Key Technology and Engineering Demonstration of Geology⁃Engineering Integration Efficient Exploration of Continental Shale Oil in Songliao Basin
-
摘要: 我国陆相页岩油资源潜力巨大,但页岩储层具有高黏土矿物含量、强非均质性、低地层能量的特点,严重制约着我国陆相页岩油的高效勘查.围绕甜点优选、水平井钻探、体积压裂、试油求产等关键环节,综合利用吉页油1HF井系统取心、测井、录井及分析测试资料,开展地质工程一体化创新攻关.结果表明,松辽盆地青一段页岩可划分为高TOC层理型黏土质页岩和中TOC纹层型长英质页岩两种岩相类型,前者以地质甜点为主,后者以工程甜点为主;建立地质工程一体化双甜点评价标准,提出“钻砂压页”的水平井设计理念,优选出1.94 m厚的双甜点目标靶层,采用三维地球物理‒地质工程一体化的超薄目标靶层导向技术,实现超薄目标靶层水平钻进1 252 m,钻遇率100%的技术突破;依据超临界CO2的破岩、溶蚀、驱油、增能4大优势,创新形成超临界CO2+大型水力携砂复合压裂工艺及控压蓄能返排技术,实现了吉页油1HF井陆相页岩地层的大型体积改造,并获得16.4 m3/d高产稳产页岩油突破,形成的地质工程一体化方法、技术、工艺及参数体系,对松辽盆地及同类型的陆相页岩油高效勘探开发具有借鉴意义.Abstract: China's continental shale oil resources have great potential, but the shale reservoir has the characteristics of high clay mineral content, strong heterogeneity and low ground energy, which seriously restricts the efficient exploration of continental shale oil in China. Focusing on the key links such as sweet spot optimization, horizontal well drilling, stimulated reservoir volume and oil test for production, comprehensively utilizing the coring, logging, logging and analysis and test data of JYY1 Well system, innovative research has been carried out on geology-engineering integration. The results show that the shale of Qingyi Member in Songliao Basin can be divided into two lithofacies types: high TOC bedding clayey shale and medium TOC laminated felsic shale. The former is mainly geological sweet spot and the latter is mainly engineering sweet spot. In this study, the integrated "double sweet spot" evaluation standard of geology-engineering has been established. Based on our horizontal well design concept of "drilling sand and fracturing shale", the 1.94 m thick double sweet spot target layer was selected, and the technical breakthrough of 1 252 m horizontal drilling of ultra-thin target layer and 100% penetration rate was achieved by adopting the three-dimensional geophysical geology-engineering integration ultra-thin target layer guidance technology. The four advantages of supercritical CO2 are rock breaking, dissolution, oil displacement and energy increase. The supercritical CO2 + large-scale hydraulic sand carrying composite fracturing process and pressure controlled energy storage flowback technology have been innovated, which has realized the large-scale volume transformation of continental shale formation of JYY1 Well, and achieved a breakthrough in 16.4 m3/d high and stable shale oil, resulting in a geology-engineering integration method, technology, process and various parameters. It has reference significance for the efficient exploration and development of continental shale oil in Songliao Basin and the same type.
