• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    黄泛区地铁渣土制备高流动土试验研究

    王艳 杨虎 杨满满 曾长女

    王艳, 杨虎, 杨满满, 曾长女, 2022. 黄泛区地铁渣土制备高流动土试验研究. 地球科学, 47(12): 4698-4709. doi: 10.3799/dqkx.2022.186
    引用本文: 王艳, 杨虎, 杨满满, 曾长女, 2022. 黄泛区地铁渣土制备高流动土试验研究. 地球科学, 47(12): 4698-4709. doi: 10.3799/dqkx.2022.186
    Wang Yan, Yang Hu, Yang Manman, Zeng Changnü, 2022. Preparation Tests of High Flowing Soil from Subway Residue Soil in Yellow River Flooding Area. Earth Science, 47(12): 4698-4709. doi: 10.3799/dqkx.2022.186
    Citation: Wang Yan, Yang Hu, Yang Manman, Zeng Changnü, 2022. Preparation Tests of High Flowing Soil from Subway Residue Soil in Yellow River Flooding Area. Earth Science, 47(12): 4698-4709. doi: 10.3799/dqkx.2022.186

    黄泛区地铁渣土制备高流动土试验研究

    doi: 10.3799/dqkx.2022.186
    基金项目: 

    国家自然科学基金 31500394

    河南省重点研发与推广专项(科技攻关) 192102310040

    河南省重点研发与推广专项(科技攻关) 212102110027

    2021年河南省高等教育教学改革研究与实践项目 教研〔2021〕480号2021SJGLX146Y

    详细信息
      作者简介:

      王艳(1979-),女,博士,副教授,从事废物资源化利用及生态系统元素循环等方面的教学与研究工作. ORCID:0000-0001-7565-2159.E-mail:wyzzti@163.com

    • 中图分类号: P642

    Preparation Tests of High Flowing Soil from Subway Residue Soil in Yellow River Flooding Area

    • 摘要:

      利用黄泛区地铁工程废弃土制备不同配比的高流动土,并对其工程特性及应用进行研究,提高工程废弃土的利用率,为实现工程低碳排放具有重要意义.取用郑州地区地铁工程废弃粉黏土、粉砂土作为原料,掺入一定比例的水泥和水,配制了24组不同土类、不同配合比、不同预拌时间等影响的流动土试样.利用流动性试验、泌水试验测试时间对流动土流动特性的影响,推荐了粉黏流动土流动性随时间变化经验公式.通过图像三轴仪,测试了粉黏流动土固化后的无侧限强度及变形特征,分析了不同破坏模式.试验结果表明,粉砂土流动土的流动性强于粉黏流动土,泡沫能增加流动土的流动性.大部分流动土在2小时内流动性能满足工程的要求,当需要增加预拌时间时,需要综合考虑强度和流动性需求.粉黏流动土试样剪切后有剪切破坏、压缩破坏、劈裂破坏等3种破坏模式,其受水泥掺量不同而改变.通过流动损失率、强度、变形等分析了该地区高流动土的工程应用控制指标和对策,对于指导该地区地铁废弃渣土的工程应用提供试验依据.

       

