• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    实验矿物物理的发展现状与趋势:1.相变和状态方程、电导率、热导率

    张宝华 毛竹 刘锦 叶宇 孙伟 郭新转 刘兆东 郭璇

    张宝华, 毛竹, 刘锦, 叶宇, 孙伟, 郭新转, 刘兆东, 郭璇, 2022. 实验矿物物理的发展现状与趋势:1.相变和状态方程、电导率、热导率. 地球科学, 47(8): 2714-2728. doi: 10.3799/dqkx.2022.219
    引用本文: 张宝华, 毛竹, 刘锦, 叶宇, 孙伟, 郭新转, 刘兆东, 郭璇, 2022. 实验矿物物理的发展现状与趋势:1.相变和状态方程、电导率、热导率. 地球科学, 47(8): 2714-2728. doi: 10.3799/dqkx.2022.219
    Zhang Baohua, Mao Zhu, Liu Jin, Ye Yu, Sun Wei, Guo Xinzhuan, Liu Zhaodong, Guo Xuan, 2022. Recent Progress and Perspective of Experimental Mineral Physics: 1. Phase Transition and Equation of State, Electrical Conductivity and Thermal Conductivity. Earth Science, 47(8): 2714-2728. doi: 10.3799/dqkx.2022.219
    Citation: Zhang Baohua, Mao Zhu, Liu Jin, Ye Yu, Sun Wei, Guo Xinzhuan, Liu Zhaodong, Guo Xuan, 2022. Recent Progress and Perspective of Experimental Mineral Physics: 1. Phase Transition and Equation of State, Electrical Conductivity and Thermal Conductivity. Earth Science, 47(8): 2714-2728. doi: 10.3799/dqkx.2022.219

    实验矿物物理的发展现状与趋势:1.相变和状态方程、电导率、热导率

    doi: 10.3799/dqkx.2022.219
    基金项目: 

    国家自然科学基金项目 42042007

    国家自然科学基金项目 41973065

    国家自然科学基金项目 41773056

    详细信息
      作者简介:

      张宝华(1978-),男,研究员,主要从事高温高压矿物物理研究.ORCID:0000-0002-1239-1569. E-mail:zhangbaohua@zju.edu.cn

    • 中图分类号: P574

    Recent Progress and Perspective of Experimental Mineral Physics: 1. Phase Transition and Equation of State, Electrical Conductivity and Thermal Conductivity

    • 摘要: 实验矿物物理是高温高压实验地球科学的重要分支学科之一,它主要是通过高温高压实验模拟地球内部的物理化学环境,并原位测定地球深部物质(矿物、岩石和熔/流体等)的相变和状态方程、电导率、热导率等物理参数,探讨地球内部的圈层结构、物质组成、地球动力学过程等地球物理性质相关的一系列重要科学问题. 综述了实验矿物物理的发展历史、近二十年的研究现状与趋势,并展望了该学科未来发展的方向、关键科学问题与面临的主要挑战.

       

    • 图  1  地球内部的圈层结构与成分

      周春银和金振民(2014)

      Fig.  1.  Layered structure and composition of the Earth interior

      图  2  (a)大腔体压机(large volume press,简称LVP)和(b)金刚石压腔(diamond anvil cell,简称DAC)能够达到的温压范围

      Yamazaki and Ito(2020)

      Fig.  2.  Pressure and temperature ranges for (a) large volume press (LVP) and (b) diamond anvil cell (DAC)

      图  3  下地幔的结构与动力学

      Garnero and McNamara(2008)

