Dynamic Mechanism of Rain Infiltration in Deep-Seated Landslide Reactivate Deformation
-
摘要: 强降雨易引发大型深层老滑坡的复活变形,研究其作用机制对建立滑坡变形破坏的降雨阈值,实现滑坡灾害的预警预报具有重要意义.以三峡库区秭归县谭家湾大型深层老滑坡为例,在地表宏观裂缝时空分布规律的精细描述基础上,结合15年的人工监测和2年的实时监测数据,分析了老滑坡的复活变形特征和发展过程.通过滑坡阶跃阶段的位移与降雨(当前降雨和前期降雨)的相关性分析,提出了降雨对深层滑坡复活变形演化过程的动态作用机制.谭家湾滑坡的7次“阶跃”变形与强降雨相关,但累积位移增量与累积降雨量无明显正相关关系,水平位移增量基本相同时,累积降雨量明显不同.引起第一次阶跃变形的累积降雨量和最大日降雨量均明显大于后续阶段,可能受控于强降雨的作用机制由“孔隙渗流”为主,逐渐转变为“渗透性增加的孔隙渗流+裂隙优势流”的综合渗流模式.这对进一步深入研究强降雨诱发深层老滑坡阶跃变形的内在机理与灾害预警具有一定的理论意义和参考价值.Abstract: Heavy rainfall is a main factor for reactivating the deformation of large deep-seated landslides. Understanding the infiltration mechanism is of great significance to obtaining the rainfall thresholds for landslide reactivation and hence facilitating early warning. Tanjiawan landslide is a well-studied large-scale and deep-seated reactivated landslide in Zigui County of the Three Gorges Reservoir Area. It is therefore considered as a typical example in this study, and the spatiotemporal distribution of surface cracks with time series were described and analyzed herein. 15 years of manual monitoring data and 2 years of real-time monitoring data were employed to analyze the deformation process of the landslide. By exploring the correlation between the displacement and the cumulative as well as antecedent rainfall in the stepping stage, a dynamic mechanism of infiltration was proposed for the reactivated deformation evolution in the deep-seated landslide. It is demonstrated that the 7 stages of step-like deformation were related to the heavy rainfall of the Tanjiawan landslides, but the cumulative horizontal displacement increment had no obvious positive correlation with the cumulative rainfall. Moreover, even when the increment of horizontal displacement is similar, the accumulate rainfall can still be quite different. The cumulative rainfall and maximum daily rainfall that caused the first step deformation were much greater than those in the subsequent stages, and the analysis indicated that it may be controlled by the dynamic mechanism of infiltration. Furthermore, the infiltration has transformed from pore seepage to coupled pore seepage with larger permeability and crack preferential flow. It has a theoretical significance and reference value for further study of the mechanism and early warning of deep-stead landslide reactivation induced by heavy rainfall.
-
表 1 滑坡地表裂缝统计
Table 1. Statistical data of cracks of Tanjiawan landslide
裂缝编号 走向(°) 裂缝特征及发展过程 L1、L2 60~80 2020年6月L1、L2已产生,L1裂缝长1.0~1.5 m,护栏微向外倾斜;L2长10~15 m,公路下沉0.5~1.0 m L3~L6 290~330 2020年6月已有部分土体开裂(L3、L4),2021年9月产生新的裂缝(L5、L6),长度1~8 m不等,宽4~10 cm L7、L9 320~350 2020年6月公路开裂、下沉10~20 cm,2021年9月公路下沉损毁50~120 cm,护栏向前滑移约50~100 cm L8 10~40 2020年6月已有裂缝长10~15 m,水泥路面下错50~70 cm;2021年9月裂缝扩展,长15~20 m,下错约1 m L10 10~50 2021年9月已有裂缝长5~10 m,下错约2 m,局部土体垮塌 L11 0~30 2020年6月已有裂缝,长5~10 m、宽约4~6 cm、未见明显下错;2021年9月长度延伸至10~15 m,下错70~90 cm L12、L13 10~70 2020年6月已有L12,长5~8 m、张开宽度0.8~1.0 m;2021年9月已有L13,为次级滑坡后缘侧壁,长约150 m、张开宽度在0.5~1.5 m、滑坡壁高0.5~4.0 m L15 300~340 2020年6月公路鼓起破裂,破裂段长3~5 m;2021年9月公路破裂加剧,长8~10 m、下沉70~100 cm L14 2021年9月新生土体鼓胀地面裂缝,长10~15 m,宽10~15 cm L16 2020年~2021年公路破裂段长由约30 m增至约60 m,公路持续下沉0.5~1.0 m L17、L18 330~360 2020年6月公路面出现长3~6 m裂缝,宽3~7 cm;2021年9月公路出现5~15 m段的破坏区域,下沉40~70 cm 表 2 滑坡阶跃变形阶段的降雨指标统计
