Sedimentary Filling Response to Detachment Structural Deformation in Shallow-Water Continental Shelf of Pearl River Mouth Basin: A Case Study of Enping Sag
-
摘要: 珠江口盆地新生代发育跨越浅水区至深水区、多类型的拆离断陷,其中浅水陆架区拆离断陷是探究拆离构造变形与沉积充填响应的重要窗口.基于地震资料和钻井资料详细解析,对恩平凹陷低角度拆离断层特征进行了研究,探讨了拆离构造变形的控制因素、变形过程和沉积充填响应机制.研究表明,恩平凹陷低角度边界正断层为壳间拆离断层,长度约50 km,倾角平均17.5°,断面最深达中下地壳,裂陷期经历了中低角度到低角度的转变.拆离断层形成于中生代先存逆冲断层基础之上,与中下地壳韧性剪切穹隆和边界调节性走滑断裂相伴生,联合控制形成均衡深拆离、前展式宽拆离和迁移型复式拆离3种凹陷结构类型.垂向上可划分出三期裂陷幕,因差异构造变形而具有不同的沉积充填响应:(1)早文昌期均一裂陷幕,快速的裂陷沉降发育于先存逆冲断层弱面,形成具厚层中深湖的均一窄深箕状半地堑;(2)晚文昌期拆离伸展幕,凹陷受差异构造变形而发育成东、西沉积充填差异化的宽浅断陷,西部韧性剪切穹隆弱隆升与边界走滑断层强走滑控制了恩平17洼自迁移型中深湖和大型辫状河三角洲-重力流沉积,而东部韧性剪切穹隆强隆升控制了恩平12-18洼沉积中心跳跃式异迁移的沉积充填,过渡带发育大型走向斜坡扇三角洲;(3)恩平期拆离-断拗联控幕,构造变形由简单剪切向纯剪切转变,沉积向外流水系主导的浅水辫状河三角洲-浅湖相充填转变.低角度拆离断陷具有与高角度脆性断陷不同的构造变形和沉积充填响应,烃源岩与砂岩储层的时空分布非均质性强.研究成果对恩平凹陷的烃源岩和深部储层预测,以及南海北部陆缘同类拆离断陷的构造-沉积充填研究具有良好的指导意义.Abstract: The Pearl River Mouth Basin developed many types of Cenozoic detachment depressions from shallow-water area to deep-water area. Among them, the detachment depression in continental shelf shallow water area is an important window to explore the detachment structural deformation and its sedimentary filling response. Based on the detailed analysis of seismic and drilling data, the characteristics of low-angle detachment fault system in Enping Sag are studied, and the control factors, deformation process and sedimentary filling response mechanism of structural deformation in detachment fault depression are discussed. The research shows that the low-angle boundary normal fault in Enping Sag is an inter-crust detachment fault, with a length of about 50 km and an average dip angle of 17.5°, deepest reaches to the middle-lower crust. During the rifting period, the fault-dip transformed from medium-low angle to low angle. The detachment fault was formed on the basis of the pre-existing thrust fault in the Mesozoic era, associated with the ductile shear dome of the middle-lower crust and the boundary regulating strike slip fault, and jointly controlled the formation of three types of subbasin structures, such as balanced deep detachment, forward spreading wide detachment and migration compound detachment subbasin. It can be divided into three rifting stages with different sedimentary filling responses due to different structural deformation. (1) In the homogeneous rifting stage at Early Wenchang period, the extension stress was concentrated on the weak surface of the pre-existing thrust fault, and the rapid rift formed narrow and deep homogeneous half-grabens, which developed thick medium-deep lakes. (2) In the detachment extensional stage at late Wenchang period, the sag developed into a wide and shallow fault depression with differential sedimentation and filling in the east and west due to differential structural deformation. In the western sag, the weak uplift of the ductile shear dome and the strong strike slip of the boundary strike slip fault controlled self migrating medium-deep lacustrine source rocks and large-scale braided river delta turbidite sedimentary system developed in Enping 17 Subsag. In the western sag, the strong uplift of ductile shear dome controlled the jumping and allochthonous migration of sedimentary center from Enping 12 Subsag to Enping 18 Subsag. A large fan delta was developed in the transition trending slope. (3) In the detachment-depression transition stage at Enping period, the structure changed from simple shear to pure shear deformation, and the sedimentation changed from internally drainage to large shallow braided river delta lacustrine filling dominated by externally drained conditions. The low-angle detachment depression has different structural deformation and sedimentary filling from the high-angle brittle fault depression. The research results have significance guiding value for the prediction of source rocks and deep reservoirs in Enping Sag, and for the study of structural deformation and sedimentary filling of similar detachment fault depressions in the northern continental margin of the South China Sea.