      Fig.  3.  Structure and geodynamics of the lower mantle

    • [1] Akimoto, S. I., Fujisawa, H., 1968. Olivine‐Spinel Transition in the System Mg2SiO4‐Fe2SiO4 at 800℃. Earth and Planetary Science Letters, 1(4): 237-240. https://doi.org/10.1016/0012‐821x(66)90076‐8
      [2] Badro, J., Fiquet, G., Guyot, F., et al., 2003. Iron Partitioning in Earth's Mantle: Toward a Deep Lower Mantle Discontinuity. Science, 300(5620): 789-791. https://doi.org/10.1126/science.1081311
      [3] Badro, J., Rueff, J. P., Vanko, G., et al., 2004. Electronic Transitions in Perovskite: Possible Nonconvecting Layers in the Lower Mantle. Science, 305(5682): 383-386. https://doi.org/10.1126/science.1098840
      [4] Beck, A. E., Darbha, D. M., Schloessin, H. H., 1978. Lattice Conductivities of Single‐Crystal and Polycrystalline Materials at Mantle Pressures and Temperatures. Physics of the Earth and Planetary Interiors, 17(1): 35-53. https://doi.org/10.1016/0031‐9201(78)90008‐0
      [5] Beck, P., Goncharov, A. F., Struzhkin, V. V., et al., 2007. Measurement of Thermal Diffusivity at High Pressure Using a Transient Heating Technique. Applied Physics Letters, 91(18): 181914. https://doi.org/10.1063/1.2799243
      [6] Birch, F., 1938. The Effect of Pressure Upon the Elastic Parameters of Isotropic Solids, According to Murnaghan's Theory of Finite Strain. Journal of Applied Physics, 9(4): 279-288. https://doi.org/10.1063/1.1710417
      [7] Birch, F., 1952. Elasticity and Constitution of the Earth's Interior. Journal of Geophysical Research, 57(2): 227-286. https://doi.org/10.1029/jz057i002p00227
      [8] Bridgman, P.W., 1958. Physics of High Pressure. G Bell and Sons, London.
      [9] Buffett, B.A., Garnero, E.J., Jeanloz, R., 2000. Sediments at the Top of Earth' s Core. Science, 290: 1338-1342. doi: 10.1126/science.290.5495.1338
      [10] Chai, M., Brown, J. M., Slutsky, L. J., 1996. Thermal Diffusivity of Mantle Minerals. Physics and Chemistry of Minerals, 23(7): 470-475. https://doi.org/10.1007/bf00202033
      [11] Chang, Y. Y., Hsieh, W. P., Tan, E., et al., 2017. Hydration‐Reduced Lattice Thermal Conductivity of Olivine in Earth's Upper Mantle. Proceedings of the National Academy of Sciences, 114(16): 4078-4081. https://doi.org/10.1073/pnas.1616216114
      [12] Chen, S. B., Guo, X. Z., Yoshino, T., et al., 2018. Dehydration of Phengite Inferred by Electrical Conductivity Measurements: Implication for the High Conductivity Anomalies Relevant to the Subduction Zones. Geology, 46(1): 11-14. https://doi.org/10.1130/g39716.1
      [13] Coes, L., 1953. A New Dense Crystalline Silica. Science, 118(3057): 131-132. https://doi.org/10.1126/science.118.3057.131
      [14] Dai, L. D., Karato, S. I., 2009. Electrical Conductivity of Pyrope‐Rich Garnet at High Temperature and High Pressure. Physics of the Earth and Planetary Interiors, 176(1/2): 83-88. https://doi.org/10.1016/j.pepi.2009.04.002
      [15] Dai, L. D., Li, H. P., Hu, H. Y., et al., 2008. Experimental Study of Grain Boundary Electrical Conductivities of Dry Synthetic Peridotite under High‐Temperature, High‐Pressure, and Different Oxygen Fugacity Conditions. Journal of Geophysical Research, 113(B12): 211. https://doi.org/10.1029/2008jb005820
      [16] Fei, Y. W., Ricolleau, A., Frank, M., et al., 2007. Toward an Internally Consistent Pressure Scale. Proceedings of the National Academy of Sciences, 104(22): 9182-9186. https://doi.org/10.1073/pnas.0609013104
      [17] Fei, H. , Huang, R., Yang, X., 2017. CaSiO3‐Perovskite May Cause Electrical Conductivity Jump in the Topmost Lower Mantle. Geophysical Research Letters, 44: 10226-10232. https://doi.org/10.1002/2017gl075070
      [18] Fei, H. Z., Druzhbin, D., Katsura, T., 2020. The Effect of Water on Ionic Conductivity in Olivine. Journal of Geophysical Research: Solid Earth, 125(3): 1-15. https://doi.org/10.1029/2019jb019313
      [19] Fu, H. F., Zhang, B. H., Ge, J. H., et al., 2019. Thermal Diffusivity and Thermal Conductivity of Granitoids at 283‐988 K and 0.3‐1.5 GPa. American Mineralogist, 104(11): 1533-1545. https://doi.org/10.2138/am‐2019‐7099
