Geological Application of Raman Spectroscopy to Quantify Trace Water Concentrations in Silicate Glasses
-
摘要: 水作为深熔熔体中最常见的一种挥发分,是影响熔体的物理和化学性质的主要因素.由于现有的测试技术以及熔体包裹体自身的局限性,很难定量确定熔体包裹体中水的含量和种型,导致对俯冲带熔体产生机制和演化过程的认识也极为有限.共聚焦显微激光拉曼光谱仪具有高的空间分辨率、快速、无损分析、样品制备简单等优点,且可分析暴露于表面或包裹于内部的样品,因此对探测微小熔体包裹体具有极大的优势.该方法的原理是基于拉曼谱峰高度/强度与其对应基团含量具有良好的线性关系,以人工合成硅酸盐玻璃为标准样品,用于硅酸盐熔体包裹体中水的含量和种型的定量限定.作为新发展起来的技术和方法,越来越多地引起地质学家的关注,但是目前大量的研究还集中于该分析方法自身的推演和校正,对天然样品的研究还相对缺乏.目前有限的研究表明,该方法可被广泛应用于岩浆岩和高级变质岩体系中,不仅可定量限定岩浆岩基质或斑晶中硅酸盐熔体包裹体水含量,有效示踪岩浆侵入或喷发过程中岩浆的流变学行为;而且可定量限定俯冲带内经历过部分熔融的高级变质岩中代表初始熔体的多晶矿物包裹体中水的含量和种型,示踪俯冲带熔体组成和演化,进而为研究深俯冲地壳分异、板片-地幔楔界面的熔体交代作用等重要问题提供新的制约.Abstract: Water, the primary volatile constituent in anatectic melt and terrestrial magma, has a significant effect on the physical and chemical properties of the melt. Due to limitations in analytical techniques and the fugitive nature of anatectic melts, it is extremely difficult to quantitatively determine water concentration and water speciation, resulting in a very limited understanding of the formation mechanism and evolution process for partial melting in subduction zone. Confocal micro-Raman spectroscopy, which has the advantages of high spatial resolution, fast, nondestructive analysis and simple sample preparation, severs the purpose of detecting small melt inclusions. Additionally, based on the principle that there is a good linear relationship between the height/intensity of Raman spectrum peak and the content of corresponding groups, the internal calibration and external calibration are established for the quantitative analysis of water content and water speciation in silicate melt inclusions with synthesized silicate glass as the standard sample. As a newly developed technique and method, more and more geologists pay attention to it. However, a large number of researches are still focused on the deduction and correction of the analytical method itself, while the research on natural samples is relatively lacking. Limited research indicates that the method can be widely used in magmatites and high-grade metamorphic rocks. It achieves quantitatively determining the water content of matrix or melt inclusion in porphyry, thereby effectively tracing the rheological behavior of magma during magma intrusion or eruption. Water content and speciation of the anatectic melt in the continental subduction zone provides tight constraints for continental crust differentiation and melt metasomatites at the slab-wedge interface.
-
Key words:
- water /
- Raman spectroscopy /
- silicate glass /
- melt inclusion /
- collisional zone /
- geochemistry
-
图 1 合成含水硅酸盐玻璃的水含量(H2O或D2O)与拉曼积分面积的相关性(修改自Thomas et al., 2006)
Fig. 1. Correlation between H2O and D2O concentrations in synthetic glasses and the integral intensity (modified after Thomas et al., 2006)
图 2 含水硅酸盐玻璃激光拉曼光谱图(修改自Zajacz et al., 2005)
a.低频区硅氧Si(Al)-O键的振动; b.高频区全水H2OT的伸缩振动
Fig. 2. Effect of the chemical composition of the glass on the water band shape (modified after Zajacz et al., 2005)
-
[1] Angelopoulos, P. M., Manić, N., Tsakiridis, P., et al., 2020. Dehydration of Rhyolite: Activation Energy, Water Speciation and Morphological Investigation. Journal of Thermal Analysis and Calorimetry, 142(1): 395-407. https://doi.org/10.1007/s10973-020-10105-2 [2] Bartoli, O., Acosta-Vigil, A., Cesare, B., 2015. High-Temperature Metamorphism and Crustal Melting: Working with Melt Inclusions. Periodico di Mineralogia, 84(3B): 591-614. https://doi.org/10.2451/2015PM0434 [3] Bartoli, O., Acosta-Vigil, A., Ferrero, S., et al., 2016. Granitoid Magmas Preserved as Melt Inclusions in High-Grade Metamorphic Rock. American Mineralogist, 101(7): 1543-1559. https://doi.org/10.2138/am-2016-5541ccbyncnd [4] Bartoli, O., Cesare, B., Poli, S., et al., 2013a. Nanogranite Inclusions in Migmatitic Garnet: Behavior during Piston-Cylinder Remelting Experiments. Geofluids, 13(4): 405-420. https://doi.org/10.1111/gfl.12038 [5] Bartoli, O., Cesare, B., Poli, S., et al., 2013b. Recovering the Composition of Melt and the Fluid Regime at the Onset of Crustal Anatexis and S-Type Granite Formation. Geology, 41(2): 115-118. https://doi.org/10.1130/g33455.1 [6] Beaumont, C., Jamieson, R., Nguyen, M, 2010. Models of Large, Hot Orogens Containing a Collage of Reworked and Accreted Terranes. Canadian Journal of Earth Sciences, 47(4): 485-515. https://doi.org/10.1139/E10-002 [7] Behrens, H., Roux, J., Neuville, D. R., et al., 2006. Quantification of Dissolved H2O in Silicate Glasses Using Confocal microRaman Spectroscopy. Chemical Geology, 229(1/2/3): 96-112. https://doi.org/10.1016/j.chemgeo.2006.01.014 [8] Berndt, J., Koepke, J., Holtz, F., 2005. An Experimental Investigation of the Influence of Water and Oxygen Fugacity on Differentiation of MORB at 200 MPa. Journal of Petrology, 46(1): 135-167. https://doi.org/10.1093/petrology/egh066 [9] Bodnar, R. J., Frezzotti, M. L., 2020. Microscale Chemistry: Raman Analysis of Fluid and Melt Inclusions. Elements, 16(2): 93-98. https://doi.org/10.2138/gselements.16.2.93 [10] Bonechi, B., Gaeta, M., Perinelli, C., et al., 2022. Micro-Raman Water Calibration in Ultrapotassic Silicate Glasses: Application to Phono-Tephrites and K-Foidites of Colli Albani Volcanic District (Central Italy). Chemical Geology, 597: 120816. https://doi.org/10.1016/j.chemgeo.2022.120816 [11] Brown, M., 2013. Granite: From Genesis to Emplacement. Geological Society of America Bulletin, 125(7-8): 1079-1113. https://doi.org/10.1130/b30877.1 [12] Brown, M., Rushmer, T., 2006. Evolution and Differentiation of the Continental Crust. Cambridge University Press, Cambridge. [13] Cesare, B., Acosta-Vigil, A., Bartoli, O., et al., 2015. What can we Learn from Melt Inclusions in Migmatites and Granulites? Lithos, 239: 186-216. https://doi.org/10.1016/j.lithos.2015.09.028 [14] Cesare, B., Acosta-Vigil, A., Ferrero, S., et al., 2011. Melt Inclusions in Migmatites and Granulites. Journal of the Virtual Explorer, 38. https://doi.org/10.3809/jvirtex.2011.00268 [15] Cesare, B., Ferrero, S., Salvioli-Mariani, E., et al., 2009. "Nanogranite" and Glassy Inclusions: The Anatectic Melt in Migmatites and Granulites. Geology, 37(7): 627-630. https://doi.org/10.1130/g25759a.1 [16] Chabiron, A., Peiffert, C., Pironon, J., et al., 1999. Determination of Water Content in Melt Inclusions by Raman Spectrometry. In: Ristedt, H., Luders, V., Thomas, R., eds., ECROFI XV (European Current Research on Fluid Inclusions), Abstract Program. Terra Nostra-Schr Alfred-Wegner-Stiftung, 99(6): 68-69. [17] Chabiron, A., Pironon, J., Massare, D., 2004. Characterization of Water in Synthetic Rhyolitic Glasses and Natural Melt Inclusions by Raman Spectroscopy. Contributions to Mineralogy and Petrology, 146(4): 485-492. https://doi.org/10.1007/s00410-003-0510-x [18] Chen, R. X., Zheng, Y. F., Gong, B., 2011. Mineral Hydrogen Isotopes and Water Contents in Ultrahigh-Pressure Metabasite and Metagranite: Constraints on Fluid Flow during Continental Subduction-Zone Metamorphism. Chemical Geology, 281(1/2): 103-124. https://doi.org/10.1016/j.chemgeo.2010.12.002 [19] Chen, R. X., Zheng, Y. F., Gong, B., 2007. Fluid Activity in Continental Subduction Zones: Insights from Stable Isotopes and Water Contents in Minerals from Ultrahigh-Pressure Metamorphic Rocks. Acta Petrologica Sinica, 27: 451-468. [20] Chen, Y. X., Zheng, Y. F., Gao, X. Y., et al., 2014. Multiphase Solid Inclusions in Zoisite-Bearing Eclogite: Evidence for Partial Melting of Ultrahigh-Pressure Metamorphic Rocks during Continental Collision. Lithos, 200/201: 1-21. https://doi.org/10.1016/j.lithos.2014.04.004 [21] Darling, R. S., 2013. Zircon-Bearing, Crystallized Melt Inclusions in Peritectic Garnet from the Western Adirondack Mountains, New York State, USA. Geofluids, 13(4): 453-459. https://doi.org/10.1111/gfl.12047 [22] Deloule, É., Paillat, O., Pichavant, M., et al., 1995. Ion Microprobe Determination of Water in Silicate Glasses: Methods and Applications. Chemical Geology, 125(1-2): 19-28. https://doi.org/10.1016/0009-2541(95)00070-3 [23] Devine, J. D., Gardner, J. E., Brack, H. P., et al., 1995. Comparison of Microanalytical Methods for Estimating H2O Contents of Silicic Volcanic Glasses. American Mineralogist, 80(3/4): 319-328. https://doi.org/10.2138/am-1995-3-413 [24] Di Genova, D., Sicola, S., Romano, C., et al., 2017. Effect of Iron and Nanolites on Raman Spectra of Volcanic Glasses: A Reassessment of Existing Strategies to Estimate the Water Content. Chemical Geology, 475: 76-86. https://doi.org/10.1016/j.chemgeo.2017.10.035 [25] Di Muro, A., Villemant, B., Montagnac, G., et al., 2006a. Quantification of Water Content and Speciation in Natural Silicic Glasses (Phonolite, Dacite, Rhyolite) by Confocal microRaman Spectrometry. Geochimica et Cosmochimica Acta, 70(11): 2868-2884. https://doi.org/10.1016/j.gca.2006.02.016 [26] Di Muro, A., Giordano, D., Villemant, B., et al., 2006b. Influence of Composition and Thermal History of Volcanic Glasses on Water Content as Determined by Micro-Raman Spectrometry. Applied Geochemistry, 21(5): 802-812. https://doi.org/10.1016/j.apgeochem.2006.02.009 [27] Enami, M., Zang, Q. J., 1990. Quartz Pseudomorphs after Coesite in Eclogites from Shandong