Progress and Prospects in Reconstruction of Flood Events in Chinese Alluvial Plains
-
摘要: 冲积平原作为城市聚集和人类发展的重要区域,长期面临着巨大的洪水灾害风险,基于平原区丰富的沉积记录开展洪水事件重建研究有助于科学认识洪水历史及规律,具有重要的意义和价值.通过系统梳理国内外在冲积平原洪水重建研究中的最新进展,重点回顾了近年来我国长江中下游平原和华北平原相关代表性成果,分析了平原区洪水沉积主要特征和识别标志,归纳了特大洪水事件的典型沉积序列和主要沉积环境.最后,结合国内外研究热点和前沿,展望了未来我国冲积平原在洪水重建研究的巨大潜力,建议以沉积相和地层关系为基础,进一步扩展洪水重建研究的时空范围,探索从定性到定量获取不同规模洪水的水文信息,进而开展流域尺度的综合分析,深入了解洪水的驱动机制和影响因素.Abstract: Alluvial plains are very important for urbanization process and human development, which are directly exposed to the risk of intense flooding in the long term. It can deepen the understanding of flood histories and patterns to conduct studies on floodplain deposits with rich information of paleoflood hydrology. By systematically reviewing the latest progress in the reconstruction of flood events in alluvial plains around the world, this paper pays high attention to the representative research in the Yangtze River Plain and the North China Plain over the last decade. The identification of paleoflood deposits at different time scales is reviewed, including sedimentary characteristics and environmental proxies. Combined with recent findings in the post-flooding investigation, sequences of multiple sedimentation layers in major flood events are summarized. In addition, depositional environments in the alluvial plain are generally divided into channel zones, channel margins and flood basins. Based on paleoflood research hotspots and frontiers, the future research firstly should focus on sedimentary features and stratigraphic relationships of flood deposits, then expand the spatial and temporal scope of flood records, explore quantitative paleoflood hydrology, and apply meta-analyses at the whole basin scale in order to gain a deeper understanding on the potential mechanism and factor.
-
Key words:
- alluvial plain /
- paleoflood /
- sedimentary feature /
- identification mark /
- Holocene
-
图 2 美国密西西比河冲积平原区1973年和2011年大洪水沉积厚度(a)与砂含量(b)对比图(据Heitmuller et al. (2017)修改)
Fig. 2. Average thickness (a) and average sand content (b) of overbank sediments deposited by 1973 and 2011 lower Mississippi River floods(modified from Heitmuller et al. (2017))
图 5 冲积平原沉积环境模式(a)(据Wohl(2021)修改)及横切剖面示意(b)
Fig. 5. Alluvial plain depositional environment model (a) (modified from reference Wohl (2021)) and cross-sectional schematic (b)
表 1 长江中下游平原和华北平原主要古洪水重建主要研究点信息统计
Table 1. Statistics of the main paleoflood research sites in the middle-lower Yangtze plain and North China plain
区域 序号 文献 时间尺度 研究材料 测年方法 洪水识别方法 长江中下游平原 1 朱诚等(1997) 全新世 东门剖面 14C 沉积特征、埋藏古树、粒度、扫描电镜 2 Yu et al.(2003) 全新世 林峰桥剖面、宝华山剖面 14C 沉积特征 3 谢远云等(2007) 历史时期 江北农场剖面 14C 沉积特征、粒度 4 钱鹏等(2009) 百年 南通河漫滩钻孔 沉积速率推算 粒度、磁化率 5 赵得爱等(2010) 历史时期 江北农场剖面 14C 埋藏古树 6 Zhan et al.(2010) 百年 LGZ剖面 210Pb 粒度、地化元素 7 吴立(2013) 全新世 钟桥、谭家林和三房湾遗址 14C、OSL、考古文化断代 沉积特征、锆石微形态、粒度、磁化率、Rb/Sr等 8 Li et al.(2013) 百年 TXS钻孔 14C、210Pb、137Cs、 粒度、磁化率 9 Zhang et al.(2015) 十年 NB1/NB2钻孔 137Cs、14C 粒度、重金属元素 10 Liu et al.(2019) 十年 武汉段剖面;南京、铜陵段钻孔 210Pb、137Cs 粒度 11 张跞颖等(2019) 全新世 SK10钻孔 14C 粒度、地化元素 12 朱海等(2020) 全新世 ZK145钻孔 14C 粒度、磁化率 13 熊智秋等(2020) 全新世 ZK145钻孔 14C 磁化率、粒度 14 罗淑元等(2021) 百年 扬子江剖面 137Cs、14C 粒度 15 Guan et al.(2022) 全新世 JH001钻孔 14C 粒度、地化元素 华北平原 16 殷春敏等(2001) 全新世 内丘剖面、肃宁剖面 14C 沉积特征、粒度 17 夏正楷等(2002) 全新世 北京大学地基剖面 14C、TL 沉积特征、埋藏古树 18 要吉花等(2005) 历史时期 GZ钻孔 历史文献资料对比 粒度 19 丁召静(2012) 全新世 船流街剖面 14C、OSL 沉积特征、粒度、磁化率、地化元素 20 Kidder et al.(2012) 全新世 三杨庄遗址 14C、考古文化断代 沉积特征 21 Chen et al.(2014) 百年 DP4钻孔 210Pb、137Cs 孢粉 22 Shen et al.(2015) 全新世 北寨剖面 14C、OSL 沉积特征 23 王超(2015) 历史时期 蔡家村剖面 OSL 粒度、地化元素 24 Yu et al.(2017) 历史时期 嘉祥剖面 14C 沉积特征 25 Storozum et al.(2018) 历史时期 岸上、大张龙遗址 14C、考古文化断代 沉积特征 26 刘德新(2018) 历史时期 JM/SZ钻孔 14C、OSL 粒度、磁化率、有机碳、孢粉 27 Zhao et al.(2019) 全新世 盐池、鱼营剖面 14C、OSL 沉积特征、粒度 28 石佳(2019) 全新世 嘉应观剖面 OSL 粒度、地化元素、色度、磁化率 29 Storozum et al.(2020) 历史时期 开封古城遗址 14C、考古文化断代 沉积特征、粒度 30 Yu et al.(2020) 历史时期 十里铺遗址 14C、OSL、考古文化断代 沉积特征、粒度、粘土矿物 注:本表中研究材料只统计利用沉积物开展洪水重建的主要工作,未包括史料碑文等相关研究. 表 2 历史时期黄河下游洪泛频率(范颖等, 2016)
