• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南海北部白云深水区高变地温梯度砂岩渗透率定量预测

    陈淑慧 彭光荣 张丽 柳保军 颜晖 张博

    陈淑慧, 彭光荣, 张丽, 柳保军, 颜晖, 张博, 2022. 南海北部白云深水区高变地温梯度砂岩渗透率定量预测. 地球科学, 47(7): 2468-2480. doi: 10.3799/dqkx.2022.239
    引用本文: 陈淑慧, 彭光荣, 张丽, 柳保军, 颜晖, 张博, 2022. 南海北部白云深水区高变地温梯度砂岩渗透率定量预测. 地球科学, 47(7): 2468-2480. doi: 10.3799/dqkx.2022.239
    Chen Shuhui, Peng Guangrong, Zhang Li, Liu Baojun, Yan Hui, Zhang Bo, 2022. Quantitative Prediction of Permeability of High Variable Geothermal Gradient Sandstone in Baiyun Deep Water Area of Northern South China Sea. Earth Science, 47(7): 2468-2480. doi: 10.3799/dqkx.2022.239
    Citation: Chen Shuhui, Peng Guangrong, Zhang Li, Liu Baojun, Yan Hui, Zhang Bo, 2022. Quantitative Prediction of Permeability of High Variable Geothermal Gradient Sandstone in Baiyun Deep Water Area of Northern South China Sea. Earth Science, 47(7): 2468-2480. doi: 10.3799/dqkx.2022.239

    南海北部白云深水区高变地温梯度砂岩渗透率定量预测

    doi: 10.3799/dqkx.2022.239
    基金项目: 

    “十三五”国家科技重大专项 2016ZX05026⁃003

    中海石油深海开发有限公司“万亿大气区”课题 KJZH⁃2021⁃0003⁃00

    中海石油(中国)有限公司深圳分公司自研科技项目 ZY⁃2021⁃SZ⁃01

    详细信息
      作者简介:

      陈淑慧(1979-),女,工程师,主要从事储层地质和岩石学相关的研究. ORCID:0000⁃0002⁃6734⁃7303. E⁃mail:chenshh5@cnooc.com.cn

    • 中图分类号: P548

    Quantitative Prediction of Permeability of High Variable Geothermal Gradient Sandstone in Baiyun Deep Water Area of Northern South China Sea

    • 摘要: 地温梯度如何影响砂岩成岩演化和储层物性变化是地学界的热点问题. 以具有高变地温梯度特征的白云深水区为例,通过分析大量不同地温梯度地区的样品,以地温梯度0.1~0.2 ℃/100 m为递进间隔,对比分析了不同地温梯度区间内不同粒度砂岩储层渗透率随埋藏深度变化的趋势,建立了砂岩渗透率的定量地质预测模型,展示了砂岩渗透率与地温梯度之间的内在联系. 结果表明,一定埋深范围内,随地温梯度升高,渗透率每下降一个数量级,砂岩埋深下限差异呈台阶式减少;相同地温梯度区间内,高成分成熟度、低塑性岩屑含量的含砾砂岩、粗粒砂岩、中粒砂岩和细粒砂岩的渗透率下降程度不同,相邻粒径砂岩等效渗透率埋深下限差异相近,随地温梯度增加,相邻粒径砂岩等效渗透率下限埋深差异呈规律性减小;低渗与特低渗砂岩储层的地层深度段随地温梯度升高而明显变小,粗粒砂岩特低渗储层的埋深下限可作为白云深水区常规油气勘探的极限深度. 研究成果对于揭示地温梯度对砂岩成岩演化作用的影响及物性演变效应具有重要的意义,对油气勘探有积极的指导作用.

       

    • 图  1  白云凹陷样品点井位及地温梯度分布

      地温梯度(℃/100 m): 1为3.5~3.6; 2为3.6~3.7; 3为3.75~3.85; 4为3.9~4.0; 5为4.0~4.1; 6为4.1~4.2; 7为4.26~4.36; 8为4.4~4.5; 9为4.5~4.6; 10为4.7~4.8; 11为4.8~4.9; 12为4.9~5.0; 13为5.1~5.3; 14为5.5~5.7

      Fig.  1.  Well location and geothermal gradient distribution of sample points in Baiyun Depression

      图  2  准噶尔盆地三工河组不同粒级砂岩孔隙度与深度对应关系

      据寿建峰等(2005)修改;塑性岩屑含量低于8%

      Fig.  2.  Corresponding relationship between porosity and depth of sandstone of different grain sizes in Sangonghe Formation, Junggar Basin