Province, East China. American Mineralogist, 75(3-4): 381-386. [28] Enami, M., Zang, Q. J., Yin, Y. J., 1993. High-Pressure Eclogites in Northern Jiangsu-Southern Shandong Province, Eastern China. Journal of Metamorphic Geology, 11(4): 589-603. [29] Ferrero, S., Bartoli, O., Cesare, B., et al., 2012. Microstructures of Melt Inclusions in Anatectic Metasedimentary Rocks. Journal of Metamorphic Geology, 30(3): 303-322. https://doi.org/10.1111/j.1525-1314.2011.00968.x [30] Ferrero, S., Braga, R., Berkesi, M., et al., 2014. Production of Metaluminous Melt during Fluid-Present Anatexis: an Example from the Maghrebian Basement, La Galite Archipelago, Central Mediterranean. Journal of Metamorphic Geology, 32(2): 209-225. https://doi.org/10.1111/jmg.12068 [31] Ferrero, S., Godard, G., Palmeri, R., et al., 2018. Partial Melting of Ultramafic Granulites from Dronning Maud Land, Antarctica: Constraints from Melt Inclusions and Thermodynamic Modeling. American Mineralogist, 103(4): 610-622. https://doi.org/10.2138/am-2018-6214 [32] Ferrero, S., Wunder, B., Walczak, K., et al., 2015. Preserved near Ultrahigh-Pressure Melt from Continental Crust Subducted to Mantle Depths. Geology, 43(5): 447-450. https://doi.org/10.1130/g36534.1 [33] Ferrero, S., Wunder, B., Ziemann, M. A., et al., 2016. Carbonatitic and Granitic Melts Produced under Conditions of Primary Immiscibility during Anatexis in the Lower Crust. Earth and Planetary Science Letters, 454: 121-131. https://doi.org/10.1016/j.epsl.2016.08.043 [34] Frezzotti, M. L., 2001. Silicate-Melt Inclusions in Magmatic Rocks: Applications to Petrology. Lithos, 55(1-4): 273-299. https://doi.org/10.1016/S0024-4937(00)00048-7 [35] Gao, X. Y., 2019. Large-Scale Flow of Metamorphic Fluids in a Continental Subduction Zone: Evidence from Coesite-Bearing Jadeite Quartzite in the Dabie Orogen. Earth Science, 44(12): 4064-4071(in Chinese with English abstract). [36] Gao, X. Y., Chen, Y. X., Zhang, Q. Q., 2017. Multiphase Solid Inclusions in Ultrahigh-Pressure Metamorphic Rocks: A Snapshot of Anatectic Melts during Continental Collision. Journal of Asian Earth Sciences, 145: 192-204. https://doi.org/10.1016/j.jseaes.2017.03.036 [37] Gao, X. Y., Zheng, Y. F., Chen, Y. X., 2012. Dehydration Melting of Ultrahigh-Pressure Eclogite in the Dabie Orogen: Evidence from Multiphase Solid Inclusions in Garnet. Journal of Metamorphic Geology, 30(2): 193-212. https://doi.org/10.1111/j.1525-1314.2011.00962.x [38] Gao, X. Y., Zheng, Y. F., Chen, Y. X., et al., 2013. Trace Element Composition of Continentally Subducted Slab-Derived Melt: Insight from Multiphase Solid Inclusions in Ultrahigh-Pressure Eclogite in the Dabie Orogen. Journal of Metamorphic Geology, 31: 453-468. https://doi.org/10.1111/jmg.12029 [39] Gao, X. Y., Zheng, Y. F., Chen, Y. X., et al., 2014. Composite Carbonate and Silicate Multiphase Solid Inclusions in Metamorphic Garnet from Ultrahigh-P Eclogite in the Dabie Orogen. Journal of Metamorphic Geology, 32: 961-980. https://doi.org/10.1111/jmg.12102 [40] Giordano, D., Potuzak, M., Romano, C., et al., 2008. Viscosity and Glass Transition Temperature of Hydrous Melts in the System CaAl2Si2O8-CaMgSi2O6. Chemical Geology, 256(3/4): 203-215. https://doi.org/10.1016/j.chemgeo.2008.06.027 [41] Gong, B., Chen, R. X., Zheng, Y. F., 2013. Water Contents and Hydrogen Isotopes in Nominally Anhydrous Minerals from UHP Metamorphic Rocks in the Dabie-Sulu Orogenic Belt. Chinese Science Bulletin, 58(35): 4384-4389. https://doi.org/10.1007/s11434-013-6069-7 [42] González-García, D., Petrelli, M., Behrens, H., et al., 2018. Diffusive Exchange of Trace Elements between Alkaline Melts: Implications for Element Fractionation and Timescale Estimations during Magma Mixing. Geochimica et Cosmochimica Acta, 233: 95-114. https://doi.org/10.1016/j.gca.2018.05.003 [43] González-García, D., Giordano, D., Allabar, A., et al., 2021. Retrieving Dissolved H2O Content from Micro-Raman Spectroscopy on Nanolitized Silicic Glasses: Application to Volcanic Products of the Paraná Magmatic Province, Brazil. Chemical Geology, 567: 120058. https://doi.org/10.1016/j.chemgeo.2021.120058 [44] González-García, D., Giordano, D., Russell, J. K., et al., 2020. A Raman Spectroscopic Tool to Estimate Chemical Composition of Natural Volcanic Glasses. Chemical Geology, 556: 119819. https://doi.org/10.1016/j.chemgeo.2020.119819 [45] González-García, D., Vetere, F., Behrens, H., et al., 2019. Interdiffusion of Major Elements at 1 Atmosphere between Natural Shoshonitic and Rhyolitic Melts. American Mineralogist, 104(10): 1444-1454. https://doi.org/10.2138/am-2019-6997 [46] Groppo, C., Rolfo, F., Indares, A., 2012. Partial Melting in the Higher Himalayan Crystallines of Eastern Nepal: The Effect of Decompression and Implications for the 'Channel Flow' Model. Journal of Petrology, 53(5): 1057-1088. https://doi.org/10.1093/petrology/egs009 [47] Grove, T. L., Till, C. B., Krawczynski, M. J., 2012. The Role of H2O in Subduction Zone Magmatism. Annual Review of Earth and Planetary Sciences, 40: 413-439. https://doi.org/10.1146/annurev-earth-042711-105310 [48] Hacker, B. R., Peacock, S. M., Abers, G. A., et al., 2003. Subduction Factory 2. are Intermediate-Depth Earthquakes in Subducting Slabs Linked to Metamorphic Dehydration Reactions? Journal of Geophysical Research: Solid Earth, 108(B1): 2030. https://doi.org/10.1029/2001jb001129 [49] Halter, W. E., Pettke, T., Heinrich, C. A., et al., 2002. Major to Trace Element Analysis of Melt Inclusions by Laser-Ablation ICP-MS: Methods of Quantification. Chemical Geology, 183(1-4): 63-86. https://doi.org/10.1016/S0009-2541(01)00372-2 [50] Hauri, E., Wang, J. H., Dixon, J. E., et al., 2002. SIMS Analysis of Volatiles in Silicate Glasses. Chemical Geology, 183(1-4): 99-114. https://doi.org/10.1016/S0009-2541(01)00375-8 [51] Helo, C., Castro, J. M., Hess, K. U., et al., 2020. Determination of Water Speciation in Hydrous Haplogranitic Glasses with Partial Raman Spectra. Chemical Geology, 553: 119793. https://doi.org/10.1016/j.chemgeo.2020.119793 [52] Hermann, J., Zheng, Y. F., Rubatto, D., 2013. Deep Fluids in Subducted Continental Crust. Elements, 9(4): 281-287. https://doi.org/10.2113/gselements.9.4.281 [53] Hier-Majumder, S., Anderson, I. M., Kohlstedt, D. L., 1997. Influence of Protons on Fe-Mg Interdiffusion in High-Magnesian Andesitic Melts. Geology, 25: 42-44. [54] Hirth, G., Kohlstedt, D., 2003. Rheology of the Upper Mantle and the Mantle Wedge: A View from the Experimentalists. Inside the Subduction Factory. Washington, D. C.: American Geophysical Union, 83-105. https://doi.org/10.1029/138gm06 [55] Hofmeister, A. M., 2004. Enhancement of Radiative Transfer in the Upper Mantle by OH– in Minerals. Physics of the Earth and Planetary Interiors, 146(3/4): 483-495. https://doi.org/10.1016/j.pepi.2004.05.007 [56] Holness, M. B., Cesare, B., Sawyer, E. W., 2011. Melted Rocks under the Microscope: Microstructures and Their Interpretation. Elements, 7(4): 247-252. https://doi.org/10.2113/gselements.7.4.247 [57] Hui, H. J., Zhang, Y. X., 2007. Toward a General Viscosity Equation for Natural Anhydrous and Hydrous Silicate Melts. Geochimica et Cosmochimica Acta, 71(2): 403-416. https://doi.org/10.1016/j.gca.2006.09.003 [58] Hwang, S. L., Shen, P. Y., Chu, H. T., et al., 2001. Genesis of Microdiamonds from Melt and Associated Multiphase Inclusions in Garnet of Ultrahigh-Pressure Gneiss from Erzgebirge, Germany. Earth and Planetary Science Letters, 188(1/2): 9-15. https://doi.org/10.1016/S0012-821X(01)00314-4 [59] Ihinger, P. D., Hervig, R. L., McMillan, P. F., 1994. Analytical Methods Forvolatiles in Glasses. In: Carroll, M. -R., Holloway, J. R., eds., Volatiles in Magmas 30. Reviews in Mineralogy, Mineralogical Society of America, Chantilly, Virginia. [60] Karato, S., 1990. The Role of Hydrogen in the Electrical Conductivity of the Upper Mantle. Nature, 347(6290): 272-273. https://doi.org/10.1038/347272a0 [61] Karato, S. I., 2010. Rheology of the Deep Upper Mantle and Its Implications for the Preservation of the Continental Roots: A Review. Tectonophysics, 481(1/2/3/4): 82-98. https://doi.org/10.1016/j.tecto.2009.04.011 [62] Kelley, K. A., Plank, T., Newman, S., et al., 2010. Mantle Melting as a Function of Water Content beneath the Mariana Arc. Journal of Petrology, 51(8): 1711-1738. https://doi.org/10.1093/petrology/egq036 [63] Korsakov, A. V., Hermann, J., 2006. Silicate and Carbonate Melt Inclusions Associated with Diamonds in Deeply Subducted Carbonate Rocks. Earth and Planetary Science Letters, 241(1/2): 104-118. https://doi.org/10.1016/j.epsl.2005.10.037 [64] Kotov, A. A., Smirnov, S. Z., Maksimovich, I. A., et al., 2017. Water in Melt Inclusions from Phenocrysts of Dacite Pumice of the Vetrovoy Isthmus (Iturup Island, Southern Kuriles). IOP Conference Series: Earth and Environmental Science, 110: 012009. https://doi.org/10.1088/1755-1315/110/1/012009 [65] Labrousse, L., Jolivet, L., Agard, P., et al., 2002. Crustal-Scale Boudinage and Migmatization of Gneiss during Their Exhumation in the UHP Province of Western Norway. Terra Nova, 14(4): 263-270. https://doi.org/10.1046/j.1365-3121.2002.00422.x [66] Labrousse, L., Prouteau, G., Ganzhorn, A. C., 