Advances and Perspectives of Experimental Geochemistry
-
摘要: 实验地球化学主要通过高温高压实验模拟,对元素和同位素在地球内部条件下的行为、性质和效应进行研究,从而对成岩成矿、岩浆演化、流体交代、壳−幔−核分异等地质现象和过程进行制约. 实验地球化学的最初诞生,主要是针对传统地球化学、岩石学和矿床学研究中遇到的难以解决问题进行正演辅助. 实验地球化学的发展,与高温高压实验设备和现代分析技术的成熟和完善密切相关. 近半个世纪以来,实验地球化学的不断成长壮大,极大促进了传统地球化学乃至整个地球科学相关领域的发展. 在未来的10到20年内,实验地球化学有望在以下3个方面进一步加强和取得重要科研成果:(1)深部地球和早期地球;(2)挥发分和地球宜居性;(3)行星形成演化实验模拟.Abstract: Experimental geochemistry involves the simulation of the physical and chemical conditions of the Earth's interior. By this, the behavior, nature and effects of elements and isotopes are studied experimentally, so as to constrain processes such as petrogenesis and mineralization, magma evolution, fluid metasomatism, and differentiation. The field of experimental geochemistry emerged as a tool to offer forward modeling for challenging issues that are difficult to address by studies with traditional geochemistry and petrology. The rapid development of the field is attributed to the improvement of facilities for generating high‐pressure and high‐temperature conditions and the availability of modern analytical techniques. In the past about half century, the growing research in the field of experimental geochemistry has greatly promoted the development of traditional geochemistry and even the entire earth science related fields. In the next one or two decades, experimental geochemistry is expected to further strengthen important scientific achievements in the following aspects: (1) deep Earth and early Earth; (2) volatiles and habitability of the Earth; (3) experimental simulations and planetary science.
-
图 2 行星起源、挥发分和地球演化
修改自Gaillard and Scaillet(2004)
Fig. 2. Planetary origin, volatiles and Earth's evolution
-
[1] Agee, C. B., Draper, D. S., 2004. Experimental Constraints on the Origin of Martian Meteorites and the Composition of the Martian Mantle. Earth and Planetary Science Letters, 224(3/4): 415-429. https://doi.org/10.1016/j.epsl.2004.05.022 [2] Anderson, G. M., Burnham, C. W., 1965. The Solubility of Quartz in Super‐Critical Water. American Journal of Science, 263(6): 494-511. https://doi.org/10.2475/ajs.263.6.494 [3] Armstrong, K., Frost, D. J., McCammon, C. A., et al., 2019. Deep Magma Ocean Formation Set the Oxidation State of Earth's Mantle. Science, 365(6456): 903-906. https://doi.org/10.1126/science.aax8376 [4] Bass, J.D., 2004. Current and Future Research Directions in High‐Pressure Mineral Physics. Consortium for Materials Properties Research in Earth Sciences (COMPRES), Stony Brook, New York. [5] Beyer, C., Klemme, S., Wiedenbeck, M., et al., 2012. Fluorine in Nominally Fluorine‐Free Mantle Minerals: Experimental Partitioning of F between Olivine, Orthopyroxene and Silicate Melts with Implications for Magmatic Processes. Earth and Planetary Science Letters, 337-338(4): 1-9. https://doi.org/10.1016/j.epsl.2012.05.003 [6] Bischoff, J. L., Dickson, F. W., 1975. Seawater‐Basalt Interaction at 200 ℃ and 500 Bars: Implications for Origin of Sea‐Floor Heavy‐Metal Deposits and Regulation of Seawater Chemistry. Earth and Planetary Science Letters, 25(3): 385-397. https://doi.org/10.1016/0012‐821x(75)90257‐5 [7] Board, S. S., Council, N. R., 2012. Vision and Voyages for Planetary Science in the Decade 2013‐2022. National Academies Press, Washington, D. C. [8] Boettcher, A.L., 1970. The System CaO‐Al2O3‐SiO2‐H2O at High Pressures and Temperatures. Journal of Petrology, 11(2): 337-379. https://doi.org/10.1093/petrology/11.2.337 [9] Boyd, F. R., England, J. L., 1960. Apparatus for Phase‐Equilibrium Measurements