-
表 1 页岩油地质工程双甜点评价标准
Table 1. Evaluation criteria for shale oil geology-engineering
双甜点评价参数 主地质参数 主工程参数 现场气测总烃(%) 现场热解S1
(mg/g)实测TOC
(%)核磁孔隙度
(%)杨氏模量(GPa) 矿物脆性指数(%) 破裂压力
(MPa)水平应力差
(MPa)单项分级权重 1级(权重0.6) > 1.5 > 1.5 > 2.0 > 6.0 > 2.0 > 50 40~60 < 5 2级(权重0.3) 0.5~1.5 1.0~1.5 1.0~2.0 4.0~6.0 1.0~2.0 30~50 > 60 5~10 3级(权重0.1) < 0.5 < 1.0 < 1.0 < 4.0 < 1.0 < 30 < 30 > 10 综合评价权重 0.2 0.3 0.3 0.2 0.3 0.3 0.2 0.2 表 2 超临界CO2、液态N2、水基压裂液的优缺点对比
Table 2. Comparison of advantages and disadvantages in CO2, N2 and water-based fracturing fluid
压裂液类型 优点 缺点 超临界CO2 (1)超临界CO2粘度和表面张力低,净压力传导效率高,还可以降低岩石破裂压力,实现远端大范围破岩;
(2)与地层水集合形成碳酸,溶解碳酸盐矿物,改善储层的物性,返排过程中具有酸化解反凝析污染作用;
(3)可以驱替页岩中的原油,同时可以降低原油粘度,有利于页岩油的排出;
(4)液态CO2进入地层后一部分会变成气体,体积膨胀,增加地层能量,有利于后期返排.(1)施工投入的地面设备相对较多,施工难度大,受限自然条件较多;
(2)对设备要求高,目前无法实施大排量施工,通常为1~ 2 m3/min,压裂规模受限;
(3)超临界CO2粘度低,无法有效携带支撑剂,缝网导流能力低;
(4)施工过程中地面管线温度低存在冰堵的风险,有安全隐患;
(5)CO2溶于水则呈弱酸性,会对井下工具设备有一定腐烛.液态N2 (1)N2是惰性气体,不易与地层发生反应,稳定性好,同时可减少液体滤失;
(2)N2比CO2比的摩阻小,可以降低施工压力,进而降低施工难度;
(3)液氮压缩系数高,储藏大量压缩能,增能提产效果好.(1)施工伴注排量受到限制,加入比例低,通常为150~180 L/min,压裂造缝及增能作用有限;
(2)液N2储存运输需要极低的温度,成本相对价高,性价比低.水基压裂液 (1)水力压裂对设备要求低,可以实现大排量、大液量压裂,充分改造储层;
(2)水基压裂液粘度可控,可以有效携带支撑剂进入储层,支撑缝网;
(3)水基压裂液成本低廉,采集、运输储、存简便,适合大范围的井工厂施工.(1)对于强非极性陆相页岩储层的改造能力不足,缝高受限,缝网单一;
(2)易形成页岩水敏膨胀,堵塞孔隙吼道和裂缝网络,并且吞噬支撑剂,影响渗流效果;
(3)对水的需求量较大,易产生负面环境影响. -
[1] Badics, B., Vető, I., 2012. Source Rocks and Petroleum Systems in the Hungarian Part of the Pannonian Basin: The Potential for Shale Gas and Shale Oil Plays. Marine and Petroleum Geology, 31(1): 53-69. https://doi.org/10.1016/j.marpetgeo.2011.08.015 [2] Bai, J., Xu, X. Y., Chen, S., et al., 2020. Sedimentary Characteristics and Paleo⁃Environment Restoration of the First Member of Qingshankou Formation in Qian'an Area, Changling Sag, Songliao Basin: A Case Study of Jiyeyou 1 Well. Geology in China, 47(1): 220-235 (in Chinese with English abstract). [3] Chen, P., Ma, T. S., Xia, H. Q., 2014. A Collapse Pressure Prediction Model of Horizontal Shale Gas Wells with Multiple Weak Planes. Natural Gas Industry, 34(12): 87-93 (in Chinese with English abstract). [4] Deng, Y., He, S. M., Deng, X. H., et al., 2020. Study on Wellbore Instability of Bedded Shale Gas Horizontal Wells under Chemo⁃Mechanical Coupling. Petroleum Drilling Techniques, 48(1): 26-33 (in Chinese with English abstract). [5] Du, J. H., Hu, S. Y., Pang, Z. L., et al., 2019. The Types, Potentials and Prospects of Continental Shale Oil in China. China Petroleum Exploration, 24(5): 560-568 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2019.05.003 [6] Fu, J. H., Niu, X. B., Dan, W. D., et al., 2019. The Geological Characteristics and the Progress on Exploration and Development of Shale Oil in Chang7 Member of Mesozoic Yanchang Formation, Ordos Basin. China Petroleum Exploration, 24(5): 601-614 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2019.05.007 [7] Fu, X. F., Shi, H. D., Meng, Q. A., et al., 2020. Controlling Effects of the Structure and Deposition on the Shale Oil Enrichment: Taking Formation Qn1 in the Central Depression of Songliao Basin as an Instance. Petroleum Geology & Oilfield Development in Daqing, 39(3): 56-71 (in Chinese with English abstract). [8] Hu, S. Y., Zhao, W. Z., Hou, L. H., et al., 2020. Development Potential and Technical Strategy of Continental Shale Oil in China. Petroleum Exploration and Development, 47(4): 