-
图 1 珠江口盆地构造区划与断陷分布(改自庞雄等(2021)和李洪博等(2020))
Fig. 1. Distribution of tectonic units and depressions in the Pearl River Mouth Basin(modified from Pang et al. (2021), Li et al. (2020))
图 4 恩平凹陷结构剖面(剖面位置见图 2)
Fig. 4. Seismic sections demonstrating the structure of the Enping Sag
图 6 F3走滑断层构造特征
a. T80层深度构造图,平面位置见图 2;b. F3走滑断层及其派生构造样式
Fig. 6. The characteristics of the F3 strike-slip fault
图 9 恩平17洼地震剖面与沉积充填解释(剖面位置见图 2)
Fig. 9. Seismic section and its sedimentary filling interpretation cross Enping 17 Subsag
图 10 恩平12洼和恩平18洼地震剖面与沉积充填解释(剖面位置见图 4d)
Fig. 10. Seismic section and its sedimentary filling interpretation cross Enping 12 and 18 subsags
-
[1] Cai, G.F., Zhang, X.T., Peng, G.R., et al., 2021. Neogene Volcanism and Tectonics along the Yangjing-Yitong'ansha Fault Zone in the Northern South China Sea Margin. Geotectonica et Metallogenia, 45(1): 40-52 (in Chinese with English abstract). [2] Chen, H., Xie, X. N., Mao, K. N., et al., 2020. Depositional Characteristics and Formation Mechanisms of Deep-Water Canyon Systems along the Northern South China Sea Margin. Journal of Earth Science, 31(4): 808-819. https://doi.org/10.1007/s12583-020-1284-z [3] Deng, P., Mei, L.F., Du, J.Y., et al., 2020. Characteristics and Genetic Development of a Low-Angle Boundary Normal Fault in Xijiang Main Sag, Pearl River Mouth Basin, China. Oil & Gas Geology, 41(3): 606-616 (in Chinese with English abstract). [4] Deng, H. D., Ren, J. Y., Pang, X., et al., 2020. South China Sea Documents the Transition from Wide Continental Rift to Continental Break up. Nature Communications, 11(1): 4583. https://doi.org/10.1038/s41467-020-18448-y [5] Friedmann, S. J., Burbank, D. W., 1995. Rift Basins and Supradetachment Basins: Intracontinental Extensional End-Members. Basin Research, 7(2): 109-127. https://doi.org/10.1111/j.1365-2117.1995.tb00099.x [6] Gong, L., Zhu, H.T., Shu, Y., et al., 2014. Distribution of Middle-Deep Lacustrine Source Rocks within Sequence Stratigraphic Framework of Wenchang Formation in Enping Depression, the Pearl River Mouth Basin. Earth Science, 39(5): 546-556 (in Chinese with English abstract). [7] He, Y., Mei, L.F., Shi, H.S., et al., 2018. Structural Characteristics and Genetic Model of the Low-Angle Fault Depression: A Case in Enping Depression of Pearl River Mouth Basin. Marine Origin Petroleum Geology, 23(3): 73-81 (in Chinese with English abstract). [8] Li, H.B., Zheng, J.Y., Pang, X., et al., 2020. Structural Patterns and Controlling Factors of Differential Detachment in the Northern Continental Margin of the South China Sea: Taking Baiyun-Liwan Deep Water Area in the Pearl River Mouth Basin as an Example. China Offshore Oil and Gas, 32(4): 24-35 (in Chinese with English abstract). [9] Lister, G. S., Davis, G. A., 1989. The Origin of Metamorphic Core Complexes and Detachment Faults Formed during Tertiary Continental Extension in the Northern Colorado River Region, U.S.A. . Journal of Structural Geology, 11(1-2): 65-94. https://doi.org/10.1016/0191-8141(89)90036-9 [10] Liu, B.J., Pang, X., Wang, J.H., et al., 2019. Sedimentary System Response Process and Hydrocarbon Exploration Significance of Crust Thinning Zone at Extensional Continental Margin of Deep-Water Area in