      图  3  不同粒度砂岩不同地温梯度区间内渗透率与埋深的趋势线

      a.含砾粗砂岩;b.粗砂岩;c.中砂岩;d.细砂岩. 地温梯度(℃/100 m): 1为3.5~3.6; 2为3.6~3.7; 3为3.75~3.85; 4为3.9~4.0; 5为4.0~4.1; 6为4.1~4.2; 7为4.26~4.36; 8为4.4~4.5; 9为4.5~4.6; 10为4.7~4.8; 11为4.8~4.9; 12为4.9~5.0; 13为5.1~5.3; 14为5.5~5.7

      Fig.  3.  Trend lines of permeability and buried depth in different geothermal gradient intervals of sandstone with different grain sizes

      图  4  砂岩渗透率从10 mD下降至1 mD的埋藏深度差与地温梯度的关系

      Fig.  4.  Relationship between buried depth difference of sandstone permeability from 10 mD to 1 mD and geothermal gradient

      图  5  4.0~4.1 ℃/100 m地温梯度区间内不同粒级砂岩的渗透率趋势线

      Fig.  5.  Permeability trend line of sandstone with different particle sizes in the geothermal gradient range of 4.0‒4.1 ℃ /100 m

      图  6  14个地温梯度区间内不同粒级砂岩储层渗透率变化规律

      Fig.  6.  Permeability variation law of sandstone reservoirs with different grain sizes in 14 geothermal gradient intervals

      图  7  地温梯度与1 mD渗透率下限埋深的关系

      Fig.  7.  Relationship between geothermal gradient and lower limit burial depth of 1 mD permeability

      表  1  低渗与特低渗界面附近样品薄片鉴定数据

      Table  1.   Identification data of samples near the interface of low and ultra-low permeability

      样品
      编号
      埋藏
      深度
      (m)
      接触
      方式
      粒度 泥杂基(%) 胶结物含量(%) 面孔率(%)
      方解石 铁方
      解石
      白云石 铁白
      云石
      菱铁矿 石英 粒间孔 粒内
      溶孔
      铸模孔
      1 3 040.18 线 中粒 6 2 8.5 0.5
      2 2 932.41 线 细粒 1.2 1.2 2.8 8.4 1.2 0.4
      3 3 149.58 点‒线 中粒 8 0.5 1
      4 3 069.22 点‒线 中粒 2 1 1 4 0.5 2
      5 2 757.8 线 中粒 0.5 2 6 2 3 2
      6 2 094.3 线 细粒 6 0.4 0.6 0.6 3 2 1
      7 2 544.1 线 中粒 10 5 1 1 5 2.5
      8 2 628.5 线 中粒 6 2 1 1 3 1
      下载: 导出CSV

      表  2  低渗与特低渗界面附近样品粘土X衍射及物性分析数据

      Table  2.   Data of X-ray diffraction and physical property analysis of clay samples near low and ultra-low permeability interface