819-828 (in Chinese with English abstract). [9] Jiang, T. X., Bian, X. B., Wang, H. T., et al., 2017. Volume Fracturing of Deep Shale Gas Horizontal Wells. Natural Gas Industry, 37(1): 90-96 (in Chinese with English abstract). [10] Jiao, F. Z., 2019. Theoretical Insights, Core Technologies and Practices Concerning "Volume Development" of Shale Gas in China. Natural Gas Industry, 39(5): 1-14 (in Chinese with English abstract). [11] Jiao, F. Z., 2021. Theoretical Technologies and Practices Concerning "Volume Development" of Low Pressure Continental Shale Oil: Case Study of Shale Oil in Chang 7 Member, Ordos Basin, China. Natural Gas Geoscience, 32(6): 836-844 (in Chinese with English abstract). [12] Jiao, F. Z., Zou, C. N., Yang, Z., 2020. Geological Theory and Exploration & Development Practice of Hydrocarbon Accumulation Inside Continental Source Kitchens. Petroleum Exploration and Development, 47(6): 1067-1078 (in Chinese with English abstract). [13] Jin, Z. J., Wang, G. P., Liu, G. X., et al., 2021. Research Progress and Key Scientific Issues of Continental Shale Oil in China. Acta Petrolei Sinica, 42(7): 821-835 (in Chinese with English abstract). [14] Kang, Y. L., Yang, B., Li, X. C., et al., 2017. Quantitative Characterization of Micro Forces in Shale Hydration and Field Applications. Petroleum Exploration and Development, 44(2): 301-308 (in Chinese with English abstract). [15] Lei, Q., Weng, D. W., Xiong, S. C., et al., 2021. Progress and Development Directions of Shale Oil Reservoir Stimulation Technology of China National Petroleum Corporation. Petroleum Exploration and Development, 48(5): 1035-1042 (in Chinese with English abstract). [16] Li, G. S., Wang, H. Z., Shen, Z. H., et al., 2013. Application Investigations and Prospects of Supercritical Carbon Dioxide Jet in Petroleum Engineering. Journal of China University of Petroleum (Edition of Natural Science), 37(5): 76-80, 87 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-5005.2013.05.011 [17] Li, G. X., Liu, G. Q., Hou, Y. T., et al., 2021. Optimization Method of Favorable Lithofacies and Fracturing Parameter for Continental Shale Oil. Acta Petrolei Sinica, 42(11): 1405-1416 (in Chinese with English abstract). doi: 10.7623/syxb202111001 [18] Liang, X., Xu, J. B., Liu, C., et al., 2019. Geosteering Technology Based on Geological and Engineering Integration for Horizontal Wells in Zhaotong National Shale Gas Demonstration Zone. China Petroleum Exploration, 24(2): 226-232 (in Chinese with English abstract). [19] Liu, B., Lü, Y. F., Ran, Q. C., et al., 2014. Geological Conditions and Exploration Potential of Shale Oil in Qingshankou Formation, Northern Songliao Basin. Oil & Gas Geology, 35(2): 280-285 (in Chinese with English abstract). [20] Liu, B., Shi, J. X., Fu, X. F., et al., 2018. Petrological Characteristics and Shale Oil Enrichment of Lacustrine Fine⁃Grained Sedimentary System: A Case Study of Organic⁃Rich Shale in First Member of Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin, NE China. Petroleum Exploration and Development, 45(5): 828-838 (in Chinese with English abstract). [21] Liu, B., Sun, J. H., Zhang, Y. Q., et al., 2021. Reservoir Space and Enrichment Model of Shale Oil in the First Member of Cretaceous Qingshankou Formation in the Changling Sag, Southern Songliao Basin, NE China. Petroleum