Pearl River Mouth Basin. Acta Petrolei Sinica, 40(S1): 124-138 (in Chinese with English abstract). [11] Liu, B.J., Pang, X., Xie, S.W., et al., 2022. The Control Effect of Crust-Mantle Detachment Fault Activity on Deep Large Delta Sedimentary System in Baiyun Sag, Pearl River Mouth Basin. Earth Science, 47(7): 2354-2373 (in Chinese with English abstract). [12] Liu, Q.H., Zhu, H.T., Shu, Y., et al., 2015. Provenance Systems and Their Control on the Beach-Bar of Paleogene Enping Formation, Enping Sag, Pearl River Mouth Basin. Acta Petrolei Sinica, 36(3): 286-299 (in Chinese with English abstract). [13] Liu, Q.H., Zhu, H.T., Yang, X.H., et al., 2013. Quantitative Recognition of Seismic Sequence Stratigraphic Units in Wenchang Formation, Paleogene, Enping Sag, Pearl River Mouth Basin. Journal of Central South University (Science and Technology), 44(3): 1076-1082 (in Chinese with English abstract). [14] Masini, E., Manatschal, G., Mohn, G., et al., 2011. The Tectono-Sedimentary Evolution of a Supra-Detachment Rift Basin at a Deep-Water Magma-Poor Rifted Margin: The Example of the Samedan Basin Preserved in the Err Nappe in SE Switzerland. Basin Research, 23(6): 652-677. https://doi.org/10.1111/j.1365-2117.2011.00509.x [15] Mi, L.J., Zhang, X.T., Pang, X., et al., 2019. Formation Mechanism and Petroleum Geology of Pearl River Mouth Basin. Acta Petrolei Sinica, 40(S1): 1-10 (in Chinese with English abstract). [16] Pang, X., Ren, J.Y., Zheng, J.Y., et al., 2018. Petroleum Geology Controlled by Extensive Detachment Thinning of Continental Margin Crust: A Case Study of Baiyun Sag in the Deep-Water Area of Northern South China Sea. Petroleum Exploration and Development, 45(1): 27-39 (in Chinese with English abstract). [17] Pang, X., Zheng, J.Y., Mei, L.F., et al., 2021. Characteristics and Origin of Continental Marginal Fault Depressions under the Background of Preexisting Subduction Continental Margin, Northern South China Sea, China. Petroleum Exploration and Development, 48(5): 1069-1080 (in Chinese with English abstract). [18] Qi, J.F., Wu, J.F., Ma, B.S., et al., 2019. The Structural Model and Dynamics Concerning Middle Section, Pearl River Mouth Basin in North Margin of South China Sea. Earth Science Frontiers, 26(2): 203-221 (in Chinese with English abstract). [19] Ren, J.Y., Pang, X., Lei, C., et al., 2015. Ocean and Continent Transition in Passive Continental Margins and Analysis of Lithospheric Extension and Breakup Process: Implication for Research of the Deepwater Basins in the Continental Margins of South China Sea. Earth Science Frontiers, 22(1): 102-114 (in Chinese with English abstract). [20] Ren, J.Y., Pang, X., Yu, P., et al., 2018. Characteristics and Formation Mechanism of Deepwater and Ultra-Deepwater Basins in the Northern Continental Margin of the South China Sea. Chinese Journal of Geophysics, 61(12): 4901-4920 (in Chinese with English abstract). [21] Reston, T. J., Leythaeuser, T., Booth-Rea, G., et al., 2007. Movement along a Low-Angle Normal Fault: The S Reflector West of Spain. Geochemistry, Geophysics, Geosystems, 8(6): Q06002. https://doi.org/10.1029/2006GC001437 [22] Shi, H.S., Du, J.Y., Mei, L.F., et al., 2020. Huizhou Movement and Its