Table 2. Levee breach events in the lower Yellow River during historical period(Fan et al., 2016)
朝代 起止年份 决口次数 决口平均间隔时间(年) 东周、秦、汉 前602‒220 20 41.10 三国、隋、唐 221‒907 40 17.15 五代、宋、元 908‒1368 103 4.47 明朝 1369‒1644 77 3.57 清朝 1645‒1911 110 2.42 民国 1912‒1948 19 1.89 中华人民共和国 1949‒2010 8 7.63 表 3 黄河冲积平原区与基岩峡谷区古洪水滞流沉积物特征对比表
Table 3. Comparaison table of sedimentary features on slackwater deposit in the bedrock canyon and floodplain of the Yellow River
基岩峡谷区( Huang et al., 2010 ; 王浩宇等,2021)冲积平原区 颜色 浊红棕色、浊黄橙色等 棕色、棕红色等 岩性 粉砂、粘土质粉砂、粉砂质粘土和细砂等 粉砂、粘土质粉砂、粉砂质粘土、粘土等 结构 均匀、致密,块状、层状,风化后呈棱块状,具贝壳状断口 均匀、致密,块状、层状,风化后呈棱块状,具贝壳状断口 构造 石香肠构造、龟裂等 龟裂、软沉积变形等 相邻地层 风成黄土、坡积物、支流混杂沉积物夹层、文化层 古土壤、湖沼相和正常河漫滩沉积物、文化层 地层接触关系 突变关系 突变关系 组合特征 顶部常有粘土质盖层 常与其他粗颗粒(粉砂‒细砂)的泛滥沉积物一起产出 -
[1] Baker, V. R., 1987. Paleoflood Hydrology and Extraordinary Flood Events. Journal of Hydrology, 96(1-4): 79-99. https://doi.org/10.1016/0022-1694(87)90145-4 [2] Baker, V. R., Benito, G., Brown, A. G., et al., 2022. Fluvial Palaeohydrology in the 21st Century and Beyond. Earth Surface Processes and Landforms, 47(1): 58-81. https://doi.org/10.1002/esp.5275 [3] Chen, Y., Chen, S., Ma, C., et al., 2014. Palynological Evidence of Natural and Anthropogenic Impacts on Aquatic Environmental Changes over the Last 150 Years in Dongping Lake, North China. Quaternary International, 349: 2-9. https://doi.org/10.1016/j.quaint.2014.04.033 [4] Chen, Y. Z., Syvitski, J. P. M., Gao, S., et al., 2012. Socio-Economic Impacts on Flooding: A 4 000-Year History of the Yellow River, China. AMBIO, 41: 682-698. https://doi.org/10.1007/s13280-012-0290-5 [5] Dan, M., Sawai, Y., Yamada, M., et al., 2016. Erosion and Sedimentation During the September 2015 Flooding of the Kinu River, Central Japan. Scientific Reports, 6(1): 34168. https://doi.org/10.1038/srep34168 [6] Ding, Z. J., 2012. Study on Paleoflood Sedimentary Records of Chuanliujie Section in Yihe River Basin (Dissertation). Shandong Normal University, Jinan, 1-46 (in Chinese with English abstract). [7] Disaster Investigation Team of the State Council, 2022. Investigation Report on "July 20th" Torrential Rain Disaster in Zhengzhou, Henan, 1-8 (in Chinese). [8] Fan, Y., Pan, L., Chen, S. Y., 2016. Flooding and Avulsion in the Lower Reaches of the Yellow River during the Historical Period. Journal of Jiangsu Normal University (Natural Science Edition), 34(4): 6-10 (in Chinese with English abstract). [9] Gao, B. S., Jin, Z. K., Li, Y., et al., 2015. Sedimentary Model and Evolutionary Process of Crevasse Splays: A Case of Crevasse Splays around Fuqiancun Village along Xinjiang River. Acta Petrolei Sinica, 36(5): 564-572 (in Chinese with English abstract). [10] Ge, T., Xue, Y., Jiang, X., et al., 2020. Sources and Radiocarbon Ages of Organic Carbon in Different Grain Size Fractions of Yellow River-Transported Particles and Coastal Sediments. Chem. Geol. , 534: 119452. https://doi.org/10.1016/j.chemgeo.2019.119452 [11] Guan, S., Yang, Q., Li, Y., et al., 2022. River Flooding Response to ENSO-Related Monsoon Precipitation: Evidence from Late Holocene Core Sediments in the Jianghan Plain. Palaeogeography, Palaeoclimatology, Palaeoecology, 589: 110834. https://doi.org/10.1016/j.palaeo.2022.110834 [12] Guo, Y. Q., Ge, Y. G., Chen, X. Q., et al., 2021. Progress in the Reconstruction of Palaeoflood Events in the Mountain Canyon Valleys around the Tibetan Plateau. Earth Science Frontiers, 28(2): 168-180 (in Chinese with English abstract). [13] Hagstrom, C. A., Leckie, D. A., Smith, M. G., 2018. Point Bar Sedimentation and Erosion Produced by an Extreme Flood in a Sand and Gravel-Bed Meandering River. Sedimentary Geology, 377: 1-16. https://doi.org/10.1016/j.sedgeo.2018.09.003 [14] Harden, T. M., Ryberg, K. R., Connor, J. E. O., et al., 2021. Geological Paleostage. Science Publishing