      [20] Garnero, E. J., McNamara, A. K., 2008. Structure and Dynamics of Earth's Lower Mantle. Science, 320(5876): 626-628. https://doi.org/10.1126/science.1148028
      [21] Ge, J. H., Zhang, B. H., Xiong, Z. L., et al., 2021. Thermal Properties of Harzburgite and Dunite at 0.8‐3 GPa and 300‐823 K and Implications for the Thermal Evolution of Tibet. Geoscience Frontiers, 12(2): 947-956. https://doi.org/10.1016/j.gsf.2020.01.008
      [22] Gomi, H., Hirose, K., 2015. Electrical Resistivity and Thermal Conductivity of Hcp Fe‐Ni Alloys under High Pressure: Implications for Thermal Convection in the Earth's Core. Physics of the Earth and Planetary Interiors, 247: 2-10. https://doi.org/10.1016/j.pepi.2015.04.003
      [23] Guillot, T., 2005. The Interiors of Giant Planets: Models and Outstanding Questions. Annual Review of Earth and Planetary Sciences, 33(1): 493-530. https://doi.org/10.1146/annurev.earth.32.101802.120325
      [24] Guo, X. Z., Yoshino, T., 2014. Pressure‐Induced Enhancement of Proton Conduction in Brucite. Geophysical Research Letters, 41(3): 813-819. https://doi.org/10.1002/2013gl058627
      [25] Guo, X. Z., Yoshino, T., 2013. Electrical Conductivity of Dense Hydrous Magnesium Silicates with Implication for Conductivity in the Stagnant Slab. Earth and Planetary Science Letters, 369-370: 239-247. https://doi.org/10.1016/j.epsl.2013.03.026
      [26] Guo, X. Z., Yoshino, T., Shimojuku, A., 2015. Electrical Conductivity of Albite‐(Quartz)‐Water and Albite‐Water‐NaCl Systems and its Implication to the High Conductivity Anomalies in the Continental Crust. Earth and Planetary Science Letters, 412(2): 1-9. https://doi.org/10.1016/j.epsl.2014.12.021
      [27] Guo, X., Zhang, L., Behrens, H., et al., 2016. Probing the Status of Felsic Magma Reservoirs: Constraints from the PT‐H2O Dependences of Electrical Conductivity of Rhyolitic Melt. Earth and Planetary Science Letters, 433: 54-62. https://doi.org/10.1016/j.epsl.2015.10.036
      [28] Gutenberg, B., 1913. Uber die Konstitution der Erdinnern, Erschlossen aus Erdbebenbeobachtungen. Physika Zeitschrift, 14: 1217-1218.
      [29] Helled, R., Nettelmann, N., Guillot, T., 2020. Uranus and Neptune: Origin, Evolution and Internal Structure. Space Science Reviews, 216(3): 1-26. https://doi.org/10.1007/s11214‐020‐00660‐3
      [30] Hinze, E., Will, G., Cemič, L., 1981. Electrical Conductivity Measurements on Synthetic Olivines and on Olivine, Enstatite and Diopside from Dreiser Weiher, Eifel (Germany) under Defined Thermodynamic Activities as a Function of Temperature and Pressure. Physics of the Earth and Planetary Interiors, 25(3): 245-254. https://doi.org/10.1016/0031‐9201(81)90068‐6
      [31] Hirose, K., Wood, B., Vočadlo, L., 2021. Light Elements in the Earth's Core. Nature Reviews Earth & Environment, 2(9): 645-658. https://doi.org/10.1038/s43017‐021‐00203‐6
      [32] Hsieh, W. P., Chen, B., Li, J., et al., 2009. Pressure Tuning of the Thermal Conductivity of the Layered Muscovite Crystal. Physical Review B, 80(18): 302. https://doi.org/10.1103/physrevb.80.180302
      [33] Hsieh, W. P., Deschamps, F., Okuchi, T., et al., 2017. Reduced Lattice Thermal Conductivity of Fe‐Bbearing Bridgmanite in Earth's Deep Mantle. Journal of Geophysical Research: Solid Earth, 122(7): 4900-4917. https://doi.org/10.1002/2017jb014339
      [34] Hsieh, W. P., Deschamps, F., Okuchi, T., et al., 2018. Effects of Iron on the Lattice Thermal Conductivity of Earth's Deep Mantle and Implications for Mantle Dynamics. Proceedings of the National Academy of Sciences, 115(16): 4099-4104. https://doi.org/10.1073/pnas.1718557115
      [35] Hsieh, W. P., Goncharov, A. F., Labrosse, S., et al., 2020. Low Thermal Conductivity of Iron‐Silicon Alloys at Earth's Core Conditions with Implications for the Geodynamo. Nature Communications, 11(1): 3332. https://doi.org/10.1038/s41467‐020‐17106‐7
      [36] Hu, Q. Y., Kim, D. Y., Yang, W. G., et al., 2016. FeO2 and FeOOH under Deep Lower‐Mantle Conditions and Earth's Oxygen‐Hydrogen Cycles. Nature, 534(7606): 241-244. https://doi.org/10.1038/nature18018
      [37] Hu, Q. Y., Liu, J., Chen, J., et al., 2021. Mineralogy of the Deep Lower Mantle in the Presence of H2O. National Science Review, 8(4): 98. https://doi.org/10.1093/nsr/nwaa098