      储层
      分类
      样品编号 埋藏
      深度
      (m)
      粘土X衍射 渗透率(mD) 孔隙度(%) 地温梯度
      (℃/100 m)
      高岭石
      (%)
      绿泥石
      (%)
      伊利石
      (%)
      伊蒙混层
      (%)
      伊蒙混层
      混层比(%)
      低渗带 1 3 040.18 11 19 68 2 5 15.7 12.1 4.2
      2 2 932.41 4 8 65 23 10~20 17.3 12.5 4.26
      3 3 149.58 11 16 52 21 30 15.7 10.5 4.43
      4 3 069.22 6 11 51 32 20 28.6 11.8 4.55
      特低渗带 5 2 757.8 15 85 5 5.4 15.0 4.97
      6 2 094.3 5 15 80 < 5 7.6 13.6 5.67
      7 2 544.1 0 0 100 < 5 1.15 15.0 5.22
      8 2 628.5 0 0 100 7 1.23 13.5 5.22
      下载: 导出CSV
    • [1] Bloch, S., Lander, R. H., Bonnell, L., 2002. Anomalously High Porosity and Permeability in Deeply Buried Sandstone Reservoirs: Origin and Predictability. AAPG Bulletin, 86(2): 301-328. https://doi.org/10.1306/61eedabc⁃173e⁃11d7⁃8645000102c1865d
      [2] Cao, Y. C., Yuan, G. H., Li, X. Y., et al., 2013. Types and Characteristics of Anomalously High Porosity Zones in Paleogene Mid⁃Deep Buried Reservoirs in the Northern Slope, Dongying Sag. Acta Petrolei Sinica, 34(4): 683-691 (in Chinese with English abstract).
      [3] Chen, S. H., Qiao, P. J., Zhang, H. H., et al., 2018. Geochemical Characteristics of Oligocene⁃Miocene Sediments from the Deepwater Area of the Northern South China Sea and Their Provenance Implications. Acta Oceanologica Sinica, 37(2): 35-43. https://doi.org/10.1007/s13131⁃017⁃1127⁃7
      [4] Chen, Y., Wang, C. J., Sun, X. F., et al., 2015. Progress on Mineral Solubility and Mechanism of Dissolution Secondary Porosity Forming in Clastic Reservoir. Bulletin of Mineralogy, Petrology and Geochemistry, 34(4): 830-836 (in Chinese with English abstract).
      [5] Cui, Y. C., Cao, L. C., Qiao, P. J., et al., 2018. Provenance Evolution of Paleogene Sequence (Northern South China Sea) Based on Detrital Zircon U⁃Pb Dating Analysis. Earth Science, 43(11): 4169-4179 (in Chinese with English abstract).
      [6] Cui, Y. C., Shao, L., Yu, M. M., et al., 2021. Formation of Hengchun Accretionary Prism Turbidites and Implications for Deep⁃Water Transport Processes in the Northern South China Sea. Acta Geologica Sinica (English Edition), 95(1): 55-65. https://doi.org/10.1111/1755⁃6724.14640
      [7] Gao, C. L., Ji, Y. L., Jin, J., et al., 2017a. Characteristics and Controlling Factors on Physical Properties of Deep Buried Favorable Reservoirs of the Qingshuihe Formation in Muosuowan Area, Junggar Basin. Journal of Jilin University (Earth Science Edition), 47(4): 990-1006 (in Chinese with English abstract).
      [8] Gao, C. L., Ji, Y. L., Gao, Z. Y., et al., 2017b. Multi⁃Factor Coupling Analysis on Property Preservation Process of Deep Buried Favorable Reservoir in Hinterland of Junggar Basin. Acta Sedimentologica Sinica, 35(3): 577-591 (in Chinese with English abstract).
      [9] Gao, H., Wu, H. S., Zhang, H. R., 2013. Research of Logging Facies Classification in Low Porosity and Low Permeability Reservoirs and Method of Permeability Evaluation in Yinggehai Basin. Journal of Oil and Gas Technology, 35(7): 87-92 (in Chinese with English abstract).
      [10] Gu, T., 2008. Characteristics of Abnormally High Porosity Zone and Favorable Reservoir Facies Prediction in Deep Cenozoic Horizon of Qingshui Sag. Natural Gas Geoscience, 19(3): 327-333 (in Chinese with English abstract).