Network, Tacoma Publishing Service Center, Oregon, 9-26. [15] Heitmuller, F. T., Hudson, P. F., Kesel, R. H., 2017. Overbank Sedimentation from the Historic A. D. 2011 Flood along the Lower Mississippi River, USA. Geology, 45(2): 107-110. https://aquila.usm.edu/fac_pubs/17724 doi: 10.1130/G38546.1 [16] Huang, C. C., Pang, J., Zha, X., et al., 2010. Extraordinary Floods of 4 100-4 000 a BP Recorded at the Late Neolithic Ruins in the Jinghe River Gorges, Middle Reach of the Yellow River, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 289(1-4): 1-9. https://doi.org/10.1016/j.palaeo.2010.02.003 [17] Huang, C. C., Pang, J., Zha, X., et al., 2013. Extraordinary Hydro-Climatic Events during the Period AD 200-300 Recorded by Slackwater Deposits in the Upper Hanjiang River Valley, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 374: 274-283. http://dx.doi.org/10.1016/j.palaeo.2013.02.001 [18] Jia, T., Ma, C., Zhu, C., et al., 2017. Depositional Evidence of Palaeofloods during 4.0-3.6 ka BP at the Jinsha Site, Chengdu Plain, China. Quaternary International, 440: 78-89. https://doi.org/10.1016/j.quaint.2016.07.008 [19] Jones, A. F., Lewin, J., Macklin, M. G., 2010. Flood Series Data for the Later Holocene: Available Approaches, Potential and Limitations from UK Alluvial Sediments. The Holocene, 20(7): 1123-1135. https://doi.org/10.1177/095968361036950 [20] Jongman, B., 2018. Effective Adaptation to Rising Flood Risk. Nature Communications, 9(1): 1986. https://doi.org/10.1038/s41467-018-04396-1 [21] Kidder, T. R., Liu, H., Li, M., 2012. Sanyangzhuang: Early Farming and a Han Settlement Preserved beneath Yellow River Flood Deposits. Antiquity, 86(331): 30-47. doi: 10.1017/S0003598X0006244X [22] Knight, J., Evans, M., 2017. The Sediment Stratigraphy of a Flood Event: An Example from the Sabie River, South Africa. Catena, 151: 87-97. https://doi.org/10.1016/j.catena.2016.12.015 [23] Lam, D., Croke, J., Thompson, C., et al., 2017. Beyond the Gorge: Palaeoflood Reconstruction from Slackwater Deposits in a Range of Physiographic Settings in Subtropical Australia. Geomorphology, 292: 164-177. https://doi.org/10.1016/j.geomorph.2017.05.008 [24] Lan, H. X., Peng, J. B., Zhu, Y. B., et al., 2022. Research on Geological and Surfacial Processes and Major Disaster Effects in the Yellow River Basin. Science China Earth Sciences, 65(2): 234-256. https://doi.org/10.1007/s11430-021-9830-8 [25] Leigh, D. S., 2018. Vertical Accretion Sand Proxies of Gaged Floods along the Upper Little Tennessee River, Blue Ridge Mountains, USA. Sedimentary Geology, 364: 342-350. https://doi.org/10.1016/j.sedgeo.2017.09.007 [26] Lewin, J., Ashworth, P. J., Strick, R. J. P., 2017. Spillage Sedimentation on Large River Floodplains. Earth Surface Processes and Landforms, 42(2): 290-305. https://doi.org/10.1002/esp.3996 [27] Li, C. A., Huang, J. H., Zhang, Y. F., et al., 2002. Preliminary Study of Paleoflood of Last Glacial Maximum in Upper Reaches of the Yellow River. Earth Science, 27(4): 456-458 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2002.04.016 [28] Li, C. A., Zhang, Y. F., 2004. Flood Sedimental Characteristic and Its Mark on the Middle Reaches of Yangtze River. Advances in Water Science, 15(4): 485-488 (in Chinese with English abstract). doi: 10.3321/j.issn:1001-6791.2004.04.015 [29] Li, C. A., Zhang, Y. F., Yuan, S. Y., et al., 2009. Grain Size Characteristics and Environmental Significance of Hanjiang 2005 Flood Sediments. Quaternary Sciences, 29(2): 276-281 (in Chinese with English abstract). [30] Li, H. Y., Wang, Q., Zhang, H. C., et al., 2021a. Geochemical Characteristics of Modern Flood Sediment from Danhe River Basin in Northern Shandong Province and Its Significance of Paleoflood Identification. Journal of Yunnan University (Natural Sciences Edition), 43(3): 503-512 (in Chinese with English abstract). [31] Li, H. Y., Zhu, J. L., Zhang, H. C., et