Significance in Pearl River Mouth Basin, China. Petroleum Exploration and Development, 47(3): 447-461 (in Chinese with English abstract). [23] Sun, Z., Li, F.C., Lin, J., et al., 2021. The Rifting-Breakup Process of the Passive Continental Margin and Its Relationship with Magmatism: The Attribution of the South China Sea. Earth Science, 46(3): 770-789 (in Chinese with English abstract). [24] Sun, Z., Lin, J., Qiu, N., et al., 2019. The Role of Magmatism in the Thinning and Breakup of the South China Sea Continental Margin. National Science Review, 6(5): 871-876. https://doi.org/10.1093/nsr/nwz116 [25] Taylor, M. H., Kapp, P. A., Horton, B. K., 2012. Basin Response to Active Extension and Strike-Slip Deformation in the Hinterland of the Tibetan Plateau. In: Tectonics of Sedimentary Basins. John Wiley & Sons, Chichester, 445-460. https://doi.org/10.1002/9781444347166.ch22 [26] Wang, J.H., Liu, L.H., Chen, S.H., et al., 2011. Tectonic-Sedimentary Responses to the Second Episode of the Zhu-Qiong Movement in the Enping Depression, Pearl River Mouth Basin and Its Regional Tectonic Significance. Acta Petrolei Sinica, 32(4): 588-595 (in Chinese with English abstract). [27] Wu, J., Zhu, D.W., Zhao, P., et al., 2021. Controls of Faulted Composite Accumulation Ridge on the Long Distance Migration and Accumulation of Neogene Hydrocarbon: A Case Study of the Eastern Yangjiang Sag and the Enping Sag in the Pearl River Mouth Basin. Geotectonica et Metallogenia, 45(1): 131-139 (in Chinese with English abstract). [28] Xiong, W.L., Zhu, J.Z., Yang, X.Y., et al., 2020. Study on the Genetic Sources and Accumulation Processes of Oil and Gas in the North Uplift Structural Belt of Enping Sag. China Offshore Oil and Gas, 32(1): 54-65 (in Chinese with English abstract). [29] Ye, Q., Mei, L. F., Jiang, D. P., et al., 2022.3-D Structure and Development of a Metamorphic Core Complex in the Northern South China Sea Rifted Margin. Journal of Geophysical Research: Solid Earth, 127(2): e2021JB022595. https://doi.org/10.1029/2021JB022595 [30] Ye, Q., Mei, L. F., Shi, H. S., et al., 2018. A Low-Angle Normal Fault and Basement Structures within the Enping Sag, Pearl River Mouth Basin: Insights into Late Mesozoic to Early Cenozoic Tectonic Evolution of the South China Sea Area. Tectonophysics, 731-732: 1-16. https://doi.org/10.1016/j.tecto.2018.03.003 [31] Zeng, Z.W., Yang, X.H., Shu, Y., et al., 2015. Structure Palaeogeomorphology Characteristics and Sand Bodies Distribution Regularities of Paleogene Wenchang Formation in Enping Sag: Under the Conditions of Lack of Drilling Data to Predict and Evaluate the Reservoir Sand Bodies. Geoscience, 29(4): 804-815 (in Chinese with English abstract). [32] Zhang, X.T., Liu, P., Wang, W.Y., et al., 2021. Controlling Effect of Tectonic Transformation in Paleogene Wenchang Formation on Oil and Gas Accumulation in Zhu Ⅰ Depression. Earth Science, 46(5): 1797-1813 (in Chinese with English abstract). [33] Zhou, Z. C., Mei, L. F., Shi, H. S., et al., 2019. Evolution of Low-Angle Normal Faults in the Enping Sag, the Northern South China Sea: Lateral Growth and Vertical Rotation. Journal of Earth Science, 30(6): 1326-1340. https://doi.org/10.1007/s12583-019-0899-4 [34] Zhu, H.T., Li, S., Liu, H.R., et al., 2016. The Types and Implication of Migrated Sequence Stratigraphic Architecture in Continental Lacustrine Rift Basin: an Example from the Paleogene Wenchang Formation of Zhu Ⅰ Depression, Pearl River Mouth Basin. Earth Science, 41(3): 361-372 (in Chinese with English abstract). [35] 蔡国富, 张向涛, 彭光荣, 等, 2021. 