at Pressures up to 50 Kilobars and Temperatures up to 1 750 ℃. Journal of Geophysical Research, 65(2): 741-748. https://doi.org/10.1029/jz065i002p00741 [10] Brey, G.P., Kohler, T., 1990. Geothermobarometry in Four‐Phase Lherzolites Ⅱ. New Thermobarometers, and Practical Assessment of Existing Thermobarmeters. Journal of Petrology, 31(6): 1353-1378. https://doi.org/10.1093/petrology/31.6.1353 [11] Bureau, H., Keppler, H., 1999. Complete Miscibility between Silicate Melts and Hydrous Fluids in the Upper Mantle: Experimental Evidence and Geochemical Implications. Earth and Planetary Science Letters, 165(2): 187-196. https://doi.org/10.1016/s0012‐821x(98)00266‐0 [12] Burnham, C. W., Jahns, R. H., 1962. A Method for Determining the Solubility of Water in Silicate Melts. American Journal of Science, 260(10): 721-745. https://doi.org/10.2475/ajs.260.10.721 [13] Clayton, R. N., O'Neil, J. R., Mayeda, T. K., 1972. Oxygen Isotope Exchange between Quartz and Water. Journal of Geophysical Research, 77(17): 3057-3067. https://doi.org/10.1029/jb077i017p03057 [14] Corgne, A., Liebske, C., Wood, B. J., et al., 2005. Silicate Perovskite‐Melt Partitioning of Trace Elements and Geochemical Signature of a Deep Perovskitic Reservoir. Geochimica et Cosmochimica Acta, 69(2): 485-496. https://doi.org/10.1016/j.gca.2004.06.041 [15] Corgne, A., Wood, B. J., 2002. CaSiO3 and CaTiO3 perovskite‐Melt Partitioning of Trace Elements: Implications for Gross Mantle Differentiation. Geophysical Research Letters, 29(19): 39‐1-39‐4. https://doi.org/10.1029/2001gl014398 [16] Cullers, R. L., Medaris, L. G., Haskin, L. A., 1973. Experimental Studies of the Distribution of Rare Earths as Trace Elements among Silicate Minerals and Liquids and Water. Geochimica et Cosmochimica Acta, 37(6): 1499-1512. https://doi.org/10.1016/0016‐7037(73)90086‐0 [17] Dalou, C. L., Füri, E., Deligny, C., et al., 2019. Redox Control on Nitrogen Isotope Fractionation during Planetary Core Formation. Proceedings of the National Academy of Sciences, 116(29): 14485-14494. https://doi.org/10.1073/pnas.1820719116 [18] Dalou, C., Le Losq, C., Mysen, B. O., 2015. In Situ Study of the Fractionation of Hydrogen Isotopes between Aluminosilicate Melts and Coexisting Aqueous Fluids at High Pressure and High Temperature‐Implications for the ΔD in Magmatic Processes. Earth and Planetary Science Letters, 426(1): 158-166. https://doi.org/10.1016/j.epsl.2015.06.032 [19] Darken, L. S., Gurry, R. W., 1945. The System Iron‐Oxygen. I. the Wüstite Field and Related Equilibria. Journal of the American Chemical Society, 67(8): 1398-1412. https://doi.org/10.1021/ja01224a050 [20] Dasgupta, R., Hirschmann, M. M., 2006. Melting in the Earth's Deep Upper Mantle Caused by Carbon Dioxide. Nature, 440(7084): 659-662. https://doi.org/10.1038/nature04612 [21] Dickson, F. W., Blount, C. W., Tunell, G., 1963. Use of Hydrothermal Solution Equipment to Determine the Solubility of Anhydrite in Water from 100 Degrees C to 275 Degrees C and from 1 Bar to 1 000 Bars Pressure. American Journal of Science, 261(1): 61-78. https://doi.org/10.2475/ajs.261.1.61 [22] Drake, M. J., Weill, D. F., 1975. Partition of Sr, Ba, Ca, Y, Eu2+, Eu3+, and other REE between Plagioclase Feldspar and Magmatic Liquid: An Experimental Study. Geochimica et Cosmochimica Acta, 39(5): 689-712. https://doi.org/10.1016/0016‐7037(75)90011‐3 [23] Draper, D. S., Xirouchakis, D., Agee, C. B., 2003. Trace Element Partitioning between Garnet and Chondritic Melt from 5 to 9 GPa: Implications for the Onset of the Majorite