2011. Continental Exhumation Triggered by Partial Melting at Ultrahigh Pressure. Geology, 39(12): 1171-1174. https://doi.org/10.1130/g32316.1 [67] Le Losq, C., Neuville, D., Moretti, R., et al., 2012. Determination of Water Content in Silicate Glasses Using Raman Spectrometry: Implications for the Study of Explosive Volcanism. American Mineralogist, 97(5/6): 779-790. https://doi.org/10.2138/am.2012.3831 [68] Lee, C. T. A., Morton, D. M., Farner, M. J., et al., 2015. Field and Model Constraints on Silicic Melt Segregation by Compaction/Hindered Settling: The Role of Water and Its Effect on Latent Heat Release. American Mineralogist, 100(8/9): 1762-1777. https://doi.org/10.2138/am-2015-5121 [69] Leschik, M., Heide, G., Frischat, G. H., et al., 2004. Determination of H2O and D2O Contents in Rhyolitic Glasses. Physics and Chemistry of Glasses, 45(4): 238-251. [70] Liebske, C., Behrens, H., Holtz, F., et al., 2003. The Influence of Pressure and Composition on the Viscosity of Andesitic Melts. Geochimica et Cosmochimica Acta, 67(3): 473-485. https://doi.org/10.1016/S0016-7037(02)01139-0 [71] Liu, Q., Hermann, J., Zhang, J. F., 2013. Polyphase Inclusions in the Shuanghe UHP Eclogites Formed by Subsolidus Transformation and Incipient Melting during Exhumation of Deeply Subducted Crust. Lithos, 177: 91-109. https://doi.org/10.1016/j.lithos.2013.06.010 [72] Liu, Q., Hermann, J., Zheng, S., et al., 2020. Evidence for UHP Anatexis in the Shuanghe UHP Paragneiss from Inclusions in Clinozoisite, Garnet and Zircon. Journal of Metamorphic Geology, 38(1): 129-155. https://doi.org/10.1111/jmg.12515 [73] Long, D. A., 1977. Raman Spectroscopy. MacGraw-Hill, New York. [74] Mackwell, S. J., Kohlstedt, D. L., Paterson, M. S., 1985. The Role of Water in the Deformation of Olivine Single Crystals. Journal of Geophysical Research, 90(B13): 11319. https://doi.org/10.1029/jb090ib13p11319 [75] Malaspina, N., Hermann, J., Scambelluri, M., et al., 2006. Polyphase Inclusions in Garnet-Orthopyroxenite (Dabie Shan, China) as Monitors for Metasomatism and Fluid-Related Trace Element Transfer in Subduction Zone Peridotite. Earth and Planetary Science Letters, 249(3/4): 173-187. https://doi.org/10.1016/j.epsl.2006.07.017 [76] Mandeville, C. W., Webster, J. D., Rutherford, M. J., et al., 2002. Determination of Molar Absorptivities for Infrared Absorption Bands of H2O in Andesitic Glasses. American Mineralogist, 87(7): 813-821. https://doi.org/10.2138/am-2002-0702 [77] Massonne, H. J., 2001. First Find of Coesite in the Ultrahigh-Pressure Metamorphic Area of the Central Erzgebirge, Germany. European Journal of Mineralogy, 13(3): 565-570. https://doi.org/10.1127/0935-1221/2001/0013-0565 [78] Massonne, H. J., Nasdala, L., 2003. Characterization of an Early Metamorphic Stage through Inclusions in Zircon of a Diamondiferous Quartzofeldspathic Rock from the Erzgebirge, Germany. American Mineralogist, 88(5-6): 883-889. https://doi.org/10.2138/am-2003-5-618 [79] Matson, D. W., Sharma, S. K., Philpotts, J. A., 1986. Raman Spectra of some Tectosilicates and of Glasses along the Orthoclase-Anorthite and Nepheline-Anorthite Joins. American Mineralogist, 71(5-6): 694-704. [80] McMillan, P. F., 1984. Structural Studies of Silicate Glasses and Melts-Applications and Limitations of Raman Spectroscopy. American Mineralogist, 69(6): 622-644. [81] McMillan, P. F., Hofmeister, A. M., 1988. Infrared and Raman Spectroscopy. Mineralogical Society of America Reviews in Mineralogy, 18(4): 99-159. [82] McMillan, P. F., Poe, B. T., Gillet, P. H., et al., 1994. A Study of SiO2 Glass and Supercooled Liquid to 1 950 K via High-Temperature Raman Spectroscopy. Geochimica et Cosmochimica Acta, 58(17): 3653-3664. https://doi.org/10.1016/0016-7037(94)90156-2 [83] McMillan, P. F., Remmele, J. R., 1986. Hydroxyl Sites in SiO2 Glass: A Note on Infrared and Raman Spectra. American Mineralogist, 71: 772-778. [84] Mei, S., Kohlstedt, D. L., 2000. Influence of Water on Plastic Deformation of Olivine Aggregates: 2. Dislocation Creep Regime. Journal of Geophysical Research: Solid Earth, 105(B9): 21471-21481. https://doi.org/10.1029/2000jb900180 [85] Mercier, M., Di Muro, A., Giordano, D., et al., 2009. Influence of Glass Polymerisation and Oxidation on Micro-Raman Water Analysis in Alumino-Silicate Glasses. Geochimica et Cosmochimica Acta, 73(1): 197-217. https://doi.org/10.1016/j.gca.2008.09.030 [86] Mercier, M., Muro, A. D., Métrich, N., et al., 2010. Spectroscopic Analysis (FTIR, Raman) of Water in Mafic and Intermediate Glasses and Glass Inclusions. Geochimica et Cosmochimica Acta, 