      [11] Hou, Y. L., Shao, L., Qiao, P. J., et al., 2020. Provenance of the Eocene⁃Miocene Sediments in the Baiyun Sag, Pearl River Mouth Basin. Marine Geology & Quaternary Geology, 40(2): 19-28 (in Chinese with English abstract).
      [12] Hu, H. Y., 2016. Reservoir Characteristics of Late Oligocene⁃Early Miocene in Baiyun Sag. Ground Water, 38(1): 212-213 (in Chinese).
      [13] Huang, S. J., Yang, J. J., Zhang, W. Z., et al., 1995. Experimental Study of Feldspar Dissolution by Acetic Acid at Different Burial Temperatures. Acta Sedimentologica Sinica, 13(1): 7-17 (in Chinese with English abstract).
      [14] Jiang, L. Z., Niu, J. Y., Zhang, Q. C., et al., 2009. Major Factors Analysis on Controlling the Formation of Favorable Reservoir in Deep Level of Bohai Bay Basin. Geological Review, 55(1): 73-78 (in Chinese with English abstract).
      [15] Lan, Y. F., Deng, X. Q., Cheng, D. X., et al., 2014. Formation Mechanisms of Secondary Porosity in the Triassic Yanchang Formation, Ordos Basin. Geological Science and Technology Information, 33(6): 128-136 (in Chinese with English abstract).
      [16] Lan, Y. F., Huang, S. J., Lü, J., 2011. Influences of Authigenic Chlorite on Pore Structure in Sandstone Reservoir: A Case Study from Upper Triassic Yanchang Formation in Ordos Basin, China. Geological Bulletin of China, 30(1): 134-140 (in Chinese with English abstract).
      [17] Li, H. J., Wu, T. R., Wu, B., et al., 2004. Distribution and Controlling Factors of High Quality Clastic Deeply Buried Reservoirs in China. Geological Science and Technology Information, 23(4): 76-82 (in Chinese with English abstract).
      [18] Lin, T., Li, W. H., Sun, P., et al., 2013. Factors Influencing Deep Favorable Reservoirs on the Southern Margin of Junggar Basin, Xinjiang Province. Geological Bulletin of China, 32(9): 1461-1470 (in Chinese with English abstract).
      [19] Liu, Y. Y., Yu, B. S., Zhu, J. F., et al., 2009. Diagenesis and Its Influence on Physical Properties in Paleogene Clastic Reservoir in the West Sag of the Beach Area, Liaohe Depression. Geoscience, 23(4): 731-738 (in Chinese with English abstract).
      [20] Meng, Y. L., Gao, Y. T., Wu, H. Y., et al., 2010. Regional Diagenetic Regularity and Controlling Factors of Middle⁃Shallow Horizons in the Northern Songliao Basin. Journal of Palaeogeography, 12(1): 97-106 (in Chinese with English abstract).
      [21] Meng, Y. L., Liang, H. W., Meng, F. J., et al., 2010. Distribution and Genesis of the Anomalously High Porosity Zones in the Middle⁃Shallow Horizons of the Northern Songliao Basin. Petroleum Science, 7(3): 302-310. https://doi.org/10.1007/s12182⁃010⁃0072⁃2
      [22] Mi, L. J., Liu, B. J., He, M., et al., 2016. Petroleum Geology Characteristics and Exploration Direction in Baiyun Deep Water Area, Northern Continental Margin of the South China Sea. China Offshore Oil and Gas, 28(2): 10-22 (in Chinese with English abstract).
      [23] Mi, L. J., Yuan, Y. S., Zhang, G. C., et al., 2009. Characteristics and Genesis of Geothermal Field in Deep⁃Water Area of the Northern South China Sea. Acta Petrolei Sinica, 30(1): 27-32 (in Chinese with English abstract).
      [24] Okunuwadje, S. E., MacDonald, D., Bowden, S., 2020. Diagenetic and Reservoir Quality Variation of Miocene Sandstone Reservoir Analogues from Three Basins of Southern California, USA. Journal of Earth Science, 31(5): 930-949. https://doi.org/10.1007/s12583⁃020⁃1289⁃7