Transition in the Martian Mantle. Physics of the Earth and Planetary Interiors, 139(1/2): 149-169. https://doi.org/10.1016/s0031‐9201(03)00150‐x [24] Dygert, N., Draper, D. S., Rapp, J. F., et al., 2020. Experimental Determinations of Trace Element Partitioning between Plagioclase, Pigeonite, Olivine, and Lunar Basaltic Melts and an FO2 Dependent Model for Plagioclase‐Melt Eu Partitioning. Geochimica et Cosmochimica Acta, 279: 258-280. https://doi.org/10.1016/j.gca.2020.03.037 [25] Ellis, D. J., Green, D. H., 1979. An Experimental Study of the Effect of Ca Upon Garnet‐Clinopyroxene Fe‐Mg Exchange Equilibria. Contributions to Mineralogy and Petrology, 71(1): 13-22. https://doi.org/10.1007/bf00371878 [26] Fei, Y., Bertka, C.M., 2005. The Interior of Mars. Science, 308(5725): 1120-1121. https://doi.org/10.1126/science.1110531 [27] Fei, Y. W., Li, J., Bertka, C. M., et al., 2000. Structure Type and Bulk Modulus of Fe3S, a New Iron‐Sulfur Compound. American Mineralogist, 85(11/12): 1830-1833. https://doi.org/10.2138/am‐2000‐11‐1229 [28] Gaetani, G. A., Grove, T. L., 1997. Partitioning of Moderately Siderophile Elements among Olivine, Silicate Melt, and Sulfide Melt: Constraints on Core Formation in the Earth and Mars. Geochimica et Cosmochimica Acta, 61(9): 1829-1846. https://doi.org/10.1016/s0016‐7037(97)00033‐1 [29] Gaillard, F., Scaillet, B., 2014. A Theoretical Framework for Volcanic Degassing Chemistry in a Comparative Planetology Perspective and Implications for Planetary Atmospheres. Earth and Planetary Science Letters, 403(6): 307-316. https://doi.org/10.1016/j.epsl.2014.07.009 [30] Georg, R. B., Halliday, A. N., Schauble, E. A., et al., 2007. Silicon in the Earth's Core. Nature, 447(7148): 1102-1106. https://doi.org/10.1038/nature05927 [31] Goldstein, J., 2012. Practical Scanning Electron Microscopy: Electron and Ion Microprobe Analysis. Plenum Press, New York. [32] Graham, C. M., Powell, R., 1984. A Garnet Hornblende Geothermometer: Calibration, Testing, and Application to the Pelona Schist, Southern California. Journal of Metamorphic Geology, 2(1): 13-31. https://doi.org/10.1111/j.1525‐1314.1984.tb00282.x [33] Green, D. H., Ringwood, A. E., 1967. The Genesis of Basaltic Magmas. Contributions to Mineralogy and Petrology, 15(2): 103-190. https://doi.org/10.1007/bf00372052 [34] Green, D. H., Hibberson, W. O., Kovács, I., et al., 2010. Water and its Influence on the Lithosphere‐Asthenosphere Boundary. Nature, 467(7314): 448-451. https://doi.org/10.1038/nature09369 [35] Gu, Z., Zhang, L., Li, B., et al., 1990. Dehydration Experiment of Amphibolite in the North China Area and Crustal High Conductivity Layer. In: Characteristics and Dynamics of the Upper Mantle in China. Seismological Press, Beijing, 178-182 (in Chinese). [36] Hall, H. T., 1958. Some High‐Pressure, High‐Temperature Apparatus Design Considerations: Equipment for Use at 100 000 Atmospheres and 3 000 ℃. Review of Scientific Instruments, 29(4): 267-275. https://doi.org/10.1063/1.1716172 [37] Harley, S. L., 1984. An Experimental Study of the Partitioning of Fe and Mg between Garnet and Orthopyroxene. Contributions to Mineralogy and Petrology, 86(4): 359-373. https://doi.org/10.1007/bf01187140 [38] Hart, S. R., Dunn, T., 1993. Experimental Cpx/melt Partitioning of 24 Trace Elements. Contributions to Mineralogy and Petrology, 113(1): 1-8. https://doi.org/10.1007/bf00320827 [39] Holland, H. D., Turekian, K. K., 2014. Treatise on Geochemistry. Elsevier, MA. [40] Holloway, J. R., Wood, B. J., 1988. Simulating the Earth: Experimental