Table 2. Statistics of rainfall characters in the landslide step deformation stage
不同“阶跃段” 前期累积降雨量(mm) 编号 起始时间 结束时间 水平位移增量(mm) 累积降雨a*(mm) 最大降雨b*(mm) 1 d 3 d 5 d 10 d 15 d 最大降雨c* ① 2020/06/22 2020/07/10 932.73 163.2 42.0 6.0 32.4 44.2 85.0 111.8 28.8 ② 2020/07/22 2020/08/04 515.62 46.8 24.8 5.4 5.4 37.4 48.6 55.6 16.0 ③ 2020/08/27 2020/09/06 108.74 3.6 2.4 0.0 28.4 28.8 72.8 73.6 28.4 ④ 2020/10/03 2020/10/09 961.72 49.2 24.0 63.2 63.2 63.2 74.2 92.4 63.2 ⑤ 2020/11/26 2020/12/05 65.71 1.6 1.0 1.6 13.6 22.0 62.4 62.4 32.2 ⑥ 2021/07/15 2021/07/28 161.02 9.6 3.4 1.4 1.4 1.4 1.4 1.4 1.4 ⑦ 2021/08/25 2021/08/31 948.57 66.8 48.6 0.0 17.8 43.0 46.6 94.0 28.2 注:累积降雨a*、最大降雨b*分别是指不同“阶跃段”时间范围内的累积降雨量和最大日降雨量;最大降雨c*是指前期15 d时间范围内的最大日降雨量. -
[1] Caine, N., 1980. The Rainfall Intensity: Duration Control of Shallow Landslides and Debris Flows. Geografiska Annaler Series A, Physical Geography, 62(1-2): 23-27. https://doi.org/10.2307/520449 [2] Crozier, M. J., 1986. Landslides: Causes, Consequences and Environment, London: Croom Helm. Géographie Physique et Quaternaire, 41(3): 409-410. https://doi.org/ 10.7202/032702ar [3] Du, Q., Zhou, J., 2020. Centrifugal Model Tests on Slope Failure Induced by Rainfall. Chinese Journal of Geotechnical Engineering, 42(S1): 50-54(in Chinese with English abstract). [4] Froude, M. J., Petley, D. N., 2018. Global Fatal Landslide Occurrence from 2004 to 2016. Natural Hazards and Earth System Sciences, 18: 2161-2181. https://doi.org/10.5194/nhess-18-2161-2018 [5] Guo, Z. Z., Yin, K. L., Liu, Q. L., et al., 2020. Rainfall Warning of Creeping Landslide in Yunyang County of Three Gorges Reservoir Region Based on Displacement Ratio Model. Earth Science, 45(2): 672-684(in Chinese with English abstract). [6] Guzzetti, F., Peruccacci, S., Rossi, M., et al., 2008. The Rainfall Intensity–Duration Control of Shallow Landslides and Debris Flows: An Update. Landslides, 5(1): 3-17. https://doi.org/10.1007/s10346-007-0112-1 [7] Huang, D., Gu, D. M., Chen, Z. Q., et al., 2017. Hybrid Effects of Rainfall and Reservoir Level Fluctuation on the Old Taping H2 Landslide in the Wushan County, Three Gorges Reservoir. Chinese Journal of Geotechnical Engineering, 39(12): 2203-2211 (in Chinese with English abstract). doi: 10.11779/CJGE201712008 [8] Huang, S., Cui, S. L., Xin, P., et al., 2021. Study on Rainfall Threshold and Spatial Distribution of Clustered Shallow Landslides in Tianshui City on July 25. Journal of Natural Disasters, 30(3): 181-190(in Chinese with English abstract). [9] Huang, X. H., Yi, W., Huang, H. F., et al., 2020. Study and Application of the Relationship between Preferential Flow Penetration and Slope