      [38] Huang, X. G., Xu, Y. S., Karato, S. I., 2005. Water Content in the Transition Zone from Electrical Conductivity of Wadsleyite and Ringwoodite. Nature, 434(7034): 746-749. https://doi.org/10.1038/nature03426
      [39] Irifune, T., Nishiyama, N., Kuroda, K., et al., 1998. The Postspinel Phase Boundary in Mg2SiO4 Determined by in Situ X‐Rray Diffraction. Science, 279: 1698-1700. doi: 10.1126/science.279.5357.1698
      [40] Ito, E., Takahashi, E., 1989. Postspinel Transformations in the System Mg2SiO4‐Fe2SiO4 and some Geophysical Implications. Journal of Geophysical Research: Solid Earth, 94(B8): 10637-10646. https://doi.org/10.1029/jb094ib08p10637
      [41] Journaux, B., Daniel, I., Petitgirard, S., et al., 2017. Salt Partitioning between Water and High‐Pressure Ices. Implication for the Dynamics and Habitability of Icy Moons and Water‐Rich Planetary Bodies. Earth and Planetary Science Letters, 463: 36-47. https://doi.org/10.1016/j.epsl.2017.01.017
      [42] Karato, S., 1990. The Role of Hydrogen in the Electrical Conductivity of the Upper Mantle. Nature,347: 272-273. doi: 10.1007/bf00200122
      [43] Katsura, T., 1995. Thermal Diffusivity of Olivine under Upper Mantle Conditions. Geophysical Journal International, 122(1): 63-69. https://doi.org/10.1111/j.1365‐246x.1995.tb03536.x
      [44] Katsura, T., Sato, K., Ito, E., 1998. Electrical Conductivity of Silicate Perovskite at Lower‐Mantle Conditions. Nature, 395(6701): 493-495. https://doi.org/10.1038/26736
      [45] Konôpková, Z., McWilliams, R. S., Gómez‐Pérez, N., et al., 2016. Direct Measurement of Thermal Conductivity in Solid Iron at Planetary Core Conditions. Nature, 534(7605): 99-101. https://doi.org/10.1038/nature18009
      [46] Lebedev, S., Chevrot, S., van der Hilst, R. D., 2002. Seismic Evidence for Olivine Phase Changes at the 410‐ and 660‐Kilometer Discontinuities. Science, 296(5571): 1300-1302. https://doi.org/10.1126/science.1069407
      [47] Lehmann, I., 1936. P', Publications du Bureau Central Seismologique International, Série A. Travaux Scientifique, 14: 87-115.
      [48] Li, Y., Jiang, H. T., Yang, X. Z., 2017. Fluorine Follows Water: Effect on Electrical Conductivity of Silicate Minerals by Experimental Constraints from Phlogopite. Geochimica et Cosmochimica Acta, 217: 16-27. https://doi.org/10.1016/j.gca.2017.08.020
      [49] Lin, J. F., Struzhkin, V. V., Jacobsen, S. D., et al., 2005. Spin Transition of Iron in Magnesiowüstite in the Earth's Lower Mantle. Nature, 436(7049): 377-380. https://doi.org/10.1038/nature03825
      [50] Lin, J. F., Speziale, S., Mao, Z., et al., 2013. Effects of The Electronic Spin Transitions of Iron in Lower Mantle Minerals: Implications for Deep Mantle Geophysics and Geochemistry. Reviews of Geophysics, 51(2): 244-275. https://doi.org/10.1002/rog.20010
      [51] Liu, J., Hu, Q. Y., Young Kim, D., et al., 2017. Hydrogen‐Bearing Iron Peroxide and the Origin of Ultralow‐Velocity Zones. Nature, 551(7681): 494-497. https://doi.org/10.1038/nature24461
      [52] Liu, J., Hu, Q. Y., Bi, W. L., et al., 2019. Altered Chemistry of Oxygen and Iron under Deep Earth Conditions. Nature Communications, 10(1): 153. https://doi.org/10.1038/s41467‐018‐08071‐3
      [53] Liu, J., Wang, C. X., Lv, C., et al., 2020. Evidence for Oxygenation of Fe‐Mg Oxides at Mid‐Mantle Conditions and the Rise of Deep Oxygen. National Science Review, 8(4): 96. https://doi.org/10.1093/nsr/nwaa096
      [54] Liu, H. Y., Zhang, K., Ingrin, J., et al., 2021. Electrical Conductivity of Omphacite and Garnet Indicates Limited Deep Water Recycling by Crust Subduction. Earth and Planetary Science Letters, 559: 116784. https://doi.org/10.1016/j.epsl.2021.116784
      [55] Liu, L. G., 1976. The Post‐Spinel Phase of Forsterite. Nature, 262(5571): 770-772. https://doi.org/10.1038/262770a0
      [56] Lobanov, S. S., Zhu, Q., Holtgrewe, N., et al., 2015. Stable Magnesium Peroxide at High Pressure. Scientific Reports, 5(1): 13582. https://doi.org/10.1038/srep13582
      [57] Lv, C. J., Liu, J., 2022. Early Planetary Processes and Light Elements in Iron‐Dominated Cores. Acta Geochimica, 218(12): 1-25. https://doi.org/10.1007/s11631‐021‐00522‐x