al., 2021b. Grain-Size Characteristics of Crevasse Splays from the Lower Reaches of Dan River in Northern Shandong Province and Reconstruction of Sedimentary Process. Journal of Arid Land Resources and Environment, 35(2): 176-182 (in Chinese with English abstract). [32] Li, Y., Guo, Y., Yu, G., 2013. An Analysis of Extreme Flood Events during the Past 400 Years at Taihu Lake, China. Journal of Hydrology (Amsterdam), 500: 217-225. https://doi.org/10.1016/j.jhydrol.2013.02.028 [33] Lian, L. C., Ling, C. H., Li, X. F., et al., 2019. Indicator of Flood Events Based on Floodplain Sediments: A Case Study of Xiu River. Acta Sedimentologica Sinica, 37(1): 135-142 (in Chinese with English abstract). [34] Liu, D., Ma, J., Wu, P., et al., 2020. A New Indicator for Dividing Sedimentary Rhythms in Alluvial Deposits: A Pollen-Based Method. Catena, 189: 104500. https://doi.org/10.1016/j.catena.2020.104500 [35] Liu, D. X., 2018. Paleo-Environment Reconstruction of the Middle and Late Holocene Based on Palynological Records of the Yellow Flood Strata in Kaifeng (Dissertation). Henan University, Kaifeng, 1-144 (in Chinese with English abstract). [36] Liu, X. J., Min, F. Y., Kettner, A. J., 2019. The Impact of Large to Extreme Flood Events on Floodplain Evolution of the Middle and Lower Reaches of the Yangtze River, China. Catena, 176: 394-409. https://doi.org/10.1016/j.catena.2019.01.027 [37] Luo, S. Y., Zheng, L. Y., Cao, X. M., et al., 2021. Indication of Flood Events Based on Floodplain Sedimentary Sequence in Middle Reaches of Changjiang River since 19th Century: Case of Yangzijiang Profile in Jingzhou City. Yangtze River, 52(1): 6-12 (in Chinese with English abstract). [38] Macklin, M. G., Lewin, J., 2015. The Rivers of Civilization. Quaternary Science Reviews, 114: 228-244. https://doi.org/10.1016/j.quascirev.2015.02.004 [39] Munoz, S. E., Giosan, L., Therrell, M. D., et al., 2018. Climatic Control of Mississippi River Flood Hazard Amplified by River Engineering. Nature, 556(7699): 95-98. https://doi.org/10.1038/nature26145. [40] Munoz, S. E., Gruley, K. E., Massie, A., et al, 2015. Cahokia's Emergence and Decline Coincided with Shifts of Flood Frequency on the Mississippi River. Proceedings of the National Academy of Sciences of the United States of America, 112(20): 6319-6324. https://doi.org/10.1073/pnas.1501904112 [41] Paprotny, D., Sebastian, A., Morales-Nápoles, O., et al., 2018. Trends in Flood Losses in Europe over the Past 150 Years. Nature Communications, 9(1): 1-12. https://doi.org/10.1038/s41467-018-04253-1 [42] Peng, F., Prins, M. A., Kasse, C., et al., 2019. An Improved Method for Paleoflood Reconstruction and Flooding Phase Identification, Applied to the Meuse River in the Netherlands. Global and Planetary Change, 177: 213-224. https://doi.org/10.1016/j.gloplacha.2019.04.006 [43] Qian, P., Zhang, Y., Ren, X. M., 2009. Flood Events in the Lower Yangtze Reach: Inferred from the Flood Plain at Nantong, Eastern China. Journal of Nantong University (Natural Science Edition), 8(2): 56-61 (in Chinese with English abstract). [44] Shen, H., Yu, L. P., Zhang, H. M., et al., 2015. OSL and Radiocarbon Dating of Flood Deposits and Its Paleoclimatic and Archaeological Implications in the Yihe River Basin, East China. Quaternary Geochronology, 30: 398-404. https://doi.org/10.1016/j.quageo.2015.03.005 [45] Shen, Z., Aeschliman, M., Conway, N., 2021. Paleodischarge Reconstruction Using Oxbow Lake Sediments Complicated by Shifting Hydrological Connectivity. Quaternary International, 604: 75-81. http://doi.org/10.1016/j.quaint.2021.07.004 [46] Shi, J., 2019. Study on Sedimentary Environment of Holocene Flood Sediments on the Bank of Jiaozuo Section of the Yellow River (Dissertation). Jiangsu Normal University, Xuzhou, 1-79 (in Chinese with English abstract). [47] Storozum, M., Lu, P., Wang, S. Y., et