南海北部阳江-一统暗沙断裂带与新近纪岩浆活动. 大地构造与成矿学, 45(1): 40-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202101004.htm [36] 邓棚, 梅廉夫, 杜家元, 等, 2020. 珠江口盆地西江主洼低角度边界正断层特征及成因演化. 石油与天然气地质, 41(3): 606-616. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202003017.htm [37] 龚丽, 朱红涛, 舒誉, 等, 2014. 珠江口盆地恩平凹陷文昌组层序格架中中-深湖相烃源岩空间展布规律及发育模式. 地球科学, 39(5): 546-556. doi: 10.3799/dqkx.2014.052 [38] 何勇, 梅廉夫, 施和生, 等, 2018. 低角度断陷盆地成因模式及结构特征: 以珠江口盆地恩平低角度断陷为例. 海相油气地质, 23(3): 73-81. doi: 10.3969/j.issn.1672-9854.2018.03.008 [39] 李洪博, 郑金云, 庞雄, 等, 2020. 南海北部陆缘差异拆离作用结构样式与控制因素: 以珠江口盆地白云-荔湾深水区为例. 中国海上油气, 32(4): 24-35. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202004003.htm [40] 柳保军, 庞雄, 王家豪, 等, 2019. 珠江口盆地深水区伸展陆缘地壳减薄背景下的沉积体系响应过程及油气勘探意义. 石油学报, 40(S1): 124-138. doi: 10.7623/syxb2019S1011 [41] 柳保军, 庞雄, 谢世文, 等, 2022. 珠江口盆地白云凹陷壳幔拆离断裂活动对深层大型三角洲沉积体系的控制作用. 地球科学, 47(7): 2354-2373. doi: 10.3799/dqkx.2022.035 [42] 刘强虎, 朱红涛, 舒誉, 等, 2015. 珠江口盆地恩平凹陷古近系恩平组物源体系及其对滩坝的控制. 石油学报, 36(3): 286-299. [43] 刘强虎, 朱红涛, 杨香华, 等, 2013. 珠江口盆地恩平凹陷古近系文昌组地震层序地层单元定量识别. 中南大学学报(自然科学版), 44(3): 1076-1082. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201303035.htm [44] 米立军, 张向涛, 庞雄, 等, 2019. 珠江口盆地形成机制与油气地质. 石油学报, 40(S1): 1-10. doi: 10.7623/syxb2019S1001 [45] 庞雄, 任建业, 郑金云, 等, 2018. 陆缘地壳强烈拆离薄化作用下的油气地质特征: 以南海北部陆缘深水区白云凹陷为例. 石油勘探与开发, 45(1): 27-39. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201801004.htm [46] 庞雄, 郑金云, 梅廉夫, 等, 2021. 先存俯冲陆缘背景下南海北部陆缘断陷特征及成因. 石油勘探与开发, 48(5): 1069-1080. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202105021.htm [47] 漆家福, 吴景富, 马兵山, 等, 2019. 南海北部珠江口盆地中段伸展构造模型及其动力学. 地学前缘, 26(2): 203-221. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201902019.htm [48] 任建业, 庞雄, 雷超, 等, 2015. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示. 地学前缘, 22(1): 102-114. [49] 任建业, 庞雄, 于鹏, 等, 2018. 南海北部陆缘深水-超深水盆地成因机制分析. 地球物理学报, 61(12): 4901-4920. doi: 10.6038/cjg2018L0558 [50] 施和生, 杜家元, 梅廉夫, 等, 2020. 珠江口盆地惠州运动及其意义. 石油勘探与开发, 47(3): 447-461. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202003003.htm [51] 孙珍, 李付成, 林间, 等, 2021. 被动大陆边缘张-破裂过程与岩浆活动: 南海的归属. 地球科学, 46(3): 770-789. doi: 10.3799/dqkx.2020.371 [52] 王家豪, 刘丽华, 陈胜红, 等, 2011. 珠江口盆地恩平凹陷珠琼运动二幕的构造-沉积响应及区域构造意义. 石油学报, 32(4): 588-595. doi: 10.3969/j.issn.1001-8719.2011.04.015 [53] 吴静, 朱定伟, 赵鹏, 等, 2021. 断裂复合汇聚脊对新近系油气远距离富集的控制作用: 以珠江口盆地阳江东凹与恩平凹陷为例. 大地构造与成矿学, 45(1): 131-139. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202101011.htm [54] 熊万林, 朱俊章, 杨兴业, 等, 2020. 恩平凹陷北部隆起构造带油气成因来源及成藏过程研究. 中国海上油气, 32(1): 54-65. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202001006.htm [55] 曾智伟, 杨香华, 舒誉, 等, 2015. 恩平凹陷古近系文昌组构造古地貌特征及砂体展布规律——少井条件下储集砂体预测与评价. 现代地质, 29(4): 804-815. doi: 10.3969/j.issn.1000-8527.2015.04.009 [56] 张向涛, 刘培, 王文勇, 等, 2021. 珠一坳陷古近系文昌期构造转变对油气成藏的控制作用. 地球科学, 46(5): 1797-1813. doi: 10.3799/dqkx.2020.106 [57] 朱红涛, 李森, 刘浩冉, 等, 2016. 陆相断陷湖盆迁移型层序构型及意义: 以珠Ⅰ坳陷古近系文昌组为例. 地球科学, 41(3): 361-372. doi: 10.3799/dqkx.2016.028