      [58] Manthilake, G. M., de Koker, N., Frost, D. J., et al., 2011. Lattice Thermal Conductivity of Lower Mantle Minerals and Heat Flux from Earth's Core. Proceedings of the National Academy of Sciences, 108(44): 17901-17904. https://doi.org/10.1073/pnas.1110594108
      [59] Manthilake, G., Bolfan‐Casanova, N., Novella, D., et al., 2016. Dehydration of Chlorite Explains Anomalously High Electrical Conductivity in the Mantle Wedges. Science Advances, 2(5): 1-14. https://doi.org/10.1126/sciadv.1501631
      [60] Manthilake, G., Mookherjee, M., Bolfan‐Casanova, N., et al., 2015. Electrical Conductivity of Lawsonite and Dehydrating Fluids at High Pressures and Temperatures. Geophysical Research Letters, 42(18): 7398-7405. https://doi.org/10.1002/2015gl064804
      [61] Mao, Z., Lin, J. F., Liu, J., et al., 2011. Thermal Equation of State of Lower‐Mantle Ferropericlase across the Spin Crossover. Geophysical Research Letters, 38(23): 10-25. https://doi.org/10.1029/2011gl049915
      [62] Mao, Z., Lin, J. F., Liu, J., et al., 2012. Sound Velocities of Fe and Fe‐Si Alloy in the Earth's Core. Proceedings of the National Academy of Sciences, 109(26): 10239-10244. https://doi.org/10.1073/pnas.1207086109
      [63] Mao, Z., Lin, J.F., Yang, J., et al., 2014. (Fe, Al)‐Bearing Post‐Perovskite in the Earth's Lower Mantle. Earth and Planetary Science Letters, 403: 157-165. doi: 10.1016/j.epsl.2014.06.042
      [64] Marzotto, E., Hsieh, W. P., Ishii, T., et al., 2020. Effect of Water on Lattice Thermal Conductivity of Ringwoodite and its Implications for the Thermal Evolution of Descending Slabs. Geophysical Research Letters, 47(13): 23-29. https://doi.org/10.1029/2020gl087607
      [65] Miao, S. Q., Li, H. P., Chen, G., 2014. The Temperature Dependence of Thermal Conductivity for Lherzolites from the North China Craton and the Associated Constraints on the Thermodynamic Thickness of the Lithosphere. Geophysical Journal International, 197(2): 900-909. https://doi.org/10.1093/gji/ggu020
      [66] Murakami, M., Hirose, K., Kawamura, K., et al., 2004. Post‐Perovskite Phase Transition in MgSiO3. Science, 304(5672): 855-858. https://doi.org/10.1126/science.1095932
      [67] Murnaghan, F. D., 1937. Finite Deformations of an Elastic Solid. American Journal of Mathematics, 59(2): 235. https://doi.org/10.2307/2371405
      [68] Ni, H. W., Keppler, H., Manthilake, M. A. G. M., et al., 2011. Electrical Conductivity of Dry and Hydrous NaAlSi3O8 Glasses and Liquids at High Pressures. Contributions to Mineralogy and Petrology, 162(3): 501-513. https://doi.org/10.1007/s00410‐011‐0608‐5
      [69] Ni, H. W., Hui, H., Steinle‐Neumann, G., 2015. Transport Properties of Silicate Melts. Reviews of Geophysics, 53(3): 715-744. https://doi.org/10.1002/2015rg000485
      [70] Oganov, A. R., Ono, S., 2004. Theoretical and Experimental Evidence for a Post‐Perovskite Phase of MgSiO3 in Earth's D″ Layer. Nature, 430(6998): 445-448. https://doi.org/10.1038/nature02701
      [71] Ohta, K., Onoda, S., Hirose, K., et al., 2008. The Electrical Conductivity of Post‐Perovskite in Earth's D'' Layer. Science, 320(5872): 89-91. https://doi.org/10.1126/science.1155148
      [72] Ohta, K., Yagi, T., Taketoshi, N., et al., 2012. Lattice Thermal Conductivity of MgSiO3 Perovskite and Post‐Perovskite at the Core‐mantle Boundary. Earth and Planetary Science Letters, 349-350: 109-115. https://doi.org/10.1016/j.epsl.2012.06.043
      [73] Ohta, K., Kuwayama, Y., Hirose, K., et al., 2016. Experimental Determination of the Electrical Resistivity of Iron at Earth's Core Conditions. Nature, 534(7605): 95-98. https://doi.org/10.1038/nature17957
      [74] Oldham, R. D., 1906. The Constitution of the Interior of the Earth, as Revealed by Earthquakes: (Second Communication). some New Light on the Origin of the Oceans. Quarterly Journal of the Geological Society, 63(1/2/3/4): 344-350. https://doi.org/10.1144/gsl.jgs.1907.063.01‐04.24
      [75] Osako, M., Ito, E., Yoneda, A., 2004. Simultaneous Measurements of Thermal Conductivity and Thermal Diffusivity for Garnet and Olivine under High Pressure. Physics of the Earth and Planetary Interiors, 143-144: 311-320. https://doi.org/10.1016/j.pepi.2003.10.010