Exploration and Development, 48(3): 521-535 (in Chinese with English abstract). [22] Liu, C. L., Wang, Z. L., Guo, Z. Q., et al., 2017. Enrichment and Distribution of Shale Oil in the Cretaceous Qingshankou Formation, Songliao Basin, Northeast China. Marine and Petroleum Geology, 86: 751-770. https://doi.org/10.1016/j.marpetgeo.2017.06.034 [23] Liu, H., Kuang, L. C., Li, G. X., et al., 2020. Considerations and Suggestions on Optimizing Completion Methods of Continental Shale Oil in China. Acta Petrolei Sinica, 41(4): 489-496 (in Chinese with English abstract). [24] Liu, H., Meng, S. W., Su, J., et al., 2019. Reflections and Suggestions on the Development and Engineering Management of Shale Gas Fracturing Technology in China. Natural Gas Industry, 39(4): 1-7 (in Chinese with English abstract). [25] Liu, H., Wang, F., Zhang, J., et al., 2014. Fracturing with Carbon Dioxide: Application Status and Development Trend. Petroleum Exploration and Development, 41(4): 466-472 (in Chinese with English abstract). [26] Liu, N. Z., Wang, G. Y., 2016. Shale Gas Sweet Spot Identification and Precise Geo⁃Steering Drilling in Weiyuan Block of Sichuan Basin, SW China. Petroleum Exploration and Development, 43(6): 978-985 (in Chinese with English abstract). [27] Liu, W. B., Xu, X. Y., Zhang, J. F., et al., 2021. Geological Engineering Integrated Horizontal Well in Continental Shale Formation Precision Drilling Technology: Taking Jiye Oil 1HF Well in Songliao Basin as an Example. Geology of China, 1-18 (in Chinese with English abstract). [28] Liu, Z. B., Liu, G. X., Hu, Z. Q., et al., 2019. Lithofacies Types and Assemblage Features of Continental Shale Strata and Their Significance for Shale Gas Exploration: A Case Study of the Middle and Lower Jurassic Strata in the Sichuan Basin. Natural Gas Industry, 39(12): 10-21 (in Chinese with English abstract). [29] Ma, T. S., Chen, P., 2014. Influence of Shale Bedding Plane on Wellbore Stability for Horizontal Wells. Journal of Southwest Petroleum University (Science & Technology Edition), 36(5): 97-104 (in Chinese with English abstract). [30] Middleton, R. S., Carey, J. W., Currier, R. P., et al., 2015. Shale Gas and Non⁃Aqueous Fracturing Fluids: Opportunities and Challenges for Supercritical CO2. Applied Energy, 147: 500-509. https://doi.org/10.1016/j.apenergy.2015.03.023 [31] Nie, H. K., He, Z. L., Liu, G. X., et al., 2020. Genetic Mechanism of High⁃Quality Shale Gas Reservoirs in the Wufeng⁃Longmaxi Fms in the Sichuan Basin. Natural Gas Industry, 40(6): 31-41 (in Chinese with English abstract). [32] Nie, H. K., Zhang, P. X., Bian, R. K., et al., 2016. Oil Accumulation Characteristics of China Continental Shale. Earth Science Frontiers, 23(2): 55-62 (in Chinese with English abstract). [33] Ning, F. X., Wang, X. J., Hao, X. F., et al., 2015. Evaluation Method of Shale Oil Sweet Spots in Jiyang Depression. Science Technology and Engineering, 15(35): 11-16 (in Chinese with English abstract). [34] Pang, F., Zhang, Z. H., Zhang, J. F., et al., 2020. Progress and Prospect on Exploration and Development of Shale Gas in the Yangtze River Economic Belt. Earth Science, 45(6): 2152-2159 (in Chinese with English abstract). [35] Pu, X. G., Jin, F. M., Han, W. Z., et al., 2019. Sweet Spots Geological Characteristics and Key Exploration Technologies of Continental