• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    音频大地电磁约束反演在地层识别中的应用:以哈密盆地为例

    孙浩 刘营 王正 王振 刘荆平 陈超 王国灿 王岸

    孙浩, 刘营, 王正, 王振, 刘荆平, 陈超, 王国灿, 王岸, 2022. 音频大地电磁约束反演在地层识别中的应用:以哈密盆地为例. 地球科学, 47(11): 4280-4293. doi: 10.3799/dqkx.2022.207
    引用本文: 孙浩, 刘营, 王正, 王振, 刘荆平, 陈超, 王国灿, 王岸, 2022. 音频大地电磁约束反演在地层识别中的应用:以哈密盆地为例. 地球科学, 47(11): 4280-4293. doi: 10.3799/dqkx.2022.207
    Sun Hao, Liu Ying, Wang Zheng, Wang Zhen, Liu Jingping, Chen Chao, Wang Guocan, Wang An, 2022. Constrained Inversion of Audio Magnetotelluric for Identifying Strata: A Case Study in Hami Basin. Earth Science, 47(11): 4280-4293. doi: 10.3799/dqkx.2022.207
    Citation: Sun Hao, Liu Ying, Wang Zheng, Wang Zhen, Liu Jingping, Chen Chao, Wang Guocan, Wang An, 2022. Constrained Inversion of Audio Magnetotelluric for Identifying Strata: A Case Study in Hami Basin. Earth Science, 47(11): 4280-4293. doi: 10.3799/dqkx.2022.207

    音频大地电磁约束反演在地层识别中的应用:以哈密盆地为例

    doi: 10.3799/dqkx.2022.207
    基金项目: 

    国家自然科学基金项目 41904079

    国家自然科学基金项目 41774091

    中国地质调查局特殊地质地貌填图试点项目 DD20179607

    中国地质调查局特殊地质地貌填图试点项目 DD20160060

    中央高校基本科研业务费专项资金资助项目 CUG2106338

    详细信息
      作者简介:

      孙浩(1996-),男,硕士研究生,主要从事大地电磁数据采集、处理与反演解释.ORCID:0000-0002-6857-8250. E-mail:sunhao@cug.edu.cn

      通讯作者:

      刘营,E-mail: liuying@cug.edu.cn

    • 中图分类号: P319.2

    Constrained Inversion of Audio Magnetotelluric for Identifying Strata: A Case Study in Hami Basin

    • 摘要: 覆盖区地质填图是新时期地质填图的重要方向.音频大地电磁法(AMT)是覆盖区地质填图的重要地球物理方法之一,可以为地层和基岩面的刻画提供电性参数的约束.然而,常规的AMT反演无法精确刻画电性异常体的边界,且当缺乏其他地质与地球物理资料约束时,难以进行地质解译.针对此问题,基于数值模拟结果的可行性,利用哈密烟墩戈壁覆盖区的4条实测AMT剖面探讨了AMT约束反演在地层识别中的应用效果.相位张量分析指示研究区浅部(> 1 Hz)电性结构表现为二维特征,深部受三维结构影响;浅部为低阻,深部电阻率逐渐升高.采用不加约束二维反演获得了4条剖面的地下(< 3 km)电性结构.基于研究区的重力异常、地震解译结果、物性和钻孔资料,在二维反演结果上初步划分了渐新统-中新统和侏罗系地层的底界面;进而以这两个界面建立先验模型,并根据物性资料设置电阻率变化范围,进行AMT约束反演,获得了更优化的反演结果以及清晰可靠的渐新统-中新统和侏罗系的底界面.结果显示,研究区渐新统-中新统地层电阻率值略小于10 Ω•m,其底界面平均埋深为120 m;侏罗系电阻率值为10~100Ω•m,其底界面最深可达2 km.基岩面(侏罗系底界面)埋深整体上呈现为东南深、西北浅,这指示哈密烟墩地区中生代以来的沉积中心在东南部;此外,侏罗系地层与下伏的古生界地层存在角度不整合.研究表明,哈密烟墩地区新生代以来可能受到了近南北向应力挤压,在研究区中部形成近东西或北东东向的侏罗系隆凹相间的构造地貌格局.而渐新统-中新统地层底部的不整合面可能反映了后期褶皱构造的影响,这种隆凹作用相伴的褶皱构造可能具有同沉积性质.