      [76] Peslier, A. H., Schönbächler, M., Busemann, H., et al., 2017. Water in the Earth's Interior: Distribution and Origin. Space Science Reviews, 212(1/2): 743-810. https://doi.org/10.1007/s11214‐017‐0387‐z
      [77] Pozzo, M., Davies, C., Gubbins, D., et al., 2012. Thermal and Electrical Conductivity of Iron at Earth's Core Conditions. Nature, 485(7398): 355-358. https://doi.org/10.1038/nature11031
      [78] Ringwood, A.E., 1959. The Olivine‐Spinel Inversion in Fayalite. American Mineralogist, 44: 659-661.
      [79] Ringwood, A. E., 1975. Composition and Petrology of the Earth's Mantle, McGraw‐Hill, New York, 1-618.
      [80] Roberts, J. J., Tyburczy, J. A., 1991. Frequency Dependent Electrical Properties of Polycrystalline Olivine Compacts. Journal of Geophysical Research, 96(B10): 16205. https://doi.org/10.1029/91jb01574
      [81] Roberts, J. J., Tyburczy, J. A., 1993. Impedance Spectroscopy of Single and Polycrystalline Olivine: Evidence for Grain Boundary Transport. Physics and Chemistry of Minerals, 20(1): 19-26. https://doi.org/10.1007/bf00202246
      [82] Roberts, J. J., Tyburczy, J. A., 1999. Partial‐Melt Electrical Conductivity: Influence of Melt Composition. Journal of Geophysical Research: Solid Earth, 104(B4): 7055-7065. https://doi.org/10.1029/1998jb900111
      [83] Saikia, A., Frost, D. J., Rubie, D. C., 2008. Splitting of the 520 Kilometer Seismic Discontinuity and Chemical Heterogeneity in the Mantle. Science, 319(5869): 1515-1518. https://doi.org/10.1126/science.1152818
      [84] Shim, S. H., Duffy, T. S., Shen, G. Y., 2001. The Post‐Spinel Transformation in Mg2SiO4 and Its Relation to the 660 km Seismic Discontinuity. Nature, 411(6837): 571-574. https://doi.org/10.1038/35079053
      [85] Shimojuku, A., Yoshino, T., Yamazaki, D., et al., 2012. Electrical Conductivity of Fluid‐Bearing Quartzite under Lower Crustal Conditions. Physics of the Earth and Planetary Interiors, 198-199: 1-8. https://doi.org/10.1016/j.pepi.2012.03.007
      [86] Stevenson, D. J., 2020. Jupiter's Interior as Revealed by Juno. Annual Review of Earth and Planetary Sciences, 48(1): 465-489. https://doi.org/10.1146/annurev‐earth‐081619‐052855
      [87] Stishov, S. M., Popova, S. V., 1961. A New Dense Modification of Silica. Geochemistry, 10: 923-926.
      [88] Sun, W., Dai L., Li, H., et al., 2020. Electrical Conductivity of Clinopyroxene‐NaCl‐H2O System at High Temperatures and Pressures: Implications for High‐conductivity Anomalies in the Deep Crust and Subduction Zone. Journal of Geophysical Research: Solid Earth, 125: e2019JB019093.
      [89] Takahashi, T., Bassett, W. A., 1964. High‐Pressure Polymorph of Iron. Science, 145(3631): 483-486. https://doi.org/10.1126/science.145.3631.483
      [90] Tange, Y., Nishihara, Y., Tsuchiya, T., 2010. Correction to "Unified Analyses for P‐V‐Tequation of State of MgO: A Solution for Pressure‐Scale Problems in High P‐T Experiments". Journal of Geophysical Research, 115(B12): 3208. https://doi.org/10.1029/2010jb007959
      [91] Wang, D. J., Mookherjee, M., Xu, Y. S., et al., 2006. The Effect of Water on the Electrical Conductivity of Olivine. Nature, 443(7114): 977-980. https://doi.org/10.1038/nature05256
      [92] Wang, C., Yoneda, A., Osako, M., et al., 2014. Measurement of Thermal Conductivity of Omphacite, Jadeite, and Diopside up to 14 GPa and 1 000 K: Implication for the Role of Eclogite in Subduction Slab. Journal of Geophysical Research: Solid Earth, 119: 6277-6287. doi: 10.1002/2014JB011208
      [93] Wu, X., Lin, J. F., Kaercher, P., et al., 2017. Seismic Anisotropy of the D″ Layer Induced by (001) Deformation of Post‐Perovskite. Nature Communications, 8(1): 14669. https://doi.org/10.1038/ncomms14669
      [94] Wu, X., Wu, Y., Lin, J.F., Liu, J., et al., 2016. Two‐Stage Spin Transition of Iron in FeAl‐Bearing Phase D at Lower Mantle. Journal of Geophysical Research: Solid Earth, 121(9): 6411-6420. https://doi.org/10.1002/2016jb013209