Shale Oil: A Case Study of Member 2 of Kongdian Formation in Cangdong Sag. Acta Petrolei Sinica, 40(8): 997-1012 (in Chinese with English abstract). [36] Shen, C., Guo, X. W., Chen, M. L., et al., 2019. Horizontal Well Fracturing Stimulation Technology for Deep Shale Gas Reservoirs. Natural Gas Industry, 39(10): 68-75 (in Chinese with English abstract). [37] Song, M. S., Liu, H. M., Wang, Y., et al., 2020. Enrichment Rules and Exploration Practices of Paleogene Shale Oil in Jiyang Depression, Bohai Bay Basin, China. Petroleum Exploration and Development, 47(2): 225-235 (in Chinese with English abstract). [38] Sun, B. J., Wang, J. T., Sun, W. C., et al., 2019. Advances in Fundamental Research of Supercritical CO2 Fracturing Technology for Unconventional Natural Gas Reservoirs. Journal of China University of Petroleum (Edition of Natural Science), 43(5): 82-91 (in Chinese with English abstract). [39] Tang, H. M., Tang, H. X., He, J., et al., 2020. Damage Mechanism of Water⁃Based Fracturing Fluid to Tight Sandstone Gas Reservoirs: Improvement of the Evaluation Measurement for Properties of Water⁃Based Fracturing Fluid: SY/T 5107⁃2016. Natural Gas Industry, 40(9): 55-63 (in Chinese with English abstract). [40] Wang, H. Z., Li, G. S., Zheng, Y., et al., 2020. Research Status and Prospects of Supercritical CO2 Fracturing Technology. Acta Petrolei Sinica, 41(1): 116-126 (in Chinese with English abstract). [41] Wang, M., Ma, R., Li, J. B., et al., 2019. Occurrence Mechanism of Lacustrine Shale Oil in the Paleogene Shahejie Formation of Jiyang Depression, Bohai Bay Basin, China. Petroleum Exploration and Development, 46(4): 789-802 (in Chinese with English abstract). [42] Wang, Q. R., Tao, S. Z., Guan, P., 2020. Progress in Research and Exploration & Development of Shale Oil in Continental Basins in China. Natural Gas Geoscience, 31(3): 417-427 (in Chinese with English abstract). [43] Wang, X. J., Liang, L. X., Zhao, L., et al., 2019. Rock Mechanics and Fracability Evaluation of the Lucaogou Formation Oil Shales in Jimusaer Sag, Junggar Basin. Oil & Gas Geology, 40(3): 661-668 (in Chinese with English abstract). [44] Wang, X. Z., Wu, J. Q., Zhang, J. T., 2014. Application of CO2 Fracturing Technology for Terrestrial Shale Gas Reservoirs. Natural Gas Industry, 34(1): 64-67 (in Chinese with English abstract). [45] Wang, Y., Rong, H., Jiao, Y. Q., et al., 2021. Effects of Basic Intrusions on Shale Mineralogy: A Case Study from Nenjiang Formation in Songliao Basin. Earth Science, 46(6): 2188-2203 (in Chinese with English abstract). [46] Wang, Y. H., Liang, J. P., Zhang, J. Y., et al., 2020. Resource Potential and Exploration Direction of Gulong Shale Oil in Songliao Basin. Petroleum Geology & Oilfield Development in Daqing, 39(3): 20-34 (in Chinese with English abstract). [47] Xu, X. Y., Liu, W. B., Bai, J., et al., 2021. Enrichment Characteristics and Resource Potential of Shale Oil in the First Member of Qingshankou Formation in Southern Songliao Basin. Geology and Resources, 30(3): 296-305 (in Chinese with English abstract). [48] Zhang, J. F., Xu, X. Y., Bai, J., et al., 2020. Enrichment and Exploration of Deep Lacustrine Shale Oil in the First Member of Cretaceous Qingshankou Formation, Southern Songliao Basin, NE China. Petroleum Exploration and Development, 47(4): 637-652 (in