-9342.2021.10.023 [18] Tang, Z. H., Yu, X. L., Chai, B., et al., 2021. Energetic Criterion of Entering Acceleration in Progressive Failure Process of Bedding Rockslide: A Case Study for Shanshucao Landslide. Earth Science, 46(11): 4033-4042(in Chinese with English abstract). [19] Wang, F. L., Wang, S. H., Xiu, Z. G., 2018. Method on Stress Quantification and Strength Characterization of Rock Structural Plane under the Disturbance of Stress Wave. Rock and Soil Mechanics, 39(8): 2844-2850, 2857(in Chinese with English abstract). [20] Wang, L. L., 2010. Stress Wave Foundation. Defense Industry Press, Beijing, 307-318(in Chinese). [21] Wang, S. M., Wang, Z. L., Jia, S. L., et al., 2022. Analysis of Propagation Characteristics of Stress Waves in Viscoelastic Jointed Rock Mass. Journal of Harbin Institute of Technology, 54(2): 99-107(in Chinese with English abstract). [22] Wu, T. Y., Jiang, N., Zhou, C. B., et al., 2021. An Innovative Test Equipment with Rate⁃Dependence in Interface Damage and Its Operation under Cyclic Loading. Review of Scientific Instruments, 92(8): 085104. https://doi.org/10.1063/5.0056150. [23] Wu, T. Y., Zhou, C. B., Jiang, N., 2019. Experimental Study on Shear Strength Deterioration Rules of Fault Fracture Zone Subjected to Blasting Vibration. Journal of Central South University (Science and Technology), 50(6): 1457-1465(in Chinese with English abstract). [24] Wu, W., Zhu, J. B., Zhao, J., 2013. A Further Study on Seismic Response of a Set of Parallel Rock Fractures Filled with Viscoelastic Materials. Geophysical Journal International, 192(2): 671-675. https://doi.org/10.1093/gji/ggs055 [25] Wu, W. Y., Xu, C., Wang, X. Q., et al., 2020. Landslides Triggered by the 3 August 2014 Ludian (China) Mw 6.2 Earthquake: An Updated Inventory and Analysis of Their Spatial Distribution. Journal of Earth Science, 31(4): 853-866. https://doi.org/10.1007/s12583⁃020⁃1297⁃7 [26] Zhao, J., Cai, J. G., 2001. Transmission of Elastic P⁃Waves across Single Fractures with a Nonlinear Normal Deformational Behavior. Rock Mechanics and Rock Engineering, 34(1): 3-22. https://doi.org/10.1007/s006030170023 [27] Zhao, J., Zhao, X. B., Cai, J. G., 2006. A Further Study of P⁃Wave Attenuation across Parallel Fractures with Linear Deformational Behaviour. International Journal of Rock Mechanics and Mining Sciences, 43(5): 776-788. https://doi.org/10.1016/j.ijrmms.2005.12.007 [28] Zhao, X. B., Zhao, J., Hefny, A. M., et al., 2006. Normal Transmission of S⁃Wave across Parallel Fractures with Coulomb Slip Behavior. Journal of Engineering Mechanics, 132(6): 641-650. https://doi.org/10.1061/(asce)0733⁃9399(2006)132:6(641) [29] 柴波, 陶阳阳, 杜娟, 等, 2020. 西藏聂拉木县嘉龙湖冰湖溃决型泥石流危险性评价. 地球科学, 45(12): 4630-4639. doi: 10.3799/dqkx.2020.294 [30] 陈志荣, 宋丹青, 刘晓丽, 等, 2022. 隧道口顺层斜坡地震动力响应特征振动台试验. 地球科学, 47(6): 2069-2080. doi: 10.3799/dqkx.2021.300 [31] 贾国臣, 杜长青, 2012. 软弱结构面的工程地质分类. 水利水电工程设计, 31(2): 9-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSG201202006.htm [32] 贾珂程, 庄建琦, 占洁伟, 等, 2022. 基于数值模拟的戈龙布滑坡-堵江-溃决洪水地质灾害链动力学过程重建. 地球科学(待刊). [33] 蒋楠, 吴廷尧, 罗学东, 等, 2021研究爆破振动下饱水软弱结构面强度渐变劣化规律的方法. 中国专利: ZL 201810783935. X. 2021⁃04⁃30. [34] 李夕兵, 赖海辉, 古德生, 1992. 爆炸应力波斜入射岩体软弱结构面的透反射关系和滑移准则. 中国有色金属学报, 2(1): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXZ199201001.htm [35] 刘立波, 李建春, 李海波, 等, 2012. 应力波斜入射黏弹性节理的传播规律. 岩石力学与工程学报, 31(增刊2): 3593-3598. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S2022.htm [36] 刘啸, 华心祝, 黄志国, 等, 2021. 应力波作用下含大型结构面岩体垮塌动力失稳机制. 岩石力学与工程学报, 40(10): 2003-2014. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202110005.htm [37] 饶宇, 赵根, 吴新霞, 等, 2016. 应力波入射黏弹性节理的传播特性研究. 岩土工程学报, 38(12): 2237-2245. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201612015.htm [38] 孙金山, 李正川, 刘贵应, 等, 2017. 间歇性动态剪切作用下泥质夹层剪切流变特性. 煤炭学报, 42(7): 1724-1731. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201707011.htm [39] 唐林, 吴道勇, 韦洪, 等, 2021. 软弱夹层含水率对岩体抗剪强度影响机制试验研究. 水力发电, 47(10): 116-122. https://www.cnki.com.cn/Article/CJFDTOTAL-SLFD202110023.htm [40] 唐朝晖, 余小龙, 柴波, 等, 2021. 顺层岩质滑坡渐进破坏进入加速的能量学判据. 地球科学, 46(11): 4033-4042. doi: 10.3799/dqkx.2019.960 [41] 王斐笠, 王述红, 修占国, 2018. 应力波扰动下结构面的应力量化及强度表征. 岩土力学, 39(8): 2844-2850, 2857. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201808017.htm [42] 王礼立, 2010. 应力波基础. 北京: 国防工业出版社, 307-318. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ200003007.htm [43] 汪书敏, 王志亮, 贾帅龙, 等, 2022. 黏弹性节理岩体中应力波的传播特性分析. 哈尔滨工业大学学报, 54(2): 99-107. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202202013.htm [44] 吴廷尧, 周传波, 蒋楠, 2019. 爆破振动作用下断层破碎带抗剪强度的劣化规律试验研究. 中南大学学报(自然科学版), 50(6): 1457-1465. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201906025.htm