      [95] Xia, Q. K., Liu, J., Kovács, I., et al., 2019. Water in the Upper Mantle and Deep Crust of Eastern China: Concentration, Distribution and Implications. National Science Review, 6(1): 125-144. https://doi.org/10.1093/nsr/nwx016
      [96] Xie, H.S., 1997. Introduction to Deep Earth Material Science. Science Press, Beijing, 1-297(in Chinese).
      [97] Xiong, Z. L., Zhang, B. H., Ge, J. H., et al., 2021. Thermal Diffusivity and Thermal Conductivity of Alkali Feldspar at 0.8‐3 GPa and 300‐873 K. Contributions to Mineralogy and Petrology, 176(6): 42. https://doi.org/10.1007/s00410‐021‐01797‐2
      [98] Xu, Y. S., Shankland, T. J., Linhardt, S., et al., 2004. Thermal Diffusivity and Conductivity of Olivine, Wadsleyite and Ringwoodite to 20 GPa and 1 373 K. Physics of the Earth and Planetary Interiors, 143-144: 321-336. https://doi.org/10.1016/j.pepi.2004.03.005
      [99] Yamazaki, D., Yoshino, T., Nakakuki, T., 2014. Interconnection of Ferro‐Periclase Controls Subducted Slab Morphology at the Top of the Lower Mantle. Earth and Planetary Science Letters, 403: 352-357. https://doi.org/10.1016/j.epsl.2014.07.017
      [100] Yamazaki, D., Ito, E., 2020. High Pressure Generation in the Kawai‐Type Multianvil Apparatus Equipped with Sintered Diamond Anvils. High Pressure Research, 40(1): 3-11. https://doi.org/10.1080/08957959.2019.1689975
      [101] Yang, X. Z., Keppler, H., McCammon, C., et al., 2011. Effect of Water on the Electrical Conductivity of Lower Crustal Clinopyroxene. Journal of Geophysical Research, 116(B4): 208. https://doi.org/10.1029/2010jb008010
      [102] Yang, X. Z., Keppler, H., McCammon, C., et al., 2012. Electrical Conductivity of Orthopyroxene and Plagioclase in the Lower Crust. Contributions to Mineralogy and Petrology, 163(1): 33-48. https://doi.org/10.1007/s00410‐011‐0657‐9
      [103] Yoshino, T., Katsura, T., 2009. Reply to Comments on "Electrical Conductivity of Wadsleyite as a Function of Temperature and Water Content" by Manthilake et al. . Physics of the Earth and Planetary Interiors, 174(1/2/3/4): 22-23. https://doi.org/10.1016/j.pepi.2009.01.012
      [104] Yoshino, T., Noritake, F., 2011. Unstable Graphite Films on Grain Boundaries in Crustal Rocks. Earth and Planetary Science Letters, 306(3/4): 186-192. https://doi.org/10.1016/j.epsl.2011.04.003
      [105] Yoshino, T., Katsura, T., 2013. Electrical Conductivity of Mantle Minerals: Role of Water in Conductivity Anomalies. Annual Review of Earth and Planetary Sciences, 41(1): 605-628. https://doi.org/10.1146/annurev‐earth‐050212‐124022
      [106] Yoshino, T., Walter, M. J., Katsura, T., 2004. Connectivity of Molten Fe Alloy in Peridotite Based on in Situ Electrical Conductivity Measurements: Implications for Core Formation in Terrestrial Planets. Earth and Planetary Science Letters, 222(2): 625-643. https://doi.org/10.1016/j.epsl.2004.03.010
      [107] Yoshino, T., Matsuzaki, T., Yamashita, S., et al., 2006. Hydrous Olivine Unable to Account for Conductivity Anomaly at the Top of the Asthenosphere. Nature, 443(7114): 973-976. https://doi.org/10.1038/nature05223
      [108] Yoshino, T., Manthilake, G., Matsuzaki, T., et al., 2008. Dry Mantle Transition Zone Inferred from the Conductivity of Wadsleyite and Ringwoodite. Nature, 451(7176): 326-329. https://doi.org/10.1038/nature06427
      [109] Yoshino, T., Matsuzaki, T., Shatzkiy, A., et al., 2009. Corrigendum to "The Effect of Water on the Electrical Conductivity of Olivine Aggregates and its Implications for the Electrical Structure in the Upper Mantle". Earth and Planetary Science Letters, 391: 135-136. https://doi.org/10.1016/j.epsl.2009.09.032
      [110] Yoshino, T., Laumonier, M., McIsaac, E., et al., 2010. Electrical Conductivity of Basaltic and Carbonatite Melt‐Bearing Peridotites at High Pressures: Implications for Melt Distribution and Melt Fraction in the Upper Mantle. Earth and Planetary Science Letters, 295(3/4): 593-602. https://doi.org/10.1016/j.epsl.2010.04.050
      [111] Yoshino, T., Ito, E., Katsura, T., et al., 2011. Effect of Iron Content on Electrical Conductivity of Ferropericlase with Implications for the Spin Transition Pressure. Journal of Geophysical Research, 116(B4): 87-96. https://doi.org/10.1029/2010jb007801