       

    • 图  1  起伏界面数值模型反演结果

      a. 正演理论模型;b. 不加约束反演,拟合差为2.58;c. 约束反演,拟合差为1.00;图中黑色三角为大地电磁测点,黑色线条为电性起伏界面

      Fig.  1.  Inversion results of numerical model on undulating interface

      图  2  东天山区域(a)及哈密盆地研究区(b)

      Fig.  2.  Overview of the East Tianshan (a) and research region of Hami basin (b)

      图  3  烟墩研究区测线、测点分布

      底图为该区域布格重力异常图;黑色实心点为AMT测点;黄色实心点为典型测点;蓝线为地震测线;ZKY11和ZKY12为地震测线上的两个钻孔

      Fig.  3.  Survey lines and sites distribution in the research region

      图  4  典型测点视电阻率和相位曲线

      Fig.  4.  Apparent resistivity and phase curves of typical AMT sites

      图  5  剖面相位张量椭圆

      a.剖面1;b.剖面2;c.剖面3;d.剖面4

      Fig.  5.  Phase tensor ellipses for profile

      图  6  213.64 Hz (a)、62.15 Hz (b)、2.84 Hz (c)和0.61 Hz (d)四个频率的相位张量椭圆平面图

      Fig.  6.  Phase tensor ellipses for 213.64 Hz (a), 62.15 Hz (b), 2.84 Hz (c) and 0.61 Hz (d)

      图  7  地层识别和提取分布流程

      Fig.  7.  Flowchart of formation identification and extraction distribution

      图  8  AMT剖面的二维反演结果

      蓝线和黑线分别表示初步解译的渐新统‒中新统底界面和侏罗系底界面

      Fig.  8.  Two-dimensional inversion results of AMT profiles

      图  9  剖面1实测(上)与反演预测(下)的TE、TM模式视电阻率相位拟断面图

      Fig.  9.  Pseudo section diagrams of the apparent resistivity phase in TE and TM modes of profile 3 observed (top) and inversion prediction values (bottom)

      图  10  研究区钻孔揭示的渐新统‒中新统底界面埋深

      黑点为AMT测点,蓝线为地震测点,红十字代表研究区内的钻孔点位

      Fig.  10.  Buried depth of the bottom interface of Oligocene-Miocene stratum from boreholes in the research area

      图  11  研究区地震剖面解译图

      ZKY211和ZKY212为地震剖面上的两个钻孔;淡蓝色线代表第四系和渐新统‒中新统地层;绿线和深蓝色线代表侏罗系地层内部分界面;紫线代表侏罗系地层的底界面;黄三角和红三角分别代表两个钻孔下方渐新统‒中新统和侏罗系地层的底界面;Q.第四系;E3N1.渐新统‒中新统;J2t.中侏罗统头屯河组;J2x.中侏罗统西山窑组;D.泥盆系

      Fig.  11.  Seismic imaging results in the research area

      图  12  AMT剖面1的初始反演模型

      Fig.  12.  Initial inversion model of AMT profile 1

      图  13  AMT剖面的约束反演结果

      Fig.  13.  Constrained inversion results of AMT profiles

      图  14  渐新统‒中新统(a)和侏罗系(b)底界面埋深的平面分布图及凹陷的平面分布

      图中圆圈填充颜色指示约束反演得到的渐新统‒中新统地层底界面埋深,红十字代表钻孔点位及下方的渐新统‒中新统地层底界面埋深,蓝色椭圆区域是划分的凹陷区域

      Fig.  14.  Depth distributions of the bottom interfaces of Oligocene-Miocene (a) and Jurassic (b), the distribution of depressions in the research area

      图  15  研究区大地电磁剖面揭示的侏罗系厚度分布趋势与褶皱构造

      Fig.  15.  Thickness distribution and fold structure of the Jurassic strata revealed by magnetotelluric in the research area

