• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    陆相断陷盆地页岩岩相组合类型及特征:以济阳坳陷东营凹陷沙四上亚段页岩为例

    刘惠民 张顺 王学军 张鹏飞 李军亮 王勇 魏晓亮 银燕 朱德燕

    刘惠民, 张顺, 王学军, 张鹏飞, 李军亮, 王勇, 魏晓亮, 银燕, 朱德燕, 2023. 陆相断陷盆地页岩岩相组合类型及特征:以济阳坳陷东营凹陷沙四上亚段页岩为例. 地球科学, 48(1): 30-48. doi: 10.3799/dqkx.2022.183
    引用本文: 刘惠民, 张顺, 王学军, 张鹏飞, 李军亮, 王勇, 魏晓亮, 银燕, 朱德燕, 2023. 陆相断陷盆地页岩岩相组合类型及特征:以济阳坳陷东营凹陷沙四上亚段页岩为例. 地球科学, 48(1): 30-48. doi: 10.3799/dqkx.2022.183
    Liu Huimin, Zhang Shun, Wang Xuejun, Zhang Pengfei, Li Junliang, Wang Yong, Wei Xiaoliang, Yin Yan, Zhu Deyan, 2023. Types and Characteristics of Shale Lithofacies Combinations in Continental Faulted Basins: A Case Study from Upper Sub-Member of Es4 in Dongying Sag, Jiyang Depression. Earth Science, 48(1): 30-48. doi: 10.3799/dqkx.2022.183
    Citation: Liu Huimin, Zhang Shun, Wang Xuejun, Zhang Pengfei, Li Junliang, Wang Yong, Wei Xiaoliang, Yin Yan, Zhu Deyan, 2023. Types and Characteristics of Shale Lithofacies Combinations in Continental Faulted Basins: A Case Study from Upper Sub-Member of Es4 in Dongying Sag, Jiyang Depression. Earth Science, 48(1): 30-48. doi: 10.3799/dqkx.2022.183

    陆相断陷盆地页岩岩相组合类型及特征:以济阳坳陷东营凹陷沙四上亚段页岩为例

    doi: 10.3799/dqkx.2022.183
    基金项目: 

    国家重点基础研究发展计划(973计划)项目 2014CB239100

    国家专项 2017ZX05049

    国家自然科学基金项目 4217020748

    详细信息
      作者简介:

      刘惠民(1969-),男,教授级高级工程师,博士,主要从事油气勘探研究.ORCID:0000-0003-3022-3873. E-mail:hmliu@vip.163.com

      通讯作者:

      张顺,E-mail:satisfactoryshun@163.com

    • 中图分类号: P581

    Types and Characteristics of Shale Lithofacies Combinations in Continental Faulted Basins: A Case Study from Upper Sub-Member of Es4 in Dongying Sag, Jiyang Depression

    • 摘要: 目前尚未有划分陆相断陷盆地页岩岩相组合的研究成果和技术方法,不同页岩岩相组合的基本特征还需要进一步明确.在页岩油井取心井段岩心精细观察描述的基础上,利用岩石薄片观察和X射线‒全岩矿物衍射分析明确取心段页岩的基本岩石和岩相类型,通过主要矿物成分及主微量元素测试分析,提取济阳坳陷古近系页岩沉积古环境信息;依据四古环境(古气候、古物源、古盐度、古水深)基本特征,按照沉积环境相似性以及内部结构均一性等原则对东营凹陷沙四上亚段页岩层系进行岩相组合划分,建立了基于沉积环境主控的页岩岩相组合分级划分方案,并结合储层和有机地化分析测试明确了主要岩相组合的储集性和含油性特征.结果表明:(1)东营凹陷沙四上页岩是典型的富碳酸盐页岩(碳酸盐质页岩)和混积型页岩,纹层特征显著,孔隙类型多样,层理缝和构造缝较发育,有机质丰度高,演化程度中等‒低,埋藏深、压力系数高.(2)依据沉积构造部位、古环境,东营凹陷沙四上亚段页岩可划分为8类岩相组合,在盆地中心以发育基质型碳酸盐质页岩岩相组合为主、块状白云岩夹层型页岩岩相组合为辅,在北部陡斜坡带主要发育砂岩夹层型页岩岩相组合,在南部缓斜坡带主要发育块状白云岩夹层型以及纹层状灰质泥岩和白云岩互层等页岩岩相组合.(3)一般地,作为细粒沉积的主体,东营凹陷洼陷中心沙四上亚段基质型页岩层系自底至顶依次发育纹层状泥质灰岩夹块状白云岩相、纹层状泥质灰岩和白云岩互层相、纹层状泥质灰岩和灰质泥岩互层相、纹层状泥质灰岩夹灰质泥岩相、层状泥质灰岩和灰质泥岩互层相、层状泥质灰夹灰质泥岩相等,揭示沉积古环境由干旱、咸水、半深水、少物源向半湿润、半咸水、深水、较多物源的变化.(4)纹层状泥质灰岩夹灰质泥岩组合以及纹层状泥质灰岩和灰质泥岩互层组合最为发育,储集空间类型多样、大孔径孔隙占比高且连通性较好;纹层状泥质灰岩和灰质泥岩互层含油饱和度相对较高,也是目前济阳坳陷页岩油获得突破的一种有利岩相组合类型;纹层状泥质灰岩夹块状白云岩组合具有较好的含油性和脆性.进一步分析不同岩相组合的基本地质特征及含油性特征、厘定主要页岩岩相组合的发育分布特征对陆相断陷盆地页岩油勘探具有现实的指导意义.