74(19): 5641-5656. https://doi.org/10.1016/j.gca.2010.06.020 [87] Mikhno, A. O., Korsakov, A. V., 2013. K2O Prograde Zoning Pattern in Clinopyroxene from the Kokchetav Diamond-Grade Metamorphic Rocks: Missing Part of Metamorphic History and Location of Second Critical End Point for Calc-Silicate System. Gondwana Research, 23(3): 920-930. https://doi.org/10.1016/j.gr.2012.07.020 [88] Mikhno, A. O., Schmidt, U., Korsakov, A. V., 2013. Origin of K-Cymrite and Kokchetavite in the Polyphase Mineral Inclusions from Kokchetav UHP Calc-Silicate Rocks: Evidence from Confocal Raman Imaging. European Journal of Mineralogy, 25(5): 807-816. https://doi.org/10.1127/0935-1221/2013/0025-2321 [89] Morgan, G. B., London, D., 1996. Optimizing the Electron Microprobe Analysis of Hydrous Alkali Aluminosilicate Glasses. American Mineralogist, 81(9/10): 1176-1185. https://doi.org/10.2138/am-1996-9-1016 [90] Müller, A., Thomas, R., Wiedenbeck, M., et al., 2006a. Water Content of Granitic Melts from Cornwall and Erzgebirge: A Raman Spectroscopy Study of Melt Inclusions. European Journal of Mineralogy, 18(4): 429-440. https://doi.org/10.1127/0935-1221/2006/0018-0429 [91] Müller, D., Tesche, M., Eichler, H., et al., 2006b. Strong Particle Light Absorption over the Pearl River Delta (South China) and Beijing (North China) Determined from Combined Raman Lidar and Sun Photometer Observations. Geophysical Research Letters, 33(20): L20811. https://doi.org/10.1029/2006GL027196 [92] Mysen, B. O., Holtz, F., Pichavant, M., et al., 1997. Solution Mechanisms of Phosphorus in Quenched Hydrous and Anhydrous Granitic Glass as a Function of Peraluminosity. Geochimica et Cosmochimica Acta, 61(18): 3913-3926. https://doi.org/10.1016/S0016-7037(97)00193-2 [93] Mysen, B. O., Virgo, D., 1986a. Volatiles in Silicate Melts at High Pressure and Temperature. Chemical Geology, 57(3/4): 333-358. https://doi.org/10.1016/0009-2541(86)90057-4 [94] Mysen, B. O., Virgo, D., 1986b. Volatiles in Silicate Melts at High Pressure and Temperature. Chemical Geology, 57(3/4): 333-358. https://doi.org/10.1016/0009-2541(86)90057-4 [95] Mysen, B. O., Virgo, D., Scarfe, C. M., 1980. Relations between the Anionic Structure and Viscosity of Silicate Melts—A Raman Spectroscopic Study. American Mineralogist, 65: 690-710. [96] Mysen, B. O., Virgo, D., Seifert, F. A., 1982. The Structure of Silicate Melts: Implications for Chemical and Physical Properties of Natural Magma. Reviews of Geophysics, 20(3): 353-383. https://doi.org/10.1029/rg020i003p00353 [97] Newman, S., Stolper, E. M., Epstein, S., 1986. Measurement of Water in Rhyolitic Glasses; Calibration of an Infrared Spectroscopic Technique. American Mineralogist, 71: 1527-1541. [98] Ni, H. W., Keppler, H., Behrens, H., 2011. Electrical Conductivity of Hydrous Basaltic Melts: Implications for Partial Melting in the Upper Mantle. Contributions to Mineralogy and Petrology, 162(3): 637-650. https://doi.org/10.1007/s00410-011-0617-4 [99] Ni, H. W., Zhang, L., Guo, X., 2016. Water and Partial Melting of Earth's Mantle. Science China Earth Sciences, 59(4): 720-730. https://doi.org/10.1007/s11430-015-5254-8 [100] Ohlhorst, S., Behrens, H., Holtz, F., 2001. Compositional Dependence of Molar Absorptivities of Near-Infrared OH- and H2O Bands in Rhyolitic to Basaltic Glasses. Chemical Geology, 174(1-3): 5-20. https://doi.org/10.1016/S0009-2541(00)00303-X [101] Regenauer-Lieb, K., Yuen, D. A., Branlund, J., 2001. The Initiation of Subduction: Criticality by Addition of Water? Science, 294(5542): 578-580. https://doi.org/10.1126/science.1063891 [102] Rosenberg, C. L., Handy, M. R., 2005. Experimental Deformation of Partially Melted Granite Revisited: Implications for the Continental Crust. Journal of Metamorphic Geology, 23: 19-28. doi: 10.1111/j.1525-1314.2005.00555.x [103] Schiavi, F., Bolfan-Casanova, N., Withers, A. C., et al., 2018. Water Quantification in Silicate Glasses by Raman Spectroscopy: Correcting for the Effects of Confocality, Density and Ferric Iron. Chemical Geology, 483: 312-331. https://doi.org/10.1016/j.chemgeo.2018.02.036 [104] Severs, M. J., Azbej, T., Thomas, J. B., et al., 2007. Experimental Determination of H2O Loss from Melt Inclusions during Laboratory Heating: Evidence from Raman Spectroscopy. Chemical Geology, 237(3/4): 358-371. https://doi.org/10.1016/j.chemgeo.2006.07.008 [105] Sharma, S. K., Mammone, J. F., Nicol, M. F., 1981. Raman Investigation of Ring Configurations in Vitreous Silica. Nature, 292(5819): 140-141. https://doi.org/10.1038/292140a0 [106] Shaw, A. M., Hauri, E. H., Fischer, T. P., et al., 2008. Hydrogen