    • 图  1  流动度测试试验

      a.玻璃圆筒;b.测试结果

      Fig.  1.  Fluidity measuring test

      图  2  不同流动土的流动性随时间变化拟合曲线

      a.粉黏土;b.泡沫轻质粉黏土;c.粉砂土;w/c=5.0

      Fig.  2.  Fitting curves of fluidity with time for different flowing soils

      图  3  粉黏流动土流动性随时间变化拟合曲线

      a.w/c=4.5; b.w/c=5.0; c.w/c=5.5; d.w/c=6.0

      Fig.  3.  Fitting curves of fluidity with time for flowing silty clay

      图  4  不同配合比拟合参数变化规律

      a.参数a; b.参数b

      Fig.  4.  Fitting parameters versus mix proportions of samples

      图  5  粉黏流动土流动性随时间的损失率

      a.w/c=4.5; b.w/c=5.0; c.w/c=5.5; d.w/c=6.0

      Fig.  5.  Loss rate of fluidity with time for flowing silty clay

      图  6  粉黏流动土w/c=6.0试样3 h的泌水率

      Fig.  6.  3 h bleeding rate of flowing silty clay samples with w/c=6.0

      图  7  固化7 d、28 d试样抗压强度

      Fig.  7.  Compressive strength of fluid solidified samples for 7 d and 28 d

      图  8  固化7 d试样应力-应变曲线

      Fig.  8.  Stress-strain curves of fluid solidified samples for 7 d

      图  9  预拌流动性粉黏土固化土破坏形态

      Fig.  9.  Failure modes of ready-mixed fluid solidified silty clay samples

      表  1  流动土配合比

      Table  1.   The mix proportions of flowing soil

      试件编号 土类别 水灰比
      w/c
      灰土比(%)
      c/s
      配比质量(取2 kg土计算)
      水泥g(mc) 干土g(m0) 土中水含量g(mw1) 需加水g(mw2)
      1-1 粉黏土 4.5 5 90 1 796 204 200
      1-2 10 180 1 796 204 604
      1-3 15 269 1 796 204 1 008
      1-4 20 359 1 796 204 1 412
      2-1 粉黏土 5 5 90 1 796 204 245
      2-2 10 180 1 796 204 694
      2-3 15 269 1 796 204 1 143
      2-4 20 359 1 796 204 1 592
      2-5 粉砂土 5 5 95 1 908 92 385
      2-6 10 191 1 908 92 862
      2-7 15 286 1 908 92 1 339
      2-8 20 382 1 908 92 1 816
      2-9 泡沫土(泡沫掺入土质量的2%) 5 5 90 1 796 204 245
      2-10 10 180 1 796 204 694
      2-11 15 269 1 796 204 1 143
      2-12 20 359 1 796 204 1 592
      3-1 粉黏土 5.5 5 90 1 796 204 290
      3-2 10 180 1 796 204 784
      3-3 15 269 1 796 204 1 278
      3-4 20 359 1 796 204 1 772
      4-1 粉黏土 6 5 90 1 796 204 335
      4-2 10 180 1 796 204 874
      4-3 15 269 1 796 204 1 412
      4-4 20 359 1 796 204 1951
      下载: 导出CSV
    • [1] Chen, R. H., Zhen, P. M., 2020. Analysis on Influencing Factors of Ready-Mixed Fluid Solidified Soil Based on Silty Clay. Chongqing Architecture, 19(9): 32-36(in Chinese with English abstract). doi: 10.3969/j.issn.1671-9107.2020.09.32
      [2] Dai, L. M., Niu, C. M., Pang, X. J., et al., 2020. Reservoir Characteristics and Forming Mechanisms of Lacustrine Mixed Sedimentary Rock of First and Second Members of Shahejie Formation in BZ27-A Structure, Huanghekou Sag. Earth Science, 45(10): 3797-3807(in Chinese with English abstract).
      [3] Feng, L. P., Liao, S. M., Zhou, D. J., 2021. Soil Conditioning Techniques for Shield Tunneling in Argillaceous Siltstone Strata. Tunnel Construction, 41(Suppl. 2): 158-164(in Chinese with English abstract).
      [4] Hao, T., Wang, S., Leng, F. G., 2020. Preparation of High Fluid Filling Materials by Using Subway Shield Muck. Bulletin of the Chinese Ceramic Society, 39(5): 1525-1532(in Chinese with English abstract).
      [5] Li, M., Yan, S. H., Li, S., et al., 2022. Study on Structural Mechanical Behavior of Secondary Backfill of High Filled Open Cut Tunnel with Foamed Lightweight Soil. Journal of the China Railway Society, (2): 135-142(in Chinese with English abstract). doi: 10.3969/j.issn.1001-8360.2022.02.017
      [6] Liang, Z. S., Yang, C. Q., Gao, H. Y., et al., 2016. Experimental Study on Rapid Separation between Water and Slurry from Construction Engineering. Journal of Southeast University (Natural Science Edition), 46(2): 427-433(in Chinese with English abstract).