      表  1  烟墩地区岩石电阻率按地层划分的统计结果

      Table  1.   Statistic results of rock resistivity by stratification in Yandun area

      系/统 地层代号 岩性 电阻率统计级别
      渐新统‒中新统 E3N1 泥质砂岩 低阻(< 20 Ω•m)
      侏罗系 J 砂岩 中阻(> 100 Ω•m)
      泥盆系 D 闪长玢岩/花岗岩 高阻(> 1 000 Ω•m)
      下载: 导出CSV
    • [1] Booker, J.R., 2014. The Magnetotelluric Phase Tensor: A Critical Review. Surveys in Geophysics, 35(1): 7-40. https://doi.org/10.1007/s10712-013-9234-2
      [2] Caldwell, T.G., Bibby, H.M., Brown, C., 2004. The Magnetotelluric Phase Tensor. Geophysical Journal International, 158(2): 457-469. https://doi.org/10.1111/j.1365-246x.2004.02281.x
      [3] Cao, R., Muhetaer, Z., Wang, D.K., et al., 2016. Structural Characteristics and Plate Boundary Properties of the Kangguertage Fault Zone in Jueluotage Orogenic Belt, Eastern Tianshan. Northwestern Geology, 49(3): 28-38 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-6248.2016.03.003
      [4] Charvet, J., Shu, L.S., Laurent-Charvet, S., et al., 2011. Palaeozoic Tectonic Evolution of the Tianshan Belt, NW China. Science China Earth Sciences, 54(2): 166-184. https://doi.org/10.1007/s11430-010-4138-1
      [5] Chen, C., Xu, S.F., Wang, G.C., et al., 2021. Comprehensive Geophysical Survey and Practice in Geological Investigation of Gobi Desert Covered Area. Earth Science, 46(8): 3028-3038 (in Chinese with English abstract).
      [6] De Groot-Hedlin, C., Constable, S., 2004. Inversion of Magnetotelluric Data for 2D Structure with Sharp Resistivity-Contrast. Geophysics, 69(1): 78-86. https://doi.org/10.1190/1.1649377
      [7] Egbert, G.D., Booker, J.R., 1986. Robust Estimation of Geomagnetic Transfer Functions. Geophysical Journal of the Royal Astronomical Society, 87(1): 173-194. https://doi.org/10.1111/j.1365-246X.1986.tb04552.x
      [8] Gamble, T.D., Goubau, W.M., Clarke, J., 1979. Magnetotellurics with a Remote Magnetic Reference. Geophysics, 44(1): 53-68. https://doi.org/10.1190/1.1440923
      [9] Garcia, X., Jones, A.G., 2002. Atmospheric Sources for Audio-Magnetotelluric (AMT) Sounding. Geophysics, 67(2): 448-458. https://doi.org/10.1190/1.1468604
      [10] Han, B.F., Ji, J.Q., Song, B., et al., 2006. Late Paleozoic Vertical Growth of Continental Crust around the Junggar Basin, Xinjiang, China(PartⅠ): Timing of Post-Collisional Plutonism. Acta Petrologica Sinica, 22(5): 1077-1086 (in Chinese with English abstract).
      [11] Hetzel, R., Tao, M.X., Stokes, S., et al., 2004. Late Pleistocene/Holocene Slip Rate of the Zhangye Thrust (Qilian Shan, China) and Implications for the Active Growth of the Northeastern Tibetan Plateau. Tectonics, 23(6): TC6006. https://doi.org/10.1029/2004tc001653
      [12] Jegen, M.D., Hobbs, R.W., Tarits, P., et al., 2009. Joint Inversion of Marine Magnetotelluric and Gravity Data Incorporating Seismic Constraints: Preliminary Results of Sub-Basalt Imaging off the Faroe Shelf. Earth and Planetary Science Letters, 282(1-4): 47-55. https://doi.org/10.1016/j.epsl.2009.02.018