al., 2020. Geoarchaeological Evidence of the AD 1642 Yellow River Flood that Destroyed Kaifeng, a Former Capital of Dynastic China. Scientific Reports, 10(1): 3765. https://doi.org/10.1038/s41598-020-60169-1 [48] Storozum, M. J., Zhen, Q., Xiaolin, R., et al., 2018. The Collapse of the North Song Dynasty and the AD 1048-1128 Yellow River Floods: Geoarchaeological Evidence from Northern Henan Province, China. The Holocene, 28(11): 1759-1770. https://doi.org/10.1177/0959683618788682 [49] Sun, Q., Liu, Y., Wünnemann, B., et al., 2019. Climate as a Factor for Neolithic Cultural Collapses Approximately 4 000 Years BP in China. Earth-Science Reviews, 197: 102915. https://doi.org/10.1016/j.earscirev.2019.102915 [50] Tellman, B., Sullivan, J. A., Kuhn, C., et al., 2021. Satellite Imaging Reveals Increased Proportion of Population Exposed to Floods. Nature, 596(7870): 80-86. https://doi.org/10.1038/s41586-021-03695-w [51] Toonen, W. H. J., Munoz, S. E., Cohen, K. M., et al., 2020. High-Resolution Sedimentary Paleoflood Records in Alluvial River Environments: A Review of Recent Methodological Advances and Application to Flood Hazard Assessment. Palaeohydrology, 213-228. https://doi.org/10.1007/978-3-030-23315-0_11 [52] Toonen, W. H. J., Winkels, T. G., Cohen, K. M., et al, 2015. Lower Rhine Historical Flood Magnitudes of the Last 450 Years Reproduced from Grain-Size Measurements of Flood Deposits Using End Member Modelling. Catena, 130: 69-81. https://doi.org/10.1016/j.catena.2014.12.004 [53] Wang, C., 2015. Study on Paleoflood Records of Caijiacun Section of Yihe River (Dissertation). Shandong Normal University, Jinan, 1-54 (in Chinese with English abstract). [54] Wang, H., Cui, P., Carling, P., 2021. The Sedimentology of High-Energy Outburst Flood Deposits: An Overview. Earth Science Frontiers, 28(2): 140-167 (in Chinese with English abstract). [55] Wang, H. Y., Jia, Y. N., Zhang, Y. Z., et al., 2021. Research Progress of Paleoflood Events in the Yellow River Basin since the Last Deglaciation. Progress in Geography, 40(7): 1220-1234 (in Chinese with English abstract). doi: 10.18306/dlkxjz.2021.07.012 [56] Wang, Y. X., Wang, Y., Yao, P. Y., et al., 2022. Sedimentary Charateristics and Climatic Background of Early Holocene Paleoflood Events in Caohe, Baiyangdian. Acta Petrological et Mineralogical, 41(5): 916-928 (in Chinese with English abstract). [57] Wilhelm, B., Ballesteros Canovas, J. A., Corella Aznar, J. P., et al., 2018. Recent Advances in Paleoflood Hydrology: From New Archives to Data Compilation and Analysis. Water Security, 3: 1-8. https://doi.org/10.1016/j.wasec.2018.07.001 [58] Wilhelm, B., Ballesteros Cánovas, J. A., Macdonald, N., et al., 2019. Interpreting Historical, Botanical, and Geological Evidence to Aid Preparations for Future Floods. Wiley Interdisciplinary Reviews: Water, 6(1): e1318. https://doi.org/10.1002/wat2.1318 [59] Wohl, E., 2021. An Integrative Conceptualization of Floodplain Storage. Reviews of Geophysics, 59(2): e2020RG000724. https://doi.org/10.1029/2020RG000724 [60] Wood, S. H., Ziegler, A. D., 2008. Floodplain Sediment from a 100-Year-Recurrence Flood in 2005 of the Ping River in Northern Thailand. Hydrology and Earth System Sciences, 12(4): 959-973. http://doi.org/10.5194/hess-12-959-2008 [61] Wu, C., Xu, Q., Zhang, X., et al., 1996. Palaeochannels on the North China Plain: Types and Distributions. Geomorphology, 18(1): 5-14. https://doi.org/10.1016/0169-555X(95)00147-W [62] Wu, L., 2013. Environmental Archaeology of Middle Holocene Paleoflood Events in Jianghan Plain (Dissertation). Nanjing University, Nanjing, 1-214 (in Chinese with English abstract). [63] Wu, L., Zhu, C., Ma, C., et al., 2017. Mid-Holocene Palaeoflood Events Recorded at the Zhongqiao Neolithic Cultural Site in the Jianghan Plain, Middle Yangtze River Valley, China. Quaternary Science Reviews, 173: 