      [25] Pang, X., 2012. Sequence Stratigraphy Configuration of Deepwater Gravity⁃Flow Sediments and Its Controls: A Line of Thinking in Sequence Stratigraphy of Gravity⁃Flow Sediments in Baiyun Deepwater Area, the Northern South China Sea. China Offshore Oil and Gas, 24(2): 1-8 (in Chinese with English abstract).
      [26] Pang X., Chen C. M., Peng D. J., et al., 2007. Pearl River Deep⁃Water Fan System and Oil and Gas in South China Sea. Science Press, Beijing (in Chinese).
      [27] Pang, X., He, M., Zhu, J. Z., et al., 2009. A Study on Development Conditions of Lacustrine Source Rocks in Zhu ⅡDepression, Pearl River Mouth Basin. China Offshore Oil and Gas, 21(2): 86-90, 94 (in Chinese with English abstract).
      [28] Pang, X., Ren, J. Y., Zheng, J. Y., et al., 2018. Petroleum Geology Controlled by Extensive Detachment Thinning of Continental Margin Crust: A Case Study of Baiyun Sag in the Deep⁃Water Area of Northern South China Sea. Petroleum Exploration and Development, 45(1): 27-39 (in Chinese with English abstract).
      [29] Pang, X., Shi, H. S., Zhu, M., et al., 2014. A Further Discussion on the Hydrocarbon Exploration Potential in Baiyun Deep Water Area. China Offshore Oil and Gas, 26(3): 23-29 (in Chinese with English abstract).
      [30] Pang, X., Zheng, J. Y., Mei, L. F., et al., 2021. Characteristics and Origin of Continental Marginal Fault Depressions under the Background of Preexisting Subduction Continental Margin, Northern South China Sea, China. Petroleum Exploration and Development, 48(5): 1069-1080 (in Chinese with English abstract).
      [31] Ren, Z. L., Xiao, D. M., Chi, Y. L., 2001. Restoration of the Palaeogeotherm in Songliao Basin. Petroleum Geology & Oilfield Deuelopment in Daqing, 20(1): 13-14, 55 (in Chinese with English abstract).
      [32] Shao, L., Cui, Y. C., Qiao, P. J., et al., 2019. Implications on the Early Cenozoic Palaeogeographical Reconstruction of SE Eurasian Margin Based on Northern South China Sea Palaeo⁃Drainage System Evolution. Journal of Palaeogeography (Chinese Edition), 21(2): 216-231 (in Chinese with English abstract).
      [33] Shao, L., Cui, Y. C., Stattegger, K., et al., 2019. Drainage Control of Eocene to Miocene Sedimentary Records in the Southeastern Margin of Eurasian Plate. GSA Bulletin, 131(3/4): 461-478. https://doi.org/10.1130/B32053.1
      [34] Shao, L., Meng, X. J., Zhang, G. C., et al., 2013. Feature of Faults System and Its Influence on Tectonic and Sedimentary History of Baiyun Sag. Journal of Tongji University (Natural Science), 41(9): 1435-1441 (in Chinese with English abstract).
      [35] Shao, L., Qiao, P. J., Cui, Y. C., et al., 2020. The Evolutions of the Fluvial Systems in the Northern South China Sea since the Early Cenozoic. Science & Technology Review, 38(18): 57-61 (in Chinese with English abstract).
      [36] Shen, Y., Ma, Y. J., Zhao, L. B., et al., 2009. Controlling Factors of the Paleogene⁃Cretaceous Reservoirs and Potential Exploration Areas in the Eastern Kuqa Depression. Oil & Gas Geology, 30(2): 136-142 (in Chinese with English abstract).
      [37] Shou, J. F., Zhang, H. L., Shen, Y., et al., 2006. Diagenetic Mechanisms of Sandstone Reservoirs in China Oil and Gas⁃Bearing Basins. Acta Petrologica Sinica, 22(8): 2165-2170 (in Chinese with English abstract).