      [112] Yoshino, T., Kamada, S., Zhao, C. C., et al., 2016. Electrical Conductivity Model of Al‐Bearing Bridgmanite with Implications for the Electrical Structure of the Earth's Lower Mantle. Earth and Planetary Science Letters, 434(B4): 208-219. https://doi.org/10.1016/j.epsl.2015.11.032
      [113] Yoshino, T., Zhang, B. H., Rhymer, B., et al., 2017. Pressure Dependence of Electrical Conductivity in Forsterite. Journal of Geophysical Research: Solid Earth, 122(1): 158-171. https://doi.org/10.1002/2016jb013555
      [114] Zhang, B. H., Ash, B., Yoshino, T., 2017. Effect of Graphite on the Electrical Conductivity of the Lithospheric Mantle. Geochemistry, Geophysics, Geosystems, 18(1): 23-40. https://doi.org/10.1002/2016gc006530
      [115] Zhang, B. H., Yoshino, T., 2020. Temperature‐Enhanced Electrical Conductivity Anisotropy in Partially Molten Peridotite under Shear Deformation. Earth and Planetary Science Letters, 530(12): 115922. https://doi.org/10.1016/j.epsl.2019.115922
      [116] Zhang, B. H., Xia, Q. K., 2021. Influence of Water on the Physical Properties of Olivine, Wadsleyite, and Ringwoodite. European Journal of Mineralogy, 33(1): 39-75. https://doi.org/10.5194/ejm‐33‐39‐2021
      [117] Zhang, B. H., Yoshino, T., Wu, X. P., et al., 2012. Electrical Conductivity of Enstatite as a Function of Water Content: Implications for the Electrical Structure in the Upper Mantle. Earth and Planetary Science Letters, 357-358: 11-20. https://doi.org/10.1016/j.epsl.2012.09.020
      [118] Zhang, B. H., Yoshino, T., Yamazaki, D., et al., 2014. Electrical Conductivity Anisotropy in Partially Molten Peridotite under Shear Deformation. Earth and Planetary Science Letters, 405: 98-109. https://doi.org/10.1016/j.epsl.2014.08.018
      [119] Zhang, B.H., Zhao, C.C., Ge, J.H., et al., 2019a. Electrical Conductivity of Omphacite as a Function of Water Content and Implications for High Conductivity Anomalies in the Dabie‐Sulu UHPM Belts and Tibet. Journal of Geophysical Research: Solid Earth, 124(12): 12523-12536. https://doi.org/10.1029/2019jb018826
      [120] Zhang, B.H., Ge, J.H., Xiong, Z.L., et al., 2019b. Effect of Water on the Thermal Properties of Olivine with Implications for Lunar Internal Temperature. Journal of Geophysical Research: Planets, 124(12): 3469-3481. https://doi.org/10.1029/2019je006194
      [121] Zhang, Y. Y., Yoshino, T., Yoneda, A., et al., 2019c. Effect of Iron Content on Thermal Conductivity of Olivine with Implications for Cooling History of Rocky Planets. Earth and Planetary Science Letters, 519(16): 109-119. https://doi.org/10.1016/j.epsl.2019.04.048
      [122] Zhang, B. H., Guo, X., Yoshino, T., et al., 2021. Electrical Conductivity of Melts: Implications for Conductivity Anomalies in the Earth's Mantle. National Science Review, 8(11): 64. https://doi.org/10.1093/nsr/nwab064
      [123] Zhang, L., Meng, Y., Yang, W., et al., 2014. Disproportionation of (Mg, Fe)SiO3 Perovskite in Earth's Deep Lower Mantle. Science, 344: 877-882. doi: 10.1126/science.1250274
      [124] Zhao, C. C., Yoshino, T., 2016. Electrical Conductivity of Mantle Clinopyroxene as a Function of Water Content and its Implication on Electrical Structure of Uppermost Mantle. Earth and Planetary Science Letters, 447(20): 1-9. https://doi.org/10.1016/j.epsl.2016.04.028
      [125] Zhou, C.Y., Jin, Z.M., 2014. The "Bright Lamp" into the Deep Earth: Experiments at High Pressure and High Temperature. Chinese Journal of Nature, 36(2): 79-88(in Chines with English abstract).
      [126] Zhuang, Y. K., Su, X. W., Salke, N. P., et al., 2021. The Effect of Nitrogen on the Compressibility and Conductivity of Iron at High Pressure. Geoscience Frontiers, 12(2): 983-989. https://doi.org/10.1016/j.gsf.2020.04.012
      [127] 谢鸿森, 1997. 地球深部物质科学导论. 北京: 科学出版社, 1-297.
      [128] 周春银, 金振民, 2014. 照亮地球深部的"明灯"——高温高压实验. 自然杂志, 36(2): 79-88. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201402002.htm
    • 加载中
    图(3)
    计量
    • 文章访问数:  502
    • HTML全文浏览量:  147
    • PDF下载量:  132
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-01-15
    • 刊出日期:  2022-09-25

    目录

      /

      返回文章
      返回