Chinese with English abstract). [49] Zhang, J. G., Jiang, Z. X., Liu, P., et al., 2022. Deposition Mechanism and Geological Assessment of Continental Ultrafine⁃Grained Shale Oil Reservoirs. Acta Petrolei Sinica, 43(2): 234-249 (in Chinese with English abstract). [50] Zhang, P. F., Lu, S. F., Li, J. Q., et al., 2019. Identification Method of Sweet Spot Zone in Lacustrine Shale Oil Reservoir and Its Application: A Case Study of the Shahejie Formation in Dongying Sag, Bohai Bay Basin. Oil & Gas Geology, 40(6): 1339-1350 (in Chinese with English abstract). [51] Zhang, X. W., Lu, Y. Y., Tang, J. R., et al., 2017. Experimental Study on Fracture Initiation and Propagation in Shale Using Supercritical Carbon Dioxide Fracturing. Fuel, 190: 370-378. https://doi.org/10.1016/j.fuel.2016.10.120 [52] Zhao, W. Z., Hu, S. Y., Hou, L. H., et al., 2020. Types and Resource Potential of Continental Shale Oil in China and Its Boundary with Tight Oil. Petroleum Exploration and Development, 47(1): 1-10 (in Chinese with English abstract). [53] Zhao, W. Z., Zhang, B., Wang, X. M., et al., 2021. Differences in Source Kitchens for Lacustrine in⁃Source and out⁃of⁃Source Hydrocarbon Accumulations. Petroleum Exploration and Development, 48(3): 464-475 (in Chinese with English abstract). [54] Zhao, X. Z., Zhou, L. H., Pu, X. G., et al., 2018. Geological Characteristics of Shale Rock System and Shale Oil Exploration in a Lacustrine Basin: A Case Study from the Paleogene 1st Sub⁃Member of Kong 2 Member in Cangdong Sag, Bohai Bay Basin, China. Petroleum Exploration and Development, 45(3): 361-372 (in Chinese with English abstract). [55] Zheng, Y. C., Fan, Y., Yong, R., et al., 2019. A New Fracturing Technology of Intensive Stage + High⁃Intensity Proppant Injection for Shale Gas Reservoirs. Natural Gas Industry, 39(10): 76-81 (in Chinese with English abstract). [56] Zhou, L. H., Chen, C. W., Han, G. M., et al., 2021. Difference Characteristics between Continental Shale Oil and Tight Oil and Exploration Practice: A Case from Huanghua Depression, Bohai Bay Basin. Earth Science, 46(2): 555-571 (in Chinese with English abstract). [57] Zhou, L. H., Zhao, X. Z., Chai, G. Q., et al., 2020. Key Exploration & Development Technologies and Engineering Practice of Continental Shale Oil: A Case Study of Member 2 of Paleogene Kongdian Formation in Cangdong Sag, Bohai Bay Basin, East China. Petroleum Exploration and Development, 47(5): 1059-1066 (in Chinese with English abstract). [58] 白静, 徐兴友, 陈珊, 等, 2020. 松辽盆地长岭凹陷乾安地区青山口组一段沉积相特征与古环境恢复——以吉页油1井为例. 中国地质, 47(1): 220-235. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202001019.htm [59] 陈平, 马天寿, 夏宏泉, 2014. 含多组弱面的页岩水平井坍塌失稳预测模型. 天然气工业, 34(12): 87-93. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201412018.htm [60] 邓媛, 何世明, 邓祥华, 等, 2020. 力化耦合作用下的层理性页岩气水平井井壁失稳研究. 石油钻探技术, 48(1): 26-33. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT202001005.htm [61] 杜金虎, 胡素云, 庞正炼, 等, 2019. 中国陆相页岩油类型、潜力及前景. 中国石油勘探, 24(5): 560-568. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201905003.htm [62] 付金华, 牛小兵, 淡卫东, 等, 2019. 鄂尔多斯盆地中生界延长组长7段页岩油地质特征及勘探开发进展. 中国石油勘探, 24(5): 601-614. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201905007.htm [63] 付晓飞, 石海东, 蒙启安, 等, 2020. 构造和沉积对页岩油富集的控制作用——以松辽盆地中央坳陷区青一段为例. 大庆石油地质与开发, 39(3): 56-71. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202003006.htm [64] 胡素云, 赵文智, 侯连华, 等, 2020. 