      [38] Shou, J. F., Zhang, H. L., Si, C. S., et al., 2005. Dynamic Diagenesis of Sandstone. Petroleum Industry Press, Beijing (in Chinese).
      [39] Shou, J. F., Zhu, G. H., 1998. Study on Quantitative Prediction of Porosity Preservation in Sandstone Reservoirs. Chinese Journal of Geology, 33(2): 244-250 (in Chinese with English abstract).
      [40] Sun, Z., Li, F. C., Lin, J., et al., 2021. The Rifting⁃Breakup Process of the Passive Continental Margin and Its Relationship with Magmatism: The Attribution of the South China Sea. Earth Science, 46(3): 770-789 (in Chinese with English abstract).
      [41] Wang, Y. X., Liu, Y. J., Lu, H., et al., 1997. Relationships of Genetic Types of Sand Bodies, Pore Textures and Permeability in the Sandstone Reservoir with High Porosity. Journal of Daqing Petroleum Institute, 21(1): 12-16 (in Chinese with English abstract).
      [42] Wu, M. S., Shao, L., Pang, X., et al., 2012. REE Geochemical Characteristics of Sediments and Its Implications in the Deepwater Area of the Northern South China Sea. Acta Sedimentologica Sinica, 30(4): 672-678 (in Chinese with English abstract).
      [43] Xu Y. H., Yang X. H., Mei L. F., et al., 2020. Diagenetic Characteristics and Porosity Evolution of Low Permeability Sandstone Reservoir in Zhuhai Formation, Wenchang A Sag. Earth Science, 45(6): 2172-2185 (in Chinese with English abstract).
      [44] Xue, Z. A., Zhao, Y. H., Wu, Y. P., et al., 2015. Characteristics and Forming Mechanisms of Reservoirs in the Shahejie Formation of Qibei Slope, Bohai Bay Basin. Oil & Gas Geology, 36(2): 280-287 (in Chinese with English abstract).
      [45] Yuan, G. H., Cao, Y. C., Yang, T., et al., 2013. Porosity Enhancement Potential through Mineral Dissolution by Organic Acids in the Diagenetic Process of Clastic Reservoir. Earth Science Frontiers, 20(5): 207-219 (in Chinese with English abstract).
      [46] Zeng, Z. W., Yang, X. H., Shu, Y., et al., 2015. Structure Palaeogeomorphology Characteristics and Sand Bodies Distribution Regularities of Paleogene Wenchang Formation in Enping Sag: Under the Conditions of Lack of Drilling Data to Predict and Evaluate the Reservoir Sand Bodies. Geoscience, 29(4): 804-815 (in Chinese with English abstract).
      [47] Zhang, L., Chen, S. H., 2017. Reservoir Property Response Relationship under Different Geothermal Gradients in the Eastern Area of the Pearl River Mouth Basin. China Offshore Oil and Gas, 29(1): 29-38 (in Chinese with English abstract).
      [48] Zheng, J. Y., Pang, X., Liu, J., et al., 2022. Staged Differential Subsidence and Its Genetic Mechanism in Post⁃Rifting Stage of Pearl River Mouth Basin. Journal of Palaeogeography (Chinese Edition), 24(1): 85-98 (in Chinese with English abstract).
      [49] Zhong, D. K., Zhu, X. M., Wang, H. J., 2008. Characteristics and Genetic Mechanism of Deep⁃Buried Clastic Eureservoir in China. Scientia Sinica Terrae, 38(S1): 11-18 (in Chinese) doi: 10.1007/s11430-008-6012-y
      [50] Zhong, D. K., Zhu, X. M., Zhang, Z. H., et al., 2003. Origin of Secondary Porosity of Paleogene Sandstone in the Dongying Sag. Petroleum Exploration and Development, 30(6): 51-53 (in Chinese with English abstract).
      [51] Zhou, Y. T., 1998. A New Method for Determining Hydrocarbon Reservoir Permeability. Oil & Gas Geology, 19(3): 211-214 (in Chinese with English abstract).