145-160. http://doi.org/10.1016/j.quascirev.2017.08.018 [64] Wu, Q. L., Zhao, Z. J., Liu, L., et al., 2016. Outburst Flood at 1920 BCE Supports Historicity of China's Great Flood and the Xia Dynasty. Science, 353(6299): 579-582. https://doi.org/10.1126/science.aaf0842 [65] Xia, Z. K., Chen, F. Y., Yue, S. Y., 2002. Discovery and Significance of the Buried Ancient Trees in the Peking University Campus. Acta Scientiarum Naturalium Universitatis Pekinensis, 38(2): 226-230 (in Chinese with English abstract). [66] Xie, Y. Y., Li, C. A., Wang, Q. L., et al., 2007. Sedmientary Records of Paleoflood Events during the Last Sedimentary Records of Paleoflood Events during the Last 3 000 Years in Jianghan Plain. Scientia Geographica Sinica, 27 (1): 81-84 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0690.2007.01.013 [67] Xiong, Z. Q., Zhang, Y. F., Mao, X., et al., 2020. Magnetic Characteristics of ZK145 Borehole Sediments in Wuhan Area and Its Records of Ancient Floods. Earth Science, 45(2): 663-671 (in Chinese with English abstract). [68] Yang, D., Yu, G., Xie, Y., et al., 2000. Sedimentary Records of Large Holocene Floods from the Middle Reaches of the Yellow River, China. Geomorphology, 33(1-2): 73-88. https://doi.org/10.1016/S0169-555X(99)00111-7 [69] Yao, J. H., Tan, L. H., Wei, Q. W., et al., 2005. Environment Changes of the Backward Position in the Yellow River Responds to Juye Deposit Characteristic. Journal of Beijing Normal University (Natural Science), 41(2): 199-203 (in Chinese with English abstract). [70] Yin, C. M., Qiu, W. L., Li, R. Q., 2001. Holocene Paleofloods in the North China Plain. Journal of Beijing Normal University (Natural Science), 37(2): 280-284 (in Chinese with English abstract). [71] Yu, S., Zhu, C., Wang, F., 2003. Radiocarbon Constraints on the Holocene Flood Deposits of the Ning-Zhen Mountains, Lower Yangtze River Area of China. Journal of Quaternary Science, 18(6): 521-525. http://doi.org/10.1002/jqs.767 [72] Yu, S. Y., Chen, X. X., Cheng, P., et al., 2017. Freshwater Radiocarbon Reservoir Age in the Lower Yellow River Floodplain during the Late Holocene. The Holocene, 28(1): 119-126. https://doi.org/10.1177/0959683617715699 [73] Yu, S. Y., Hou, Z. F., Chen, X. X., et al., 2020. Extreme Flooding of the Lower Yellow River near the Northgrippian-Meghalayan Boundary: Evidence from the Shilipu Archaeological Site in Southwestern Shandong Province, China. Geomorphology, 350: 106878. https://doi.org/10.1016/j.geomorph.2019.106878 [74] Yu, S. Y., Li, C., Chen, X., et al., 2014. Rates of Organic Carbon Burial in a Floodplain Lake of the Lower Yellow River Area during the Late Holocene. Radiocarbon, 56(3): 1129-1138. https://doi.org/10.2458/56.17923 [75] Zhan, W., Yang, S. Y., Liu, X. L., et al., 2010. Reconstruction of Flood Events over the Last 150 Years in the Lower Reaches of the Changjiang River. Chinese Science Bulletin, 55(21): 2268-2274. https://doi.org/10.1007/s11434-010-3263-8 [76] Zhang, C. M., Zhu, R., Zhao, K., et al., 2017. From End Member to Continuum: Review of Fluvial Facies Model Research. Acta Sedimentologica Sinica, 35(5): 926-944 (in Chinese with English abstract). [77] Zhang, L. H., Zhang, Z. K., 2015. Research Progress of River Overbank Deposits and Implications for Environment. Marine Geology & Quaternary Geology, 35(5): 153-163 (in Chinese with English abstract). [78] Zhang, L. H., Zhang, Z. K., Chen, Y. Y., et al., 2015. Sediment Characteristics, Floods, and Heavy Metal Pollution Recorded in an Overbank Core from the Lower Reaches of the Yangtze River. Environmental Earth Sciences, 74(11): 7451-7465. https://doi.org/10.1007/s12665-015-4733-8 [79] Zhang, L. H., Zhang, Z. K., Fu, Y. X., et al., 2015. Grain-Size Characteristics of Overbank Sediments in the Lower Reaches of the Changjiang River and Its Environmental Implication. Scientia Geographica Sinica, 35(9): 