Deformation. Rock and Soil Mechanics, 41(4): 1396-1403(in Chinese with English abstract). [10] Iverson, R. M., 2000. Landslide Triggering by Rain Infiltration. Water Resources Research, 36(7): 1897-1910. https://doi.org/10.1029/2000wr900090 [11] Jakob, M., Weatherly, H., 2003. A Hydroclimatic Threshold for Landslide Initiation on the North Shore Mountains of Vancouver, British Columbia. Geomorphology, 54(3-4): 137-156. https://doi.org/10.1016/S0169-555X(02)00339-2 [12] Kim, S. W., Chun, K. W., Kim, M., et al., 2021. Effect of Antecedent Rainfall Conditions and Their Variations on Shallow Landslide-Triggering Rainfall Thresholds in South Korea. Landslides, 18(2): 569-582. https://doi.org/10.1007/s10346-020-01505-4 [13] Leonarduzzi, E., Molnar, P., 2020. Deriving Rainfall Thresholds for Landsliding at the Regional Scale: Daily and Hourly Resolutions, Normalisation, and Antecedent Rainfall. Natural Hazards and Earth System Sciences, 20(11): 2905-2919. https://doi.org/10.5194/nhess-20-2905-2020 [14] Li, L. J., Jian, W. X., Zhang, D. M., et al., 2021. Seepage Characteristics and Stability of Tanjiawan Accumulation Landslide with Cracks under Rainstorm. Safety and Environmental Engineering, 28(1): 135-143(in Chinese with English abstract). [15] Li, Q. Q., Huang, D., Pei, S. F., et al., 2021. Using Physical Model Experiments for Hazards Assessment of Rainfall-Induced Debris Landslides. Journal of Earth Science, 32(5): 1113-1128. https://doi.org/10.1007/s12583-020-1398-3 [16] Montgomery, D. R., Dietrich, W. E., 1994. A Physically Based Model for the Topographic Control on Shallow Landsliding. Water Resources Research, 30(4): 1153-1171. https://doi.org/10.1029/93wr02979 [17] Nguyen, L. C., Van Tien, P., Do, T. N., 2020. Deep-Seated Rainfall-Induced Landslides on a New Expressway: A Case Study in Vietnam. Landslides, 17(2): 395-407. https://doi.org/10.1007/s10346-019-01293-6 [18] Prokešová, R., Medveďová, A., Tábořík, P., et al., 2013. Towards Hydrological Triggering Mechanisms of Large Deep-Seated Landslides. Landslides, 10(3): 239-254. https://doi.org/10.1007/s10346-012-0330-z [19] Rahardjo, H., Li, X. W., Toll, D. G., et al., 2001. The Effect of Antecedent Rainfall on Slope Stability. Geotechnical and Geological Engineering, 19(3/4): 371-399. doi: 10.1023/A:1013129725263 [20] Sun, D. L., Xu, J. H., Wen, H. J., et al., 2020. An Optimized Random Forest Model and Its Generalization Ability in Landslide Susceptibility Mapping: Application in Two Areas of Three Gorges Reservoir, China. Journal of Earth Science, 31(6): 1068-1086. https://doi.org/10.1007/s12583-020-1072-9 [21] Tang, D., 2016. Characteristic of Unsaturated Soil and Slope Stability Analysis Considering Antecedent Rainfall(Dissertation). Wuhan University, Wuhan (in Chinese with English abstract). [22] Tohari, A., 2018. Study of Rainfall-Induced Landslide: A Review. IOP Conference Series: Earth and Environmental Science, 118: 012036. https://doi.org/10.1088/1755-1315/118/1/012036 [23] Vennari, C., Gariano, S. L., Antronico, L., et al., 2014. Rainfall Thresholds for Shallow Landslide Occurrence in Calabria, Southern Italy. Natural Hazards and Earth System Sciences, 14(2): 317-330. https://doi.org/10.5194/nhess-14-317-2014 [24] Villalpando, F., Tuxpan, J., Ramos-Leal, J. A., et al., 2020. New Framework Based on Fusion Information from Multiple Landslide Data Sources and 3D Visualization. Journal of Earth Science, 31(1): 159-168. https://doi.org/10.1007/s12583-019-1243-8 [25] Xie, S. Y., Xu, W. Y., 1999. Mechanism of Landslides Induced by Precipitation. Journal of Wuhan University of Hydraulic and Electric Engineering, 32(1): 21-23(in Chinese with English abstract). [26] Yang, P., Yang, J., 2015. Rainfall Threshold Surface for Slopes Stability Considering Antecedent Rainfall. Rock and Soil Mechanics, 36(S1): 169-174(in Chinese with English abstract). [27] Zhang, T. L., Zhou, A. G., Sun, Q., et al., 2017. Characteristics of the Groundwater Seepage and Failure Mechanisms of Landslide Induced by Typhoon Rainstorm. Earth Science, 42(12): 2354-2362(in Chinese with English abstract). [28] Zhang, Y., Xu, W. Y., Zou, L. F., et al., 2013. Analysis of Seepage Stability of Large-Scale Landslide under Rainfall Condition. Rock and Soil Mechanics, 34(3): 833-841(in Chinese with English abstract). [29] Zhong, Y., Li, Y. Y., Yin, K. L., et al., 2022. Failure Mechanism of Thick Colluvium Landslide Triggered by Heavy Rainfall based on Model Test. Earth Science (in Press) (in Chinese with English abstract). [30] 杜强, 周健, 2020. 基于离心模型试验的降雨诱发滑坡宏细观机理研究. 岩土工程学报, 42(增刊1): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2020S1010.htm [31] 郭子正, 殷坤龙, 刘庆丽, 等, 2020. 基于位移比模型的三峡库区云阳县域内蠕变型滑坡降雨预警. 地球科学, 45(2): 672-684. doi: 10.3799/dqkx.2019.005 [32] 黄达, 顾东明, 陈智强, 等, 2017. 三峡库区塔坪H2古滑坡台阶状复活变形的库水-降雨耦合作用机制. 岩土工程学报, 39(12): 2203-2211. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201712009.htm [33] 黄森, 崔素丽, 辛鹏, 等, 2021. 天水市"7•25"群发性浅层滑坡降雨阈值及空间分布研究. 自然灾害学报, 30(3): 181-190. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZH202103020.htm [34] 黄晓虎, 易武, 黄海峰, 等, 2020. 优势流入渗与坡体变形关系研究及应用. 岩土力学, 41(4): 1396-1403. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202004032.htm [35] 李林均, 简文星, 张端淼, 等, 2021. 暴雨作用下含裂缝谭家湾堆积层滑坡渗流特征与稳定性分析. 安全与环境工程, 28(1): 135-143. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ202101019.htm [36] 唐栋, 2016. 考虑前期降雨影响的非饱和土特性及边坡稳定性分析(博士学位论文). 武汉: 武汉大学. [37] 谢守益, 徐卫亚, 1999. 降雨诱发滑坡机制研究. 武汉水利电力大学学报, 32(1): 21-23. https://cdmd.cnki.com.cn/Article/CDMD-10284-1019116855.htm [38] 杨攀, 杨军, 2015. 考虑前期降雨的边坡稳定降雨阈值曲面. 岩土力学, 36(增刊1): 169-174. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-OGTY201507001379.htm [39] 张泰丽, 周爱国, 孙强, 等, 2017. 台风暴雨条件下滑坡地下水渗流特征及成因机制. 地球科学, 42(12): 2354-2362. doi: 10.3799/dqkx.2017.570 [40] 张玉, 徐卫亚, 邹丽芳, 等, 2013. 降雨条件下大型滑坡体渗流稳定性分析. 岩土力学, 34(3): 833-841. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201303038.htm [41] 钟源, 李远耀, 殷坤龙, 等, 2022. 基于物理模型试验的厚层堆积层滑坡强降雨触发机制. 地球科学(待刊).