      [52] Zhu, G. H., Wang, S. Y., Yao, G. S., 1994. Effect of Different Geothermal Field and Burial History on Diagenetic Changes and Pore Evolution of Detrital Reservoir Rocks. South China Petroleum Geology, (1): 41-46, 86 (in Chinese with English abstract).
      [53] Zhu, X. M., Mi, L. J., Zhong, D. K., et al., 2006. Paleogene Diagenesis and Its Control on Reservoir Quality in Jiyang Depression. Journal of Palaeogeography, 8(3): 295-305 (in Chinese with English abstract).
      [54] 操应长, 远光辉, 李晓艳, 等, 2013. 东营凹陷北带古近系中深层异常高孔带类型及特征. 石油学报, 34(4): 683-691. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201304008.htm
      [55] 陈勇, 王成军, 孙祥飞, 等, 2015. 碎屑岩储层矿物溶解度与溶蚀次生孔隙形成机理研究进展. 矿物岩石地球化学通报, 34(4): 830-836. doi: 10.3969/j.issn.1007-2802.2015.04.018
      [56] 崔宇驰, 曹立成, 乔培军, 等, 2018. 南海北部古近纪沉积物碎屑锆石U⁃Pb年龄及物源演化. 地球科学, 43(11): 4169-4179. doi: 10.3799/dqkx.2017.594
      [57] 高崇龙, 纪友亮, 靳军, 等, 2017a. 准噶尔盆地莫索湾地区清水河组深层优质储层特征及其物性控制因素. 吉林大学学报(地球科学版), 47(4): 990-1006. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201704003.htm
      [58] 高崇龙, 纪友亮, 高志勇, 等, 2017b. 准噶尔盆地腹部深层储层物性保存过程多因素耦合分析. 沉积学报, 35(3): 577-591. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201703015.htm
      [59] 高华, 吴洪深, 张海荣, 2013. 莺歌海盆地低孔渗储层测井相分类及渗透率评价方法研究. 石油天然气学报, 35(7): 87-92. doi: 10.3969/j.issn.1000-9752.2013.07.019
      [60] 谷团, 2008. 辽河盆地西部凹陷清水洼陷新生界深层异常高孔带特征与有利储集相预测研究. 天然气地球科学, 19(3): 327-333. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200803006.htm
      [61] 侯元立, 邵磊, 乔培军, 等, 2020. 珠江口盆地白云凹陷始新世‒中新世沉积物物源研究. 海洋地质与第四纪地质, 40(2): 19-28. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202002003.htm
      [62] 胡海燕, 2016. 白云凹陷渐新世晚期‒中新世早期储层特征研究. 地下水, 38(1): 212-213. doi: 10.3969/j.issn.1004-1184.2016.01.077
      [63] 黄思静, 杨俊杰, 张文正, 等, 1995. 不同温度条件下乙酸对长石溶蚀过程的实验研究. 沉积学报, 13(1): 7-17. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB501.001.htm
      [64] 蒋凌志, 牛嘉玉, 张庆昌, 等, 2009. 渤海湾盆地深部有利储层发育的主控因素. 地质论评, 55(1): 73-78. doi: 10.3321/j.issn:0371-5736.2009.01.008
      [65] 兰叶芳, 邓秀芹, 程党性, 等, 2014. 鄂尔多斯盆地三叠系延长组次生孔隙形成机制. 地质科技情报, 33(6): 128-136. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201406018.htm
      [66] 兰叶芳, 黄思静, 吕杰, 2011. 储层砂岩中自生绿泥石对孔隙结构的影响: 来自鄂尔多斯盆地上三叠统延长组的研究结果. 地质通报, 30(1): 134-140. doi: 10.3969/j.issn.1671-2552.2011.01.014
      [67] 李会军, 吴泰然, 吴波, 等, 2004. 中国优质碎屑岩深层储层控制因素综述. 地质科技情报, 23(4): 76-82. doi: 10.3969/j.issn.1000-7849.2004.04.016
      [68] 林潼, 李文厚, 孙平, 等, 2013. 新疆准噶尔盆地南缘深层有利储层发育的影响因素. 地质通报, 32(9): 1461-1470. doi: 10.3969/j.issn.1671-2552.2013.09.016
      [69] 刘媛媛, 于炳松, 朱金富, 等, 2009. 辽河滩海西部凹陷古近系碎屑岩储层成岩作用及其对储层物性的影响. 现代地质, 23(4): 731-738. doi: 10.3969/j.issn.1000-8527.2009.04.019
      [70] 孟元林, 高煜婷, 吴河勇, 等, 2010. 松辽盆地北部中浅层区域成岩规律及影响因素. 古地理学报, 12(1): 97-106. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201001013.htm
      [71] 米立军, 柳保军, 何敏, 等, 2016. 南海北部陆缘白云深水区油气地质特征与勘探方向. 中国海上油气, 28(2): 10-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201602002.htm
      [72] 米立军, 袁玉松, 张功成, 等, 2009. 南海北部深水区地热特征及其成因. 石油学报, 30(1): 27-32. doi: 10.3321/j.issn:0253-2697.2009.01.005
      [73] 庞雄, 2012. 深水重力流沉积的层序地层结构与控制因素: 南海北部白云深水区重力流沉积层序地层学研究思路. 中国海上油气, 24(2): 1-8. doi: 10.3969/j.issn.1673-1506.2012.02.001
      [74] 庞雄, 陈长民, 彭大钧, 等, 2007. 南海珠江深水扇系统及油气. 北京: 科学出版社.
      [75] 庞雄, 何敏, 朱俊章, 等, 2009. 珠二坳陷湖相烃源岩形成条件分析. 中国海上油气, 21(2): 86-90, 94. doi: 10.3969/j.issn.1673-1506.2009.02.003
      [76] 庞雄, 任建业, 郑金云, 等, 2018. 陆缘地壳强烈拆离薄化作用下的油气地质特征: 以南海北部陆缘深水区白云凹陷为例. 石油勘探与开发, 45(1): 27-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201801004.htm