      [7] Liu, X. D., 2018. Application of Ready-Mixed Fluid Stabilized Soil Technique in Foundation Trench Backfill Construction of Underground Comprehensive Pipe. Building Technology Development, 45(4): 61-62(in Chinese with English abstract).
      [8] Puppala, A. J., Chittoori, B., Raavi, A., 2015. Flowability and Density Characteristics of Controlled Low-Strength Material Using Native High-Plasticity Clay. Journal of Materials in Civil Engineering, 27(1): 060140261. https://doi.org/10.1061/(asce)mt.1943-5533.0001127
      [9] Ren, L., Zhu, Y., Cui, T. L., 2021. Study on Protection Scheme of Shield Tunnel Passing through Railway Bridge Pile at a Short Distance. Earth Science, 46(6): 2278-2286(in Chinese with English abstract).
      [10] Wang, X. R., Jiang, H. J., Zhu, K., et al., 2019. Research on Ground Settlement Laws of Urban Subway Tunnel Construction Process Based on Earth Pressure Shield. Earth Science, 44(12): 4293-4298(in Chinese with English abstract).
      [11] Wei, J. J., Zhang, J. X., Wang, J. G., 2016. Properties of Flowable Backfill Materials Using Recycled Fine Aggregates of Brick and Concrete Waste. Journal of Civil, Architectural & Environmental Engineering, 38(3): 96-103(in Chinese with English abstract).
      [12] Xi, Z. D., Hu, L. H., Zhang, S. X., et al., 2021. Soil Conditioning for Large-Diameter Shield Boring in Water-Rich Sandy Pebble Strata: A Case Study on a Shield-Bored Section of Chengdu Metro. Tunnel Construction, 41(1): 37-43(in Chinese with English abstract). doi: 10.3973/j.issn.2096-4498.2021.01.004
      [13] Yan, D. Y. S., Tang, I. Y., Lo, I. M. C., 2014. Development of Controlled Low-Strength Material Derived from Beneficial Reuse of Bottom Ash and Sediment for Green Construction. Construction and Building Materials, 64: 201-207. https://doi.org/10.1016/j.conbuildmat.2014.04.087
      [14] Ye, C. L., 2018. Study of Ground Conditioning Technology for Earth Pressure Balance (EPB) Shield Used in High Water Pressure and High Permeability Sandy Stratum. Tunnel Construction, 38(2): 300-307(in Chinese with English abstract).
      [15] Yi, P. C., Chen, Z. M., Zhang, C. S., 2021. Residue Improvement Technology for EPB Shield Construction in Silty Clay Soil. Urban Mass Transit, 24(12): 177-181(in Chinese with English abstract).
      [16] Yuan, H. Q., Zhu, D. Y., Zhang, H. Q., et al., 2020. Compression Characteristics of Foamed Lightweight Soil under Triaxial Stress. Bulletin of the Chinese Ceramic Society, 39(10): 3379-3385(in Chinese with English abstract).
      [17] Zeng, C. N., Jin, N. N., Gu, H., et al, 2020. Analysis of Triaxial Shear Characteristics of Soybean Meal Based on Digital Image Measurement Technology. Transactions of the Chinese Society of Agricultural Engineering, 36(5): 310-317(in Chinese with English abstract).
      [18] Zhang, J. X., Wang, J. G., Li, X. H., et al., 2018. Rapid-Hardening Controlled Low Strength Materials Made of Recycled Fine Aggregate from Construction and Demolition Waste. Construction and Building Materials, 173: 81-89. https://doi.org/10.1016/j.conbuildmat.2018.04.023
      [19] Zhang, X. G., 2018. Study on Long Spiral Drilled Premixed Fluid Solidified Soil Composite Foundation in Subcenter of Beijing. Building Technology Development, 45(2): 59-62(in Chinese with English abstract).
      [20] Zhou, Y. X., Wang, J. Z., 2019. Principle of Ready-Mixed Solidified Soil and Its Prospects for Engineering Application. New Building Materials, 46(10): 117-120(in Chinese with English abstract).