       

    • 图  1  东营凹陷位置及构造纲要图

      Fig.  1.  Location and structure of Dongying Sag

      图  2  东营凹陷沙四上页岩主要矿物含量

      Fig.  2.  Mineral contents of the Upper Es4 shale in Dongying Sag

      图  3  东营凹陷牛页1井沙四上亚段页岩层系古环境、储集性、含油性及测井响应特征

      Fig.  3.  Paleoenvironment, reservoir, oil bearing and logging response characteristics of shale series in the Upper Es4 Sub-member of Well NY1 in Dongying Sag

      图  4  纹层状(粗晶)泥质灰岩和灰质泥岩互层岩心和普通岩石薄片镜下特征

      c. 富有机质纹层状泥质灰岩相,纹层特征显著,方解石以细晶和亮晶为主,方解石纹层与富有机质粘土层频繁互层,牛55-斜1井,3 590.17 m;d. 富有机质纹层状灰质泥岩相,局部发育亮晶方解石纹层,牛55-斜1井,3 590.65 m;e. 纹层状泥质灰岩,方解石以泥晶为主,牛55-斜1井,3 592.00 m

      Fig.  4.  Microscopic images of laminated argillaceous limestone and calcareous mudstone interbedded cores with sparry calcite particle

      图  5  纹层状(泥晶)泥质灰岩和灰质泥岩互层岩心和普通岩石薄片镜下特征

      c.富有机质纹层状灰质泥岩相,富有机质粘土层特征明显,石英颗粒顺层分布,樊页平1井,3 469.80 m. d、e. 富有机质纹层状泥质灰岩相,樊页平1井,图b中泥晶方解石纹层与富有机质粘土层界限清晰,3 470.30 m;图c中发育近垂直异常超压缝,内部充填方解石,3 470.70 m

      Fig.  5.  Microscopic images of laminated argillaceous limestone and calcareous mudstone interbedded cores with micritic calcite particle

      图  6  纹层状泥质灰岩和灰质泥岩互层扫描电镜下储集空间类型

      a.大量微孔隙及缝隙分布成层状分布(官斜27井,2 305.85 m);b,层理缝中充填碳质和粘土矿物,可见黄铁矿零星分布(官斜27井,2 306.86 m);c,方解石颗粒间可见油膜状原油充填分布(牛55-斜1井,3 588.27 m),C+Clay为有机碳与粘土复合体,Oil为石油,Cc为方解石

      Fig.  6.  Reservoir space type of laminated argillaceous limestone and calcareous mudstone

      图  7  层状泥质灰岩夹灰质泥岩互层岩相组合岩心和普通岩石薄片镜下特征

      d.富有机质层状泥质灰岩相,泥晶方解石纹层断续分布或呈透镜状集合体密集产出,方解石以泥晶和细晶为主,牛55-斜1井,3 439.45 m、3 439.88 m;e.层状灰质泥岩,灰泥透镜体分布较分散,岩心及镜下观察基本没有连续纹层发育,3 440.40 m

      Fig.  7.  Microscopic images of lithofacies combination of layered argillaceous limestone interbedded with calcareous mudstone