      [77] 庞雄, 施和生, 朱明, 等, 2014. 再论白云深水区油气勘探前景. 中国海上油气, 26(3): 23-29. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201403004.htm
      [78] 庞雄, 郑金云, 梅廉夫, 等, 2021. 先存俯冲陆缘背景下南海北部陆缘断陷特征及成因. 石油勘探与开发, 48(5): 1069-1080. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202105021.htm
      [79] 任战利, 萧德铭, 迟元林, 2001. 松辽盆地古地温恢复. 大庆石油地质与开发, 20(1): 13-14, 55. doi: 10.3969/j.issn.1000-3754.2001.01.004
      [80] 邵磊, 崔宇驰, 乔培军, 等, 2019. 南海北部古河流演变对欧亚大陆东南缘早新生代古地理再造的启示. 古地理学报, 21(2): 216-231. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201902003.htm
      [81] 邵磊, 孟晓捷, 张功成, 等, 2013. 白云凹陷断裂特征对构造与沉积的控制作用. 同济大学学报(自然科学版), 41(9): 1435-1441. doi: 10.3969/j.issn.0253-374x.2013.09.025
      [82] 邵磊, 乔培军, 崔宇驰, 等, 2020. 新生代早期南海北部水系演变. 科技导报, 38(18): 57-61. doi: 10.3981/j.issn.1000-7857.2020.18.009
      [83] 沈扬, 马玉杰, 赵力彬, 等, 2009. 库车坳陷东部古近系‒白垩系储层控制因素及有利勘探区. 石油与天然气地质, 30(2): 136-142. doi: 10.3321/j.issn:0253-9985.2009.02.002
      [84] 寿建峰, 张惠良, 沈扬, 等, 2006. 中国油气盆地砂岩储层的成岩压实机制分析. 岩石学报, 22(8): 2165-2170. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200608005.htm
      [85] 寿建峰, 张惠良, 斯春松, 等, 2005. 砂岩动力成岩作用. 北京: 石油工业出版社.
      [86] 寿建峰, 朱国华, 1998. 砂岩储层孔隙保存的定量预测研究. 地质科学, 33(2): 244-250. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX802.013.htm
      [87] 孙珍, 李付成, 林间, 等, 2021. 被动大陆边缘张‒破裂过程与岩浆活动: 南海的归属. 地球科学, 46(3): 770-789. doi: 10.3799/dqkx.2020.371
      [88] 王永兴, 刘玉洁, 卢宏, 等, 1997. 高孔隙度砂岩储层中砂体成因类型、孔隙结构与渗透率的关系. 大庆石油学院学报, 21(1): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY701.002.htm
      [89] 吴梦霜, 邵磊, 庞雄, 等, 2012. 南海北部深水区沉积物稀土元素特征及其物源指示意义. 沉积学报, 30(4): 672-678. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201204007.htm
      [90] 徐燕红, 杨香华, 梅廉夫, 等, 2020. 文昌A凹陷珠海组低渗砂岩成岩特征与孔隙演化. 地球科学, 45(6): 2172-2185. doi: 10.3799/dqkx.2020.055
      [91] 薛宗安, 赵玉宏, 吴义平, 等, 2015. 渤海湾盆地歧北斜坡沙河街组储层特征及形成机理. 石油与天然气地质, 36(2): 280-287. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201502014.htm
      [92] 远光辉, 操应长, 杨田, 等, 2013. 论碎屑岩储层成岩过程中有机酸的溶蚀增孔能力. 地学前缘, 20(5): 207-219. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201305022.htm
      [93] 曾智伟, 杨香华, 舒誉, 等, 2015. 恩平凹陷古近系文昌组构造古地貌特征及砂体展布规律: 少井条件下储集砂体预测与评价. 现代地质, 29(4): 804-815. doi: 10.3969/j.issn.1000-8527.2015.04.009
      [94] 张丽, 陈淑慧, 2017. 珠江口盆地东部地区不同地温梯度下储层特征响应关系. 中国海上油气, 29(1): 29-38. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201701004.htm
      [95] 郑金云, 庞雄, 刘军, 等, 2022. 珠江口盆地裂后阶段性差异沉降及其成因机制. 古地理学报, 24(1): 85-98. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX202201007.htm
      [96] 钟大康, 朱筱敏, 王红军, 2008. 中国深层优质碎屑岩储层特征与形成机理分析. 中国科学: 地球科学, 38(S1): 11-18. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK2008S1002.htm
      [97] 钟大康, 朱筱敏, 张枝焕, 等, 2003. 东营凹陷古近系砂岩次生孔隙成因与纵向分布规律. 石油勘探与开发, 30(6): 51-53. doi: 10.3321/j.issn:1000-0747.2003.06.015
      [98] 周远田, 1998. 一种确定油气储层渗透率的新方法. 石油与天然气地质, 19(3): 211-214. doi: 10.3321/j.issn:0253-9985.1998.03.007
      [99] 朱国华, 王少依, 姚根顺, 1994. 地温场和埋藏史对碎屑岩储层成岩变化和孔隙演化的影响. 南方油气地质, (1): 41-46, 86. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ199401008.htm
      [100] 朱筱敏, 米立军, 钟大康, 等, 2006. 济阳坳陷古近系成岩作用及其对储层质量的影响. 古地理学报, 8(3): 295-305. doi: 10.3969/j.issn.1671-1505.2006.03.003
    • 加载中
    图(7) / 表(2)
    计量
    • 文章访问数:  200
    • HTML全文浏览量:  52
    • PDF下载量:  40
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-06-03
    • 刊出日期:  2022-07-25

    目录

      /

      返回文章
      返回