Geochemistry. Unwin Hyman Ltd., London. [41] Hu, Q., Kim, D.Y., Liu, J., et al., 2017. Dehydrogenation of Goethite in Earth's Deep Lower Mantle. Proceedings of the National Academy of Sciences, 114(7): 1498-1501. https://doi.org/10.1073/pnas.1620644114 [42] Huppert, H. E., Woods, A. W., 2002. The Role of Volatiles in Magma Chamber Dynamics. Nature, 420(6915): 493-495. https://doi.org/10.1038/nature01211 [43] Irifune, T., Shinmei, T., McCammon, C. A., et al., 2010. Iron Partitioning and Density Changes of Pyrolite in Earth's Lower Mantle. Science, 327(5962): 193-195. https://doi.org/10.1126/science.1181443 [44] Jamieson, J. C., Lawson, A. W., Nachtrieb, N. D., 1959. New Device for Obtaining X‐Ray Diffraction Patterns from Substances Exposed to High Pressure. Review of Scientific Instruments, 30(11): 1016-1019. https://doi.org/10.1063/1.1716408 [45] Jiang, P. L., Liu, H. Y., Skogby, H., et al., 2022. Water in Omphacite Fingerprints the Thermal History of Eclogites. Geology, 50(3): 316-320. https://doi.org/10.1130/g49566.1 [46] Keppler, H., 2013. Volatiles under High Pressure. Physics and Chemistry of the Deep Earth, 2: 1-37. https://doi.org/10.1002/9781118529492.ch1 [47] Keppler, H., 1996. Constraints from Partitioning Experiments on the Composition of Subduction‐Zone Fluids. Nature, 380(6571): 237-240. https://doi.org/10.1038/380237a0 [48] Keppler, H., Golabek, G., 2019. Graphite Floatation on a Magma Ocean and the Fate of Carbon during Core Formation. Geochemical Perspectives Letters, 11: 12-17. https://doi.org/10.7185/geochemlet.1918 [49] Keppler, H., Wiedenbeck, M., Shcheka, S. S., 2003. Carbon Solubility in Olivine and the Mode of Carbon Storage in the Earth's Mantle. Nature, 424(6947): 414-416. https://doi.org/10.1038/nature01828 [50] Kessel, R., Schmidt, M.W., Ulmer, P., et al., 2005. Trace Element Signature of Subduction‐Zone Fluids, Melts and Supercritical Liquids at 120 to 180 km Depth. Nature, 437(7059): 724-727. https://doi.org/10.1038/nature03971 [51] Kohlstedt, D. L., Keppler, H., Rubie, D. C., 1996. Solubility of Water in the Α, β and γ Phases of (Mg, Fe)2SiO4. Contributions to Mineralogy and Petrology, 123(4): 345-357. https://doi.org/10.1007/s004100050161 [52] Le Losq, C., Dalou, C., Mysen, B. O., 2017. In Situ Study at High Pressure and Temperature of the Environment of Water in Hydrous Na and Ca Aluminosilicate Melts and Coexisting Aqueous Fluids. Journal of Geophysical Research: Solid Earth, 122(7): 4888-4899. https://doi.org/10.1002/2017JB014262 [53] Li, J., Agee, C. B., 1996. Geochemistry of Mantle‐Core Differentiation at High Pressure. Nature, 381(6584): 686-689. https://doi.org/10.1038/381686a0 [54] Li, X.Y., Zhang, C., Wang, L.X., et al., 2020. Experiments on the Saturation of Fluorite in Magmatic Systems: Implications for Maximum F Concentration and Fluorine‐Cation Bonding in Silicate Melt. Journal of Earth Science, 31(3): 456-467. https://doi.org/10.1007/s12583‐020‐1305‐y [55] Li, Y., Dasgupta, R., Tsuno, K., et al., 2016a. Carbon and Sulfur Budget of the Silicate Earth Explained by Accretion of Differentiated Planetary Embryos. Nature Geoscience, 9(10): 781-785. https://doi.org/10.1038/ngeo2801 [56] Li, Y., Keppler, H., 2014. Nitrogen Speciation in Mantle and Crustal Fluids. Geochimica et Cosmochimica Acta, 129: 13-32. https://doi.org/10.1016/j.gca.2013.12.031 [57] Li, Y., Marty, B., Shcheka, S., et al., 2016b. Nitrogen Isotope Fractionation during Terrestrial Core‐Mantle Separation. Geochemical Perspectives Letters, 2: 138-147. https://doi.org/10.7185/geochemlet.1614 [58] Li, Y., Wiedenbeck, M., Shcheka, S., et al., 2014. Nitrogen Solubility in Upper Mantle Minerals. Earth and Planetary Science Letters, 377-378: 311-323. https://doi.org/10.1016/j.epsl.2013.07.013 [59] Lin, J., Vanko, G., Jacobsen, S. D., et al., 2007. Spin Transition Zone in Earth's Lower Mantle. Science, 317(5845): 1740-1743. https://doi.org/10.1126/science. 