1183-1190 (in Chinese with English abstract). [80] Zhang, L. Y., Li, C. A., Zhang, Y. F., et al., 2019. Sedimentary Strata and Paleoflood Identification Indexes of Wuhan Section, Yangtze River, during 4.5-2.5 ka BP. Geological Review, 65(4): 973-982 (in Chinese with English abstract). [81] Zhang, P., Yang, J. S., Zhao, H., et al., 2020. Research Progress of the Holocene Paleoflood in the Yellow River Basin and a Future Prospect. Marine Geology & Quaternary Geology, 40(6): 178-188 (in Chinese with English abstract). [82] Zhang, Q., Jiang, T., Shi, Y. F., et al., 2003. Relationship between Climate Changes and the Flood Occurrences since 6 000 a BP in the Yangtze River Delta. Journal of Glaciology and Geocryology, 25(4): 368-374 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0240.2003.04.002 [83] Zhang, Y., Huang, C. C., Pang, J., et al., 2012. Comparative Study of the Modern Flood Slackwater Deposits in the Upper Reaches of Hanjiang and Weihe River Valleys, China. Quaternary International, 282: 184-191. https://doi.org/10.1016/j.quaint.2012.03.056 [84] Zhang, Y. F., Li, C. A., Yan, G. L., et al., 2004. A Comparative Study of Magnetic Fabric Characters between Flooded Sediments and Normal River Sediments. Chinese Journal of Geophysics, 47(4): 639-645 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5733.2004.04.014 [85] Zhao, D. A., Li, C. G., Sun, X. L., 2010. Discovery and Significance of the Buried Ancient Trees in Jianghan Plain. Quaternary Sciences, 30(1): 228-229 (in Chinese with English abstract). [86] Zhao, J. B., Wen, Z. J., Ma, Y. D., et al., 2017. The Sediment on Floodplain and Flood Changes at Caodian Village in the Northern Suburb of Xi'an. Geological Review, 63(2): 326-336 (in Chinese with English abstract). [87] Zhao, H., Liu, Z., Song, L., et al., 2019. OSL Dating of Flood Sediments in the North China Plain. Quaternary Geochronology, 49: 101-107. https://doi.org/10.1016/j.quageo.2018.07.010 [88] Zheng, D. D., Kuang, J., Gui, Y. H., et al., 2021. Recognition and Causes of Channel Evolution in the Downstream of Yuan River in the Qing Dynasty. Journal of Earth Science. https://doi.org/10.1007/s12583-021-1600-2 [89] Zhu, C., Xu, J. J., Huang, M., et al., 2021. Archaeological Discoveries and Research on the Remains of an Ancient Flood Event at the Majie Site in the Chengdu Plain. Earth Science Frontiers, 28(2): 181-201 (in Chinese with English abstract). [90] Zhu, C., Yu, S. Y., Shi, W., et al., 1997. Holocene Deposits and Paleo-Floods on the North Bank of the Yangtze River, Nanjing Area. Acta Geographica Sinica, 16(4): 24-30 (in Chinese with English abstract). [91] Zhu, H., Zhang, Y. F., Li, C. A., 2020. The Application of End-Member Analysis in Identification of Paleo-Floods in Wuhan Section of the Yangtze River. Acta Sedimentologica Sinica, 38(2): 297-305 (in Chinese with English abstract). [92] Zhu, C., Zheng, C. G., Ma, C. M., et al., 2005. Identifying Paleoflood Deposits Archived in Zhongba Site, the Three Gorges Reservoir Region of the Yangtze River, China. Chinese Science Bulletin, 50(21): 2493-2504. https://doi.org/10.1007/BF03183641 [93] 丁召静, 2012. 沂河流域船流街剖面古洪水沉积记录研究(硕士学位论文). 济南: 山东师范大学, 1-46. [94] 国务院灾害调查组, 2022. 河南郑州"7·20"特大暴雨灾害调查报告, 1-8. [95] 范颖, 潘林, 陈诗越, 2016. 历史时期黄河下游洪泛与河道变迁. 江苏师范大学学报(自然科学版), 34(4): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-XZSX201604002.htm [96] 高白水, 金振奎, 李燕, 等, 2015. 河流决口扇沉积模式及演化规律: 以信江府前村决口扇为例. 石油学报, 36(5): 564-572. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201505005.htm [97] 郭永强, 葛永刚, 陈晓清, 等, 2021. 高山峡谷区古洪水事件重建研究进展. 地学前缘, 28(2): 168-180. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202102013.htm [98] 李长安, 黄俊华, 张玉芬, 等, 2002. 黄河上游末次冰盛期古洪水事件的初步研究. 地球科学, 27(4): 456-458. http://www.earth-science.net/article/id/1146 [99] 李长安, 张玉芬, 2004. 长江中游洪水沉积特征与标志初步研究. 水科学进展, 15(4): 485-488. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ200404015.htm [100] 李长安, 张玉芬, 袁胜元, 等, 2009. 