Isotopes in Mariana Arc Melt Inclusions: Implications for Subduction Dehydration and the Deep-Earth Water Cycle. Earth and Planetary Science Letters, 275(1-2): 138-145. https://doi.org/10.1016/j.epsl.2008.08.015 [107] Silver, L. A., Ihinger, P. D., Stolper, E., 1990. The Influence of Bulk Composition on the Speciation of Water in Silicate Glasses. Contributions to Mineralogy and Petrology, 104(2): 142-162. https://doi.org/10.1007/BF00306439 [108] Song, S. G., Yang, J. S., Xu, Z., et al., 2003. Metamorphic Evolution of the Coesite-Bearing Ultrahigh-Pressure Terrane in the North Qaidam, Northern Tibet, NW China. Journal of Metamorphic Geology, 21(6): 631-644. https://doi.org/10.1046/j.1525-1314.2003.00469.x [109] Sorby, H. C., 1858. On the Microscopical, Structure of Crystals, Indicating the Origin of Minerals and Rocks. Quarterly Journal of the Geological Society, 14(1/2): 453-500. https://doi.org/10.1144/gsl.jgs.1858.014.01-02.44 [110] Stepanov, A. S., Hermann, J., Korsakov, A. V., et al., 2014. Geochemistry of Ultrahigh-Pressure Anatexis: Fractionation of Elements in the Kokchetav Gneisses during Melting at Diamond-Facies Conditions. Contributions to Mineralogy and Petrology, 167(5): 1002. https://doi.org/10.1007/s00410-014-1002-x [111] Stepanov, A. S., Hermann, J., Rubatto, D., et al., 2016. Melting History of an Ultrahigh-Pressure Paragneiss Revealed by Multiphase Solid Inclusions in Garnet, Kokchetav Massif, Kazakhstan. Journal of Petrology, 57(8): 1531-1554. https://doi.org/10.1093/petrology/egw049 [112] Stolper, E., 1982. Water in Silicate Glasses: An Infrared Spectroscopic Study. Contributions to Mineralogy and Petrology, 81(1): 1-17. https://doi.org/10.1007/BF00371154 [113] Tacchetto, T., Bartoli, O., Cesare, B., et al., 2018. Multiphase Inclusions in Peritectic Garnet from Granulites of the Athabasca Granulite Terrane (Canada): Evidence of Carbon Recycling during Neoarchean Crustal Melting. Chemical Geology, 508: 197-209. https://doi.org/10.1016/j.chemgeo.2018.05.043 [114] Thomas, R., 2000. Determination of Water Contents of Granite Melt Inclusions by Confocal Laser Raman Microprobe Spectroscopy. American Mineralogist, 85(5-6): 868-872. https://doi.org/10.2138/am-2000-5-631 [115] Thomas, R., 2002. Determination of Water Contents in Melt Inclusions by Laser Raman Spectroscopy. Workshop-Short Course on Volcanic Systems, Geochemical and Geophysical Monitoring. In: De Vivo, B., Bodnar, R. J., eds., Melt Inclusions: Methods, Applications and Problems. Seiano di Vico Equense (Napoli), Italy, Proceedings, 211-216. [116] Thomas, R., Davidson, P., 2012. Water in Granite and Pegmatite-Forming Melts. Ore Geology Reviews, 46: 32-46. https://doi.org/10.1016/j.oregeorev.2012.02.006 [117] Thomas, R., Kamenetsky, V. S., Davidson, P., 2006. Laser Raman Spectroscopic Measurements of Water in Unexposed Glass Inclusions. American Mineralogist, 91(2-3): 467-470. https://doi.org/10.2138/am.2006.2107 [118] Thomas, S. M., Thomas, R., Davidson, P., et al., 2008. Application of Raman Spectroscopy to Quantify Trace Water Concentrations in Glasses and Garnets. American Mineralogist, 93(10): 1550-1557. https://doi.org/10.2138/am.2008.2834 [119] Venugopal, S., Schiavi, F., Moune, S., et al., 2020. Melt Inclusion Vapour Bubbles: The Hidden Reservoir for Major and Volatile Elements. Scientific Reports, 10: 9034. https://doi.org/10.1038/s41598-020-65226-3 [120] Wallace, P. J., 2005. Volatiles in Subduction Zone Magmas: Concentrations and Fluxes Based on Melt Inclusion and Volcanic Gas Data. Journal of Volcanology and Geothermal Research, 140(1/2/3): 217-240. https://doi.org/10.1016/j.jvolgeores.2004.07.023 [121] Wallis, S., Tsuboi, M., Suzuki, K., et al., 2005. Role of Partial Melting in the Evolution of the Sulu (Eastern China) Ultrahigh-Pressure Belt. Geology, 33(2): 129-132. https://doi.org/10.1130/G20991.1 [122] Wang, D., Lu, H. Z., Shan, Q., 2017. Advances on Melt Inclusion Studies. Acta Petrologica Sinica, 33(2): 653-666(in Chinese with English abstract). [123] Wang, L., Kusky, T. M., Polat, A., et al., 2014. Partial Melting of Deeply Subducted Eclogite from the Sulu Orogen in China. Nature Communications, 5: 5604. https://doi.org/10.1038/ncomms6604 [124] Wang, S. J., Wang, L., Brown, M., et al., 2017. Fluid Generation and Evolution during Exhumation of Deeply Subducted UHP Continental Crust: Petrogenesis of Composite Granite-Quartz Veins in the Sulu Belt, China. Journal of Metamorphic Geology, 35(6): 601-629. https://doi.org/10.1111/jmg.12248 [125] Wang, X. C., Li, Q. L., Wilde, S. A., et al., 2021. Decoupling between Oxygen and Radiogenic