1144997 doi: 10.1126/science.1144997 [60] Liu, H., Yang, X., 2020. Solubility of Hydroxyl Groups in Pyroxenes: Effect of Oxygen Fugacity at 0.2‐3 GPa and 800‐1 200 ℃. Geochimica et Cosmochimica Acta, 286: 355-379. https://doi.org/10.1016/j.gca.2020.07.034 [61] Liu, H., Zhang, K., Ingrin, J., et al., 2021. Electrical Conductivity of Omphacite and Garnet Indicates Limited Deep Water Recycling by Crust Subduction. Earth and Planetary Science Letters, 559: 116784. https://doi.org/10.1016/j.epsl.2021.116784 [62] Liu, J., Hu, Q., Kim, D.Y., et al., 2017. Hydrogen‐Bearing Iron Peroxide and the Origin of Ultralow‐Velocity Zones. Nature, 551(7681): 494-497. https://doi.org/10.1038/nature24461 [63] Magyar, P.M., Orphan, V.J., Eiler, J.M., 2016. Measurement of Rare Isotopologues of Nitrous Oxide by High‐Resolution Multi‐Collector Mass Spectrometry. Rapid Communications in Mass Spectrometry, 30(17): 1923-1940. https://doi.org/10.1002/rcm.7671 [64] Manghnani, M. H., Yagi, T., 1998. Properties of Earth and Planetary Materials at High Pressure and Temperature. American Geophysical Union Geophysical Monograph Series, Washington, 101. [65] Manning, C. E., 2004. The Chemistry of Subduction‐Zone Fluids. Earth and Planetary Science Letters, 223(1-2): 1-16. https://doi.org/10.1016/j.epsl.2004.04.030 [66] Mao, H., Hemley, R.J., 2007. The High‐Pressure Dimension in Earth and Planetary Science. Proceedings of the National Academy of Sciences, 104(22): 9114-9115. https://doi.org/10.1073/pnas.0703653104 [67] Mao, H. K., Mao, W. L., 2020. Key Problems of the Four‐Dimensional Earth System. Matter and Radiation at Extremes, 5(3): 038102. https://doi.org/10.1063/1.5139023 [68] McCanta, M. C., Rutherford, M. J., Jones, J. H., 2004. A Experimental Study of Rare Earth Element Partitioning between a Shergottite Melt and Pigeonite: Implications for the Oxygen Fugacity of the Mart Ian Interior. Geochimica et Cosmochimica Acta, 68(8): 1943-1952. https://doi.org/10.1016/j.gca.2003.10.019 [69] Mierdel, K., Keppler, H., Smyth, J. R., et al., 2007. Water Solubility in Aluminous Orthopyroxene and the Origin of Earth's Asthenosphere. Science, 315(5810): 364-368. https://doi.org/10.1126/science.1135422 [70] Miletich, R., 2005. Mineral Behaviour at Extreme Conditions. Eotvos University Press, Budapest. [71] Mook, W.G., Bommerson, J.C., Staverman, W.H., 1974. Carbon Isotope Fractionation between Dissolved Bicarbonate and Gaseous Carbon Dioxide. Earth and Planetary Science Letters, 22(2): 169-176. https://doi.org/10.1016/0012‐821X(74)90078‐8 [72] Ohmoto, H., Rye, R.O., 1979. Isotopes of Sulfur and Carbon. In: Barnes, H. L., ed., Geochemistry of Hydrothermal Ore Deposits. Wiley, New York, 509-567. [73] O'Neil, J.R., Taylor, H.P., 1969. Oxygen Isotope Equilibrium between Muscovite and Water. Journal of Geophysical Research, 74(25): 6012-6022. https://doi.org/10.1029/JB074i025p06012 [74] Osborn, E.F., 1959. Role of Oxygen Pressure in the Crystallization and Differentiation of Basaltic Magma. American Journal of Science, 257(257): 609-647. https://doi.org/10.2475/ajs.257.9.609 [75] Polyakov, V., 2009. Equilibrium Iron Isotope Fractionation at Core‐Mantle