      [13] Key, K., 2016. MARE2DEM: A 2-D Inversion Code for Controlled-Source Electromagnetic and Magnetotelluric Data. Geophysical Journal International, 207(1): 571-588. https://doi.org/10.1093/gji/ggw290
      [14] Kim, H.J., Song, Y., Lee, K.H., 1999. Inequality Constraint in Least-Squares Inversion of Geophysical Data. Earth, Planets and Space, 51(4): 255-259. https://doi.org/10.1186/BF03352229
      [15] Li, W.Q., 2005. Research on Ancient Arc-Basain System of Kangguertage in Eastern Tianshan, Xinjiang(Dissertation). Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou (in Chinese with English abstract).
      [16] Liu, Y., Hu, D.G., Xu, S.F., et al., 2020. Electrical Anisotropic Structure in the Quaternary Volcanic Region of North Hainan Island and Its Geological Implications. Earth Science, 45(1): 330-340 (in Chinese with English abstract). http://www.researchgate.net/publication/332316432_Electrical_Anisotropic_Structure_in_the_Quaternary_Volcanic_Region_of_North_Hainan_Island_and_Its_Geological_Implication
      [17] Liu, Y., Liu, J.P., Chen, C., et al., 2020. The Application of Audio Magnetotelluric for 3D Geological Mapping in the Gobi Desert Area. Geological Journal, 55(11): 7335-7345. https://doi.org/10.1002/gj.3627
      [18] Musil, M., Maurer, H.R., Green, A.G., 2003. Discrete Tomography and Joint Inversion for Loosely Connected or Unconnected Physical Properties: Application to Crosshole Seismic and Georadar Data Sets. Geophysical Journal International, 153(2): 389-402. https://doi.org/10.1046/j.1365-246X.2003.01887.x
      [19] Portniaguine, O., Zhdanov, M.S., 1999. Focusing Geophysical Inversion Images. Geophysics, 64(3): 874-887. https://doi.org/10.1190/1.1444596
      [20] Sternberg, T., Paillou, P., 2015. Mapping Potential Shallow Groundwater in the Gobi Desert Using Remote Sensing: Lake Ulaan Nuur. Journal of Arid Environments, 118: 21-27. https://doi.org/10.1016/j.jaridenv.2015.02.020
      [21] Tao, M.X., 2010. The Two Kinds of Tectonic Unit Systems in Turpan-Hami Basin, Xinjiang, China. Geological Bulletin of China, 29(S1): 297-304 (in Chinese with English abstract).
      [22] Wang, G.C., Shen, T.Y., Chen, C., et al., 2020. Basin-Range Coupling and Tectonic Topography Analysis during Geological Mapping on Covered Area: A Case Study of Turpan-Hami Basin, Eastern Tianshan. Earth Science, 45(12): 4313-4331 (in Chinese with English abstract).
      [23] Wang, G.C., Xu, Y, X., Chen, X, J., et al., 2015. Three-Dimensional Geological Mapping and Visualization of Complex Orogenic Belts. Earth Science, 40(3): 397-406 (in Chinese with English abstract).
      [24] Xiao, F., Wang, Z.H., 2017. Geological Interpretation of Bouguer Gravity and Aeromagnetic Data from the Gobi-Desert Covered Area, Eastern Tianshan, China: Implications for Porphyry Cu-Mo Polymetallic Deposits Exploration. Ore Geology Reviews, 80: 1042-1055. https://doi.org/10.1016/j.oregeorev.2016.08.034