中国陆相页岩油发展潜力与技术对策. 石油勘探与开发, 47(4): 819-828. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202004021.htm [65] 蒋廷学, 卞晓冰, 王海涛, 等, 2017. 深层页岩气水平井体积压裂技术. 天然气工业, 37(1): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201701018.htm [66] 焦方正, 2019. 页岩气"体积开发"理论认识、核心技术与实践. 天然气工业, 39(5): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201905001.htm [67] 焦方正, 2021. 陆相低压页岩油体积开发理论技术及实践——以鄂尔多斯盆地长7段页岩油为例. 天然气地球科学, 32(6): 836-844. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202106006.htm [68] 焦方正, 邹才能, 杨智, 2020. 陆相源内石油聚集地质理论认识及勘探开发实践. 石油勘探与开发, 47(6): 1067-1078. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202006002.htm [69] 金之钧, 王冠平, 刘光祥, 等, 2021. 中国陆相页岩油研究进展与关键科学问题. 石油学报, 42(7): 821-835. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202107001.htm [70] 康毅力, 杨斌, 李相臣, 等, 2017. 页岩水化微观作用力定量表征及工程应用. 石油勘探与开发, 44(2): 301-308. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201702020.htm [71] 雷群, 翁定为, 熊生春, 等, 2021. 中国石油页岩油储集层改造技术进展及发展方向. 石油勘探与开发, 48(5): 1035-1042. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202105016.htm [72] 李根生, 王海柱, 沈忠厚, 等, 2013. 超临界CO2射流在石油工程中应用研究与前景展望. 中国石油大学学报(自然科学版), 37(5): 76-80, 87. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201305012.htm [73] 李国欣, 刘国强, 侯雨庭, 等, 2021. 陆相页岩油有利岩相优选与压裂参数优化方法. 石油学报, 42(11): 1405-1416. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202111001.htm [74] 梁兴, 徐进宾, 刘成, 等, 2019. 昭通国家级页岩气示范区水平井地质工程一体化导向技术应用. 中国石油勘探, 24(2): 226-232. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201902011.htm [75] 柳波, 吕延防, 冉清昌, 等, 2014. 松辽盆地北部青山口组页岩油形成地质条件及勘探潜力. 石油与天然气地质, 35(2): 280-285. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201402019.htm [76] 柳波, 石佳欣, 付晓飞, 等, 2018. 陆相泥页岩层系岩相特征与页岩油富集条件: 以松辽盆地古龙凹陷白垩系青山口组一段富有机质泥页岩为例. 石油勘探与开发, 45(5): 828-838. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805009.htm [77] 柳波, 孙嘉慧, 张永清, 等, 2021. 松辽盆地长岭凹陷白垩系青山口组一段页岩油储集空间类型与富集模式. 石油勘探与开发, 48(3): 521-535. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103009.htm [78] 刘合, 匡立春, 李国欣, 等, 2020. 中国陆相页岩油完井方式优选的思考与建议. 石油学报, 41(4): 489-496. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004013.htm [79] 刘合, 孟思炜, 苏健, 等, 2019. 对中国页岩气压裂工程技术发展和工程管理的思考与建议. 天然气工业, 39(4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201904002.htm [80] 刘合, 王峰, 张劲, 等, 2014. 二氧化碳干法压裂技术: 应用现状与发展趋势. 石油勘探与开发, 41(4): 466-472. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201404014.htm [81] 刘乃震, 王国勇, 2016. 四川盆地威远区块页岩气甜点厘定与精准导向钻井. 石油勘探与开发, 43(6): 978-985. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201606016.htm [82] 刘卫彬, 徐兴友, 张君峰, 等, 2021. 陆相页岩地层地质‒工程一体化水平井精确钻探技术——以松辽盆地吉页油1HF井为例. 中国地质, 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202206008.htm [83] 刘忠宝, 刘光祥, 胡宗全, 等, 2019. 陆相页岩层系岩相类型、组合特征及其油气勘探意义——以四川盆地中下侏罗统为例. 天然气工业, 39(12): 10-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201912003.htm [84] 马天寿, 陈平, 2014. 页岩层理对水平井井壁稳定的影响. 西南石油大学学报(自然科学版), 36(5): 97-104. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201405011.htm [85] 聂海宽, 何治亮, 刘光祥, 等, 2020. 四川盆地五峰组‒龙马溪组页岩气优质储层成因机制. 天然气工业, 40(6): 31-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202006004.htm [86] 聂海宽, 张培先, 边瑞康, 等, 2016. 中国陆相页岩油富集特征. 地学前缘, 23(2): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602009.htm [87] 宁方兴, 王学军, 郝雪峰, 等, 2015. 济阳坳陷页岩油甜点评价方法研究. 科学技术与工程, 15(35): 11-16. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201535003.htm [88] 庞飞, 张作衡, 张君峰, 等, 2020. 长江经济带页岩气勘探开发进展及建议. 地球科学, 45(6): 2152-2159. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202006026.htm [89] 蒲秀刚, 金凤鸣, 韩文中, 等, 2019. 陆相页岩油甜点地质特征与勘探关键技术: 以沧东凹陷孔店组二段为例. 石油学报, 40(8): 997-1012. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201908011.htm [90] 沈骋, 郭兴午, 陈马林, 等, 2019. 深层页岩气水平井储层压裂改造技术. 天然气工业, 39(10): 68-75. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201910010.htm [91] 宋明水, 刘惠民, 王勇, 等, 2020. 济阳坳陷古近系页岩油富集规律认识与勘探实践. 石油勘探与开发, 47(2): 225-235. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002003.htm [92] 孙宝江, 王金堂, 孙文超, 等, 2019. 非常规天然气储层超临界CO2压裂技术基础研究进展. 中国石油大学学报(自然科学版), 43(5): 82-91. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201905010.htm [93] 唐洪明, 唐浩轩, 何江, 等, 2020. 水基压裂液对致密砂岩气层的损害机理——基于《水基压裂液性能评价方法: SY/T 5107⁃2016》的改进. 天然气工业, 40(9): 55-63. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202009011.htm [94] 王海柱, 李根生, 郑永, 等, 2020. 超临界CO2压裂技术现状与展望. 石油学报, 41(1): 116-126. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202001011.htm [95] 王民, 马睿, 李进步, 等, 2019. 济阳坳陷古近系沙河街组湖相页岩油赋存机理. 石油勘探与开发, 46(4): 789-802. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201904020.htm [96] 王倩茹, 陶士振, 关平, 2020. 中国陆相盆地页岩油研究及勘探开发进展. 天然气地球科学, 31(3): 417-427. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202003012.htm [97] 王小军, 梁利喜, 赵龙, 等, 2019. 准噶尔盆地吉木萨尔凹陷芦草沟组含油页岩岩石力学特性及可压裂性评价. 石油与天然气地质, 40(3): 661-668. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903022.htm [98] 王香增, 吴金桥, 张军涛, 2014. 陆相页岩气层的CO2压裂技术应用探讨. 天然气工业, 34(1): 64-67. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201401012.htm [99] 王岩, 荣辉, 焦养泉, 等, 2021. 基性岩侵入对页岩矿物学特征的影响: 以松辽盆地嫩江组为例. 地球科学, 46(6): 2188-2203. doi: 10.3799/dqkx.2020.177 [100] 王玉华, 梁江平, 张金友, 等, 2020. 松辽盆地古龙页岩油资源潜力及勘探方向. 大庆石油地质与开发, 39(3): 20-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202003003.htm [101] 徐兴友, 刘卫彬, 白静, 等, 2021. 松辽盆地南部青山口组一段页岩油富集地质特征及资源潜力. 地质与资源, 30(3): 296-305. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202103011.htm [102] 张君峰, 徐兴友, 白静, 等, 2020. 松辽盆地南部白垩系青一段深湖相页岩油富集模式及勘探实践. 石油勘探与开发, 47(4): 637-652. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202004002.htm [103] 张建国, 姜在兴, 刘鹏, 等, 2022. 陆相超细粒页岩油储层沉积机制与地质评价. 石油学报, 43(2): 234-249. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202202006.htm [104] 张鹏飞, 卢双舫, 李俊乾, 等, 2019. 湖相页岩油有利甜点区优选方法及应用——以渤海湾盆地东营凹陷沙河街组为例. 石油与天然气地质, 40(6): 1339-1350. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201906018.htm [105] 赵文智, 胡素云, 侯连华, 等, 2020. 中国陆相页岩油类型、资源潜力及与致密油的边界. 石油勘探与开发, 47(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001002.htm [106] 赵文智, 张斌, 王晓梅, 等, 2021. 陆相源内与源外油气成藏的烃源灶差异. 石油勘探与开发, 48(3): 464-475. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103003.htm [107] 赵贤正, 周立宏, 蒲秀刚, 等, 2018. 陆相湖盆页岩层系基本地质特征与页岩油勘探突破: 以渤海湾盆地沧东凹陷古近系孔店组二段一亚段为例. 石油勘探与开发, 45(3): 361-372. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201803002.htm [108] 郑有成, 范宇, 雍锐, 等, 2019. 页岩气密切割分段+高强度加砂压裂新工艺. 天然气工业, 39(10): 76-81. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201910012.htm [109] 周立宏, 陈长伟, 韩国猛, 等, 2021. 陆相致密油与页岩油藏特征差异性及勘探实践意义: 以渤海湾盆地黄骅坳陷为例. 地球科学, 46(2): 555-571. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202102012.htm [110] 周立宏, 赵贤正, 柴公权, 等, 2020. 陆相页岩油效益勘探开发关键技术与工程实践——以渤海湾盆地沧东凹陷古近系孔二段为例. 石油勘探与开发, 47(5): 1059-1066. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005023.htm