Isotopes: Evidence for Generation of Juvenile Continental Crust by Partial Melting of Subducted Oceanic Crust. Journal of Earth Science, 32(5): 1212-1225. https://doi.org/10.1007/s12583-020-1095-2 [126] Withers, A. C., Behrens, H., 1999. Temperature-Induced Changes in the NIR Spectra of Hydrous Albitic and Rhyolitic Glasses between 300 and 100 K. Physics and Chemistry of Minerals, 27(2): 119-132. https://doi.org/10.1007/s002690050248 [127] Yang, J. J., Godard, G., Smith, D. C., 1998. K-Feldspar-Bearing Coesite Pseudomorphs in an Eclogite from Lanshantou (Eastern China). European Journal of Mineralogy, 10(5): 969-986. https://doi.org/10.1127/ejm/10/5/0969 [128] Yoshino, T., Matsuzaki, T., Yamashita, S., et al., 2006. Hydrous Olivine Unable to Account for Conductivity Anomaly at the Top of the Asthenosphere. Nature, 443(7114): 973-976. https://doi.org/10.1038/nature05223 [129] Zack, T., John, T., 2007. An Evaluation of Reactive Fluid Flow and Trace Element Mobility in Subducting Slabs. Chemical Geology, 239(3/4): 199-216. https://doi.org/10.1016/j.chemgeo.2006.10.020 [130] Zajacz, Z., Halter, W., Malfait, W. J., et al., 2005. A Composition-Independent Quantitative Determination of the Water Content in Silicate Glasses and Silicate Melt Inclusions by Confocal Raman Spectroscopy. Contributions to Mineralogy and Petrology, 150(6): 631-642. https://doi.org/10.1007/s00410-005-0040-9 [131] Zeng, L. S., Chen, Z. Y., Chen, J., 2013. Metamorphic Solid Salt (KCl-NaCl) in Quartzo-Feldspathic Polyphase Inclusions in the Sulu Ultrahigh-Pressure Eclogite. Chinese Science Bulletin, 58(8): 931-937. https://doi.org/10.1007/s11434-012-5373-y [132] Zeng, L. S., Liang, F. H., Asimow, P., et al., 2009. Partial Melting of Deeply Subducted Continental Crust and the Formation of Quartzofeldspathic Polyphase Inclusions in the Sulu UHP Eclogites. Chinese Science Bulletin, 54(15): 2580-2594. https://doi.org/10.1007/s11434-009-0426-6 [133] Zhang, J. F., Green, H. W., Bozhilov, K., et al., 2004. Faulting Induced by Precipitation of Water at Grain Boundaries in Hot Subducting Oceanic Crust. Nature, 428(6983): 633-636. https://doi.org/10.1038/nature02475 [134] Zhang, R., Liou, J., Iizuka, Y., et al., 2009. First Record of K-Cymrite in North Qaidam UHP Eclogite, Western China. American Mineralogist, 94(2/3): 222-228. https://doi.org/10.2138/am.2009.2983 [135] Zhang, Y. X., Ni, H. W., Chen, Y., 2010. Diffusion Data in Silicate Melts. Reviews in Mineralogy and Geochemistry, 72(1): 311-408. https://doi.org/10.2138/rmg.2010.72.8 [136] Zhang, Z. M., Shen, K., Sun, W. D., et al., 2008. Fluids in Deeply Subducted Continental Crust: Petrology, Mineral Chemistry and Fluid Inclusion of UHP Metamorphic Veins from the Sulu Orogen, Eastern China. Geochimica et Cosmochimica Acta, 72(13): 3200-3228. https://doi.org/10.1016/j.gca.2008.04.014 [137] Zheng, Y. F., Ye, K., 2009. Developing the Plate Tectonics from Oceanic Subduction to Continental Collision. Chinese Science Bulletin, 54(13): 1799-1803. [138] Zheng, Y. F., 2009. Fluid Regime in Continental Subduction Zones: Petrological Insights from Ultrahigh-Pressure Metamorphic Rocks. Journal of the Geological Society, 166(4): 763-782. https://doi.org/10.1144/0016-76492008-016R [139] Zheng, Y. F., 2012. Metamorphic Chemical Geodynamics in Continental Subduction Zones. Chemical Geology, 328: 5-48. https://doi.org/10.1016/j.chemgeo.2012.02.005 [140] Zheng, Y. F., 2019. Subduction Zone Geochemistry. Geoscience Frontiers, 10(4): 1223-1254. https://doi.org/10.1016/j.gsf.2019.02.003 [141] Zheng, Y. F., Chen, Y. X., 2019. Crust-Mantle Interaction in Continental Subduction Zones. Earth Science, 44(12): 3961-3983(in Chinese with English abstract). [142] Zheng, Y. F., Gao, P., 2021. The Production of Granitic Magmas through Crustal Anatexis at Convergent Plate Boundaries. Lithos, 402/403: 106232. https://doi.org/10.1016/j.lithos.2021.106232 [143] Zheng, Y. F., Hermann, J., 2014. Geochemistry of Continental Subduction-Zone Fluids. Earth, Planets and Space, 66(1): 93. https://doi.org/10.1186/1880-5981-66-93 [144] Zheng, Y. F., Xia, Q. X., Chen, R. X., et al., 2011. Partial Melting, Fluid Supercriticality and Element Mobility in Ultrahigh-Pressure Metamorphic Rocks during Continental Collision. Earth-Science Reviews, 107(3/4): 342-374. https://doi.org/10.1016/j.earscirev.2011.04.004 [145] 高晓英, 2019. 大陆俯冲带大规模的变质流体活动: 来自大别造山带超高压硬玉石英岩的记录. 地球科学, 44(12): 4064-4071. doi: 10.3799/dqkx.2019.242 [146] 王蝶, 卢焕章, 单强, 2017. 岩浆熔体包裹体研究进展. 岩石学报, 33(2): 653-666. [147] 郑永飞, 陈伊翔, 2019. 大陆俯冲带壳幔相互作用. 地球科学, 44(12): 3961-3983. doi: 10.3799/dqkx.2019.982