      [25] Xiao, M., Wu, S.T., Yuan, X.J., et al., 2021. Conglomerate Reservoir Pore Evolution Characteristics and Favorable Area Prediction: A Case Study of the Lower Triassic Baikouquan Formation in the Northwest Margin of the Junggar Basin, China. Journal of Earth Science, 32(4): 998-1010. https://doi.org/10.1007/s12583-020-1083-6
      [26] Yang, Z., Gulibahaer, A., Muhetaer, Z., et al., 2015. Geochemistry Characteristics and Tectonic Significance of the Igneous Rocks from the Eastern Tianshan Mountains. Northwestern Geology, 48(2): 104-111 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-6248.2015.02.010
      [27] Yu, J.J., Wang, G.C., Xu, Y.X., et al., 2015. Constraining Deep Geological Structures in Three-Dimensional Geological Mapping of Complicated Orogenic Belts: A Case Study from Karamay Region, Western Junggar. Earth Science, 40(3): 407-418, 424 (in Chinese with English abstract).
      [28] Zhang, D.L., Xu, Z.H., Niu, X.J., 2006. Using 3D Seismic Prospecting to Find out Complicated Structures in Gobi and Desert Areas. Coal Geology of China, 184): 59-61(in Chinese with English abstract).
      [29] Zhou, S.J., Huang, Q.H., 2018. Two-Dimensional Sharp Boundary Magnetotelluric Inversion Using Bayesian Theory. Chinese Journal of Geophysics, 61(8): 3420-3434 (in Chinese with English abstract).
      [30] 曹锐, 木合塔尔·扎日, 王敦科, 等, 2016. 东天山觉罗塔格造山带康古尔塔格断裂带构造特征及边界属性研究. 西北地质, 49(3): 28-38. doi: 10.3969/j.issn.1009-6248.2016.03.003
      [31] 陈超, 许顺芳, 王国灿, 等, 2021. 戈壁荒漠覆盖区地质调查中综合地球物理方法与实践. 地球科学, 46(8): 3028-3038. doi: 10.3799/dqkx.2020.386
      [32] 韩宝福, 季建清, 宋彪, 等, 2006. 新疆准噶尔晚古生代陆壳垂向生长(Ⅰ): 后碰撞深成岩浆活动的时限. 岩石学报, 22(5): 1077-1086. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605003.htm
      [33] 李文铅, 2005. 新疆东天山康古尔塔格地区古弧-盆系统研究(博士学位论文). 广州: 中国科学院研究生院(广州地球化学研究所).
      [34] 刘营, 胡道功, 许顺芳, 等, 2020. 琼北第四纪火山区电各向异性结构及其地质意义. 地球科学, 45(1): 330-340. doi: 10.3799/dqkx.2018.336
      [35] 陶明信, 2010. 论新疆吐哈盆地的两种构造单元体系. 地质通报, 29(增刊1): 297-304. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2010Z1015.htm
      [36] 王国灿, 申添毅, 陈超, 等, 2020. 覆盖区地质调查中的盆山构造地貌关系研究: 以东天山-吐哈盆地为例. 地球科学, 45(12): 4313-4331. doi: 10.3799/dqkx.2020.300
      [37] 王国灿, 徐义贤, 陈旭军, 等, 2015. 基于地表地质调查剖面网络基础上的复杂造山带三维地质调查与建模方法. 地球科学, 40(3): 397-406. doi: 10.3799/dqkx.2015.031
      [38] 杨震, 古力巴哈尔·阿布都热西提, 木合塔尔·扎日, 等, 2015. 东天山觉罗塔格一带晚古生代岩浆岩地球化学特征及构造意义. 西北地质, 48(2): 104-111. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201502010.htm
      [39] 郁军建, 王国灿, 徐义贤, 等, 2015. 复杂造山带地区三维地质填图中深部地质结构的约束方法: 西准噶尔克拉玛依后山地区三维地质填图实践. 地球科学, 40(3): 407-418, 424. doi: 10.3799/dqkx.2015.032
      [40] 张灯亮, 徐忠华, 牛小军, 2006. 利用三维地震在戈壁沙漠区解决复杂地质构造问题. 中国煤田地质, 18(4): 59-61. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMT200604021.htm
      [41] 周思杰, 黄清华, 2018. 基于贝叶斯方法的二维大地电磁尖锐边界反演研究. 地球物理学报, 61(8): 3420-3434. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201808027.htm
    • 加载中
    图(15) / 表(1)
    计量
    • 文章访问数:  158
    • HTML全文浏览量:  53
    • PDF下载量:  27
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-04-19
    • 网络出版日期:  2022-12-07
    • 刊出日期:  2022-11-25

    目录

      /

      返回文章
      返回