江汉平原洪水沉积物的粒度特征及环境意义: 以2005年汉江大洪水为例. 第四纪研究, 29(2): 276-281. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ200902016.htm [101] 李华勇, 王倩, 张虎才, 等, 2021a. 鲁北丹河现代洪水沉积物地球化学特征及古洪水识别意义. 云南大学学报(自然科学版), 43(3): 503-512. https://www.cnki.com.cn/Article/CJFDTOTAL-YNDZ202103012.htm [102] 李华勇, 朱佳丽, 张虎才, 等, 2021b. 鲁北丹河下游洪水决口扇沉积岩芯粒度特征与沉积过程重建. 干旱区资源与环境, 35(2): 176-182. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202102027.htm [103] 连丽聪, 凌超豪, 李晓峰, 等, 2019. 河漫滩沉积体系对洪水事件的指示: 以修河为例. 沉积学报, 37(1): 135-142. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201901014.htm [104] 刘德新, 2018. 基于开封黄泛地层孢粉记录的全新世中晚期古环境重建(博士学位论文). 开封: 河南大学, 1-144. [105] 罗淑元, 郑丽匀, 曹向明, 等, 2021. 长江中游河漫滩沉积序列对洪水事件的指示: 以荆州扬子江剖面为例. 人民长江, 52(1): 6-12. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE202101003.htm [106] 钱鹏, 张艳, 任雪梅, 2009. 长江下游洪水事件: 基于南通河漫滩研究. 南通大学学报(自然科学版), 8(2): 56-61. https://www.cnki.com.cn/Article/CJFDTOTAL-NGZK200902015.htm [107] 石佳, 2019. 黄河焦作段全新世溢岸洪水沉积物的沉积环境研究(硕士学位论文). 徐州: 江苏师范大学, 1-79. [108] 王超, 2015. 沂河蔡家村剖面古洪水记录研究(硕士学位论文). 济南: 山东师范大学, 1-54. [109] 王昊, 崔鹏, Carling, P. A., 2021. 高能洪水沉积研究综述. 地学前缘, 28(2): 140-167. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202102012.htm [110] 王浩宇, 贾雅娜, 张玉柱, 等, 2021. 黄河流域末次冰消期以来古洪水事件研究进展. 地理科学进展, 40(7): 1220-1234. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ202107012.htm [111] 王燕校, 王永, 姚培毅, 等, 2022. 白洋淀漕河全新世早期古洪水事件的沉积特征及气候背景. 岩石矿物学杂志, 41(5): 916-928. [112] 吴立, 2013. 江汉平原中全新世古洪水事件环境考古研究(博士学位论文). 南京: 南京大学, 1-214. [113] 夏正楷, 陈福友, 岳升阳, 2002. 北京大学校园内埋藏古树的发现及其意义. 北京大学学报(自然科学版), 38(2): 226-230. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ200202015.htm [114] 谢远云, 李长安, 王秋良, 等, 2007. 江汉平原近3 000年来古洪水事件的沉积记录. 地理科学, 27(1): 81-84. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX200701012.htm [115] 熊智秋, 张玉芬, 毛欣, 等, 2020. 武汉地区ZK145钻孔沉积物磁性特征及对古洪水的记录. 地球科学, 45(2): 663-671. doi: 10.3799/dqkx.2018.398 [116] 要吉花, 谭利华, 魏全伟, 等, 2005. 黄河下游环境变迁在巨野钻孔沉积特征上的响应. 北京师范大学学报(自然科学版), 41(2): 199-203. https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ20050200N.htm [117] 殷春敏, 邱维理, 李容全, 2001. 全新世华北平原古洪水. 北京师范大学学报(自然科学版), 37(2): 280-284. https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ200102030.htm [118] 张昌民, 朱锐, 赵康, 等, 2017. 从端点走向连续: 河流沉积模式研究进展述评. 沉积学报, 35(5): 926-944. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201705006.htm [119] 张凌华, 张振克, 2015. 河漫滩沉积与环境研究进展. 海洋地质与第四纪地质, 35(5): 153-163. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201505025.htm [120] 张凌华, 张振克, 符跃鑫, 等, 2015. 长江下游南京‒镇江河段河漫滩粒度特征. 地理科学, 35(9): 1183-1190. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKX201509016.htm [121] 张跞颖, 李长安, 张玉芬, 等, 2019. 长江武汉段4.5~2.5 ka沉积地层与古洪水标志识别. 地质论评, 65(4): 973-982. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201904016.htm [122] 张鹏, 杨劲松, 赵华, 等, 2020. 黄河流域全新世古洪水研究进展及展望. 海洋地质与第四纪地质, 40(6): 178-188. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ202006016.htm [123] 张强, 姜彤, 施雅风, 等, 2003.6 000 a BP以来长江下游地区古洪水与气候变化关系初步研究. 冰川冻土, 25(4): 368-374. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200304001.htm [124] 张玉芬, 李长安, 阎桂林, 等, 2004. 长江中游地区洪泛沉积物与正常河流沉积物磁组构特征对比研究. 地球物理学报, 47(4): 639-645. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200404014.htm [125] 赵得爱, 李长安, 孙习林, 2010. 江汉平原全新世埋藏古树的发现及其意义. 第四纪研究, 30(1): 228-229. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ201001025.htm [126] 赵景波, 温震军, 马延东, 等, 2017. 西安北郊草店村河漫滩沉积与洪水变化. 地质论评, 63(2): 326-336. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201702008.htm [127] 朱诚, 徐佳佳, 黄明, 等, 2021. 成都平原马街遗址古洪水事件遗存考古发现与研究. 地学前缘, 28(2): 181-201. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202102014.htm [128] 朱诚, 于世永, 史威, 等, 1997. 南京江北地区全新世沉积与古洪水研究. 地理研究, 16(4): 23-30. https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ704.003.htm [129] 朱海, 张玉芬, 李长安, 2020. 端元分析在长江武汉段古洪水识别中的应用. 沉积学报, 38(2): 297-305. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202002005.htm