      [21] Zhu, H. Z., Yu, F. Q., Geng, J., et al., 2021. Strength and Volume Stability of Controlled Low-Strength Material Based on Titanium Gypsum. Bulletin of the Chinese Ceramic Society, 40(11): 3644-3653(in Chinese with English abstract).
      [22] Zhu, W., Zhao, D., Fan, X. H., et al., 2021. Research on Application of Residue Soil-Based Flowable Fill. Journal of Hohai University (Natural Sciences), 49(2): 134-139(in Chinese with English abstract).
      [23] Zhu, Y. X., Bian, Y., Min, F. L., et al., 2020. Improvement of Metro Shield Muck to Controlled Low-Strength Material. China Civil Engineering Journal, 53(Suppl. 1): 245-251(in Chinese with English abstract).
      [24] 陈容华, 甄朋民, 2020. 基于粉质黏土的预拌流态固化土的影响因素分析. 重庆建筑, 19(9): 32-36.
      [25] 代黎明, 牛成民, 庞小军, 等, 2020. 黄河口凹陷渤中27-A构造沙一二段湖相混积岩储层特征及成因. 地球科学, 45(10): 3797-3807. doi: 10.3799/dqkx.2020.088
      [26] 冯利坡, 廖少明, 周德军, 2021. 泥质粉砂岩地层地铁盾构掘进渣土改良技术研究. 隧道建设(中英文), 41(增刊2): 158-164. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD2021S2020.htm
      [27] 郝彤, 王帅, 冷发光, 2020. 利用地铁盾构渣土制备高流态充填材料. 硅酸盐通报, 39(5): 1525-1532.
      [28] 李明, 严松宏, 李盛, 等, 2022. 采用泡沫轻质土对高填明洞二次回填的结构受力特性研究. 铁道学报, 44(2): 135-142. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202202017.htm
      [29] 梁止水, 杨才千, 高海鹰, 等, 2016. 建筑工程废弃泥浆快速泥水分离试验研究. 东南大学学报(自然科学版), 46(2): 427-433. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201602031.htm
      [30] 刘旭东, 2018. 预拌流态固化土技术在地下综合管廊基槽回填工程中的应用. 建筑技术开发, 45(4): 61-62. https://www.cnki.com.cn/Article/CJFDTOTAL-JZKF201804037.htm
      [31] 任磊, 朱颖, 崔天麟, 2021. 盾构超近距离侧穿铁路桥桩保护方案探讨. 地球科学, 46(6): 2278-2286. doi: 10.3799/dqkx.2021.041
      [32] 王晓睿, 姜洪建, 朱坤, 等, 2019. 基于土压盾构的城市地铁隧道构筑过程地表沉降规律. 地球科学, 44(12): 4293-4298. doi: 10.3799/dqkx.2019.269
      [33] 魏建军, 张金喜, 王建刚, 2016. 建筑垃圾细料生产流动化回填材料的性能. 土木建筑与环境工程, 38(3): 96-103. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201603014.htm
      [34] 葸振东, 胡林浩, 张书香, 等, 2021. 富水砂卵石地层大直径盾构渣土改良试验研究——以成都地铁17号线明九区间2#风井-九江北站盾构工程为例. 隧道建设(中英文), 41(1): 37-43. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD202101004.htm
      [35] 叶晨立, 2018. 高水压高渗透砂性地层土压平衡盾构施工渣土改良技术研究. 隧道建设(中英文), 38(2): 300-307. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201802023.htm
      [36] 易鹏程, 陈志敏, 张常书, 2021. 粉质黏土层土压平衡盾构施工中的渣土改良技术. 城市轨道交通研究, 24(12): 177-181. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT202112039.htm
      [37] 袁化强, 朱登元, 张宏庆, 等, 2020. 三轴应力条件下泡沫轻质土压缩特性. 硅酸盐通报, 39(10): 3379-3385.
      [38] 曾长女, 金南南, 谷贺, 等, 2020. 基于数字图像测量技术的豆粕剪切变形特性. 农业工程学报, 36(5): 310-317.
      [39] 张旭光, 2018. 北京城市副中心长螺旋压灌预拌流态固化土复合地基研究. 建筑技术开发, 45(2): 59-62. https://www.cnki.com.cn/Article/CJFDTOTAL-JZKF201802034.htm
      [40] 周永祥, 王继忠, 2019. 预拌固化土的原理及工程应用前景. 新型建筑材料, 46(10): 117-120. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201910027.htm
      [41] 朱浩泽, 于峰泉, 耿健, 等, 2021. 钛石膏基可控低强度材料强度及体积稳定性研究. 硅酸盐通报, 40(11): 3644-3653. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202111014.htm
      [42] 朱伟, 赵笛, 范惜辉, 等, 2021. 渣土改良为流动化回填土的应用. 河海大学学报(自然科学版), 49(2): 134-139. https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX202102006.htm
      [43] 朱瑜星, 卞怡, 闵凡路, 等, 2020. 地铁盾构渣土改良为流动化土进行应用试验研究. 土木工程学报, 53(增刊1): 245-251. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2020S1039.htm
    • 加载中
    图(9) / 表(1)
    计量
    • 文章访问数:  67
    • HTML全文浏览量:  15
    • PDF下载量:  14
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-03-26
    • 网络出版日期:  2023-01-10
    • 刊出日期:  2022-12-25

    目录

      /

      返回文章
      返回