Boundary Conditions. Science, 323(5916): 912-914. https://doi.org/10.1126/science.1166329 [76] Reed, S.J.B., 2005. Electron Microprobe Analysis and Scanning Electron Microscopy in Geology. Cambridge University Press, New York. [77] Righter, K., 2019. Volatile Element Depletion of the Moon: The Roles of Precursors, Post‐Impact Disk Dynamics, and Core Formation. Science Advances, 5(1): Eaau7658. https://doi.org/10.1126/sciadv.aau7658 [78] Roberge, M., Bureau, H., Bolfan‐Casanova, N., et al., 2015. Is the Transition Zone a Deep Reservoir for Fluorine? Earth and Planetary Science Letters, 429: 25-32. https://doi.org/10.1016/j.epsl.2015.07.051 [79] Romanenko, A.V., Rashchenko, S.V., Goryainov, S.V., et al., 2018. In Situ Raman Study of Liquid Water at High Pressure. Applied Spectroscopy, 72(6): 847-852. https://doi.org/10.1177/0003702817752487 [80] Rubie, D.C., Gessmann, C.K., Frost, D.J., 2004. Partitioning of Oxygen during Core Formation on the Earth and Mars. Nature, 429(6987): 58-61. https://doi.org/10.1038/nature02473 [81] Saal, A.E., Hauri,E.H., Langmuir, C.H., et al., 2002. Vapor Undersaturation in Primitive Mid‐Ocean‐Ridge Basalt and the Volatile Content of Earth's Upper Mantle. Nature, 419(6906): 451-455. https://doi.org/10.1038/nature01073 [82] Shahar, A., Ziegler, K., Young, E. D., et al., 2009. Experimentally Determined Si Isotope Fractionation between Silicate and Fe Metal and Implications for Earth's Core Formation. Earth and Planetary Science Letters, 288(1-2): 228-234. https://doi.org/10.1016/j.epsl.2009.09.025 [83] Shcheka, S., Keppler, H., 2012. The Origin of the Terrestrial Noble‐Gas Signature. Nature, 490(7421): 531-534. https://doi.org/10.1038/nature11506 [84] Shcheka, S.S., Wiedenbeck, M., Frost, D.J., et al., 2006. Carbon Solubility in Mantle Minerals. Earth and Planetary Science Letters, 245(3-4): 730-742. https://doi.org/10.1016/j.epsl.2006.03.036 [85] Shen, A.H., Keppler, H., 1997. Direct Observation of Complete Miscibility in the Albite‐H2O System. Nature, 385(6618): 710-712. https://doi.org/10.1038/385710a0 [86] Shimizu, N., 1974. An Experimental Study of the Partitioning of K, Rb, Cs, Sr and Ba between Clinopyroxene and Liquid at High Pressures. Geochimica et Cosmochimica Acta, 38(12): 1789-1798. https://doi.org/10.1016/0016‐7037(74)90162‐8 [87] Shimizu, N., Kushiro, I., 1975. The Partitioning of Rare Earth Elements between Garnet and Liquid at High Pressures: Preliminary Experiments. Geophysical Research Letters, 2(10): 413-416. https://doi.org/10.1029/GL002i010p00413 [88] Shimizu, N., Hart, S. R., 1982. Applications of the Ion Microprobe to Geochemistry and Cosmochemistry. Annual Review of Earth and Planetary Sciences, 10(1): 483-526. https://doi.org/10.1146/annurev.ea.10.050182.002411 [89] Shirley, J.H., Fairbridge,R.W., 1997. Encyclopedia of Planetary Sciences. Chapman and Hall, London, 990. [90] Smith, J.W., Doolan, S., Mcfarlane, E.F., 1977. A Sulfur Isotope Geothermometer for the Trisulfide System Galena‐Sphalerite‐Pyrite. Chemical Geology, 19(1-4): 83-90. https://doi.org/10.1016/0009‐2541(77)90006‐7 [91] Smith, R. W., 1997. Engines of Discovery: Scientific Instruments and the History of Astronomy and Planetary Science in the United States in the Twentieth Century. Journal for the History of Astronomy, 28(1): 49-77. https://doi.org/10.1177/002182869702800104 [92] Suzuoki, T., Epstein, S., 1976. Hydrogen Isotope Fractionation between OH‐Bearing Minerals and Water. Geochimica et Cosmochimica Acta, 40(10): 1229-1240. https://doi.org/10.1016/0016‐7037(76)90158‐7 [93] Suzuoki, T., Epstein, S., 1976. Hydrogen Isotope Fractionation between OH‐Bearing Minerals and Water. Geochimica et Cosmochimica Acta, 40(10): 1229-1240. https://doi.org/10.1016/0016‐7037(76)90158‐7 [94] Syono, Y., 1992. High‐Pressure Research: Application to Earth and Planetary Sciences. Terra Scientific Publishing Company, Tokyo. [95] Takahashi, E., Kushiro, I., 1983. Melting of a Dry Peridotite at High Pressures and Basalt Magma Genesis. American Mineralogist, 68(9-10): 859-879. [96] Taylor, S.R., 1982. Planetary Science: a Lunar Perspective. Lunar and Planetary Institute, Houston, 3303. [97] Trail, D., Watson, E.B., Tailby, N.D., 2011. The Oxidation State of Hadean Magmas and Implications for Early Earth's Atmosphere. Nature, 480(7375): 79-82. https://doi.org/10.1038/nature10655 [98] Tsuno, K., Dasgupta, R., 2015. Fe‐Ni‐Cu‐C‐S Phase Relations at High Pressures and Temperatures: The Role of Sulfur in Carbon Storage and Diamond Stability at Mid‐ to Deep‐Upper Mantle. Earth and Planetary Science Letters, 412(1): 132-142. https://doi.org/10.1016/j.epsl.2014.12.018 [99] Tyagi, A. K., Banerjee, S., 2017. Materials under Extreme Conditions: Recent Trends and Future Prospects. Elsevier. [100] Vanhaecke, F., Balcaen, L., Malinovsky, D., 2009. Use of Single‐Collector and Multi‐Collector ICP‐Mass Spectrometry for Isotopic Analysis. Journal of Analytical Atomic Spectrometry, 24(7): 863. https://doi.org/10.1039/b903887f [101] Wallace, P.J., Plank, T., Edmonds, M., et al., 2015. Volatiles in Magmas. The Encyclopedia of Volcanoes, Elsevier, Amsterdam. [102] Walter, M. J., Newsom, H. E., Ertel, W., et al., 2000. Siderophile Elements in the Earth and Moon: Metal/Silicate Partitioning and Implications for Core Formation. In: Canup, R. M., Righter, K., eds., Origin of the Earth and Moon. Lunar and Planetary Institute, Houston, 265-289. [103] Wang, Y., Foley, S.F., Prelević D., 2017. Potassium‐Rich Magmatism from a Phlogopite‐Free Source. Geology, 45(5): 467-470. https://doi.org/10.1130/G38691.1 [104] Wang, Y., Foley, S.F., 2018. Hybridization Melting between Continent‐Derived Sediment and Depleted Peridotite in Subduction Zones. Journal of Geophysical Research: Solid Earth, 123(5): 3414-3429. https://doi.org/10.1029/2018JB015507 [105] Wang, Y., Xu, Y., 2020. Partial Melting of the Lower Oceanic Crust: Implications for Tracing the Slab Component in the Source of Mid‐Ocean Ridge Basalts. Journal of Geophysical Research: Solid Earth, 125(10): e2020jb020673. https://doi.org/10.1029/2020JB020673 [106] Wang, Z. C., Wang, C. Y., Wang, X., et al., 2021. Metasomatized Lithospheric Mantle and Gold Mineralization. Earth Science, 46(12): 4197-4229 (in Chinese with English abstract). [107] Wasserburg, G. J., 1958. The Solubility of Quartz in Supercritical Water as a Function of Pressure. The Journal of Geology, 66(5): 559-578. https://doi.org/10.1086/626536 [108] Watson, E.B., Harrison, T.M., 2005. Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth. Science, 308(5723): 841-844. https://doi.org/10.1126/science.1110873 [109] Weir, C.E., Lippincott, A., Van Valkenburg, A., et al., 1959. Infrared Studies in the 1‐ to 15‐Micron Region to 30 000 Atmosphere. J. Res. Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry, 63(1): 55-62. https://doi.org/10.6028/jres.063A.003 [110] Wood, B.J., Walter, M.J., Wade, J., 2006. Accretion of the Earth and Segregation of Its Core. Nature, 441(7095): 825-833. https://doi.org/10.1038/nature04763 [111] Xie, H., Hou, W., 1992. The Only Way to Explore the Deep Earth. Kexue, 46(5): 9-11 (in Chinese). [112] Xiong, D., Lu, M., Cheng, B., 1981. The Significance of the Ultra High Pressure in Mb and the High Temperature of 2 000 ℃ in Experimental Geology. Scientia Geologica Sinica, 4: 323-328 (in Chinese with English abstract). [113] Yagi, T., 2016. Hydrogen and Oxygen in the Deep Earth. Nature, 534(7606): 183-184. https://doi.org/10.1038/534183a [114] Yang, X., 2016. Effect of Oxygen Fugacity on OH Dissolution in Olivine under Peridotite‐Saturated Conditions: an Experimental Study at 1.5‐7 GPa and 1 100‐1 300 ℃. Geochimica et Cosmochimica Acta, 173: 319-336. https://doi.org/10.1016/j.gca.2015.11.007 [115] Yang, X., 2015. OH Solubility in Olivine in the Peridotite‐COH System under Reducing Conditions and Implications for Water Storage and Hydrous Melting in the Reducing Upper Mantle. Earth and Planetary Science Letters, 432: 199-209. https://doi.org/10.1016/j.epsl.2015.10.014 [116] Yang, X., 2015. A Brief Introduction of High Temperature and High Pressure Experimental Geosciences: Methods and Advances. Bulletin of Mineralogy, Petrology and Geochemistry, 34(3): 509-525 (in Chinese with English abstract). [117] Yang, X., 2012. A Experimental Study of H Solubility in Feldspars: Effect of Composition, Oxygen Fugacity, Temperature and Pressure and Implications for Crustal Processes. Geochimica et Cosmochimica Acta, 97: 46-57. https://doi.org/10.1016/j.gca.2012.08.036 [118] Yang, X., Keppler, H., Dubrovinsky, L., et al., 2014a. In‐Situ Infrared Spectra of Hydroxyl in Wadsleyite and Ringwoodite at High Pressure and High Temperature. American Mineralogist, 99(4): 724-729. https://doi.org/10.2138/am.2014.4634 [119] Yang, X., Keppler, H., Li, Y., 2016. Molecular Hydrogen in Mantle Minerals. Geochemical Perspectives Letters, 2: 160-168. https://doi.org/10.7185/geochemlet.1616 [120] Yang, X., Liu, D., Xia, Q., 2014b. CO2‐Induced Small Water Solubility in Olivine and Implications for Properties of the Shallow Mantle. Earth and Planetary Science Letters, 403: 37-47. https://doi.org/10.1016/j.epsl.2014.06.025 [121] Yoshioka, T., Wiedenbeck, M., Shcheka, S., et al., 2018. Nitrogen Solubility in the Deep Mantle and the Origin of Earth's Primordial Nitrogen Budget. Earth and Planetary Science Letters, 488: 134-143. https://doi.org/10.1016/j.epsl.2018.02.021 [122] Zeng, Y., Ai, R., Wang, F., 1989. Solubility of the Magnetite+Hematite Buffer Assemblage and Iron Speciation in Sodium Chloride Solutions at 300 ℃ and 500 Bars. Geochimica et Cosmochimica Acta, 53(8): 1875-1882. https://doi.org/10.1016/0016‐7037(89)90308‐6 [123] Zhang, K., Liu, H. Y., Ionov, D. A., et al., 2022. Effects of Oxygen Fugacity on Hydroxyl Incorporation in Garnet at 1‐3 GPa and 800‐1 000℃ and Implications for Water Storage in the Mantle. Journal of Geophysical Research: Solid Earth, 127(4): e2022JB023948. https://doi.org/10.1029/2022jb023948 [124] Zhang, L., Meng, Y., Yang, W., et al., 2014. Disproportionation of (Mg, Fe)SiO3 Perovskite in Earth's Deep Lower Mantle. Science, 344(6186): 877-882. https://doi.org/10.1126/science.1250274 [125] 顾芷娟, 张流, 李彪, 等, 1990. 华北地区角闪岩的脱水实验与壳内高导层. 中国上地幔特征与动力学论文集. 北京: 地震出版社, 178-182. [126] 谢鸿森, 候渭, 1992. 探索地球深部的必经之路. 科学, 46(5): 9-11. [127] 熊大和, 刘明, 成彬芳, 1981. 百万巴级超高压与2000℃高温的获得及其实验地质意义. 地质科学, 4: 323-328. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198104002.htm [128] 汪在聪, 王焰, 汪翔, 等, 2021. 交代岩石圈地幔与金成矿作用. 地球科学, 46(12): 4197-4229. doi: 10.3799/dqkx.2021.221 [129] 杨晓志, 2015. 浅谈高温高压实验地球科学: 方法和应用. 矿物岩石地球化学通报, 34(3): 509-525. doi: 10.3969/j.issn.1007-2802.2015.03.007