      图  8  层状泥质灰岩和灰质泥岩互层组合扫描电镜下储集空间类型

      a.孔隙中充填方解石,方解石中溶蚀微孔分布(牛55-斜1井,3 430.45 m);b.片状伊蒙混层I/S中层间缝隙和微孔隙分布(牛55-斜1井,3 463.84 m);c.孔隙中充填白云石、石盐晶粒、方解石、片状伊蒙混层、白云石和方解石,其中方解石发育溶蚀孔隙(牛55-斜1井,3 545.10 m). Cc为方解石,D为白云石,I/S为伊蒙混层,HI为石盐

      Fig.  8.  Reservoir space type of combination of layered argillaceous limestone and calcareous mudstone observed with scanning electron microscope

      图  9  东营凹陷GX27井纹层状泥质灰岩和白云岩互层岩心扫描图片、薄片照片

      Fig.  9.  Core images and fluorescent images of laminated argillaceous limestone with dolomite, Well GX27

      图  10  纹层状泥质灰岩夹纹层状白云岩储集空间类型

      a.方解石发育大量不规则溶蚀孔(官17-斜10井,3 154.55 m);b.白云石具有自行形态周围均发育少量的溶蚀孔隙(官17-斜10井,3 162.70 m);c.有机质与矿物边缘处发育收缩裂缝(官17-斜10井,2 300.91 m). Cc为方解石,D为白云石,C为有机质

      Fig.  10.  Reservoir space type of laminated argillaceous limestone intercalated with laminated dolomite

      图  11  官17-斜10井纹层状泥质灰岩夹块状白云岩岩心扫描图片、白云岩荧光扫描及荧光薄片照片

      Fig.  11.  Core images and fluorescent images of laminated argillaceous limestone with massive dolomite, fluorescent images of thin section of dolomite in Well G17-X10

      图  12  块状白云岩储集空间类型

      a.孔隙中充填白云石、片状伊蒙混层及白云石,白云石发育溶蚀孔(官斜27井,2 303.18 m);b.方解石内部及颗粒边缘发育溶蚀孔隙,并被有机质充填(官斜27井,2 304.80 m);c.孔隙中充填白云石,白云石与有机质边缘发育收缩裂缝(官斜27井,2 312.40 m). Cc为方解石,D为白云石,C为有机质,I/S为伊蒙混层

      Fig.  12.  Reservoir space type of massive dolomite

      图  13  砂岩夹层型岩相组合储集空间类型

      a. 砂岩颗粒间发育粒间孔和溶蚀孔,部分孔隙被碎屑物质充填(坨斜729井,3 509.00 m);b.富有机质粘土与碎屑颗粒之间发育裂缝(坨斜729井,3 262.30 m);c. 砂岩颗粒间被方解石充填部分发育不规则溶蚀孔隙(坨斜729井,3 272.85 m)

      Fig.  13.  Reservoir space type of shale interbedded with sandstone interlayer

      图  14  东营凹陷沙四上亚段页岩层系东西向页岩岩相组合连井剖面

      Fig.  14.  East-West cross section of shale lithofacies combination in the Upper Es4 Sub-member of Dongying Sag

      表  1  东营凹陷沙四上亚段主要页岩岩相组合类型

      Table  1.   Main shale lithofacies combinations in the Upper Es4 Sub-member of Dongying Sag

      类型 岩相组合类型 发育层段 体系域 环境特征


      纹层状泥质灰岩和灰质泥岩互层 Es4cs3 TST 半干旱/咸水/少物源/半深水
      纹层状泥质灰岩夹灰质泥岩 Es4cs2 HST 半湿润/半咸水/少物源/半深水
      层状泥质灰岩和灰质泥岩互层 Es4cs1-2 HST 半干旱/半咸水/较少物源/半深水
      纹层状泥质灰岩和白云岩互层 Es4cs3 TST 半干旱/半咸水/少物源/浅水
      层状泥质灰岩夹灰质泥岩 Es4cs1 HST 湿润/微咸水/多物源/深水


      碳酸盐岩夹层 层状泥质灰岩夹块状白云岩 Es4cs4/Es4cx LST 干旱/咸水/少物源/较浅水
      砂岩夹层 (纹)层状灰质泥岩夹层状砂岩 Es4cs TST 半湿润/微咸水/多物源/半深水
      层状灰质泥岩夹块状砂岩 Es4cx TST 半湿润/微咸水/多物源/深水
      下载: 导出CSV

      表  2  东营凹陷沙四上亚段页岩基本特征

      Table  2.   Basic characteristics of shale in the Upper Es4 Sub-member of Dongying Sag

      井名 埋深(m) 沉积构造 矿物含量(%) TOC
      (%)
      S1
      (mg/g)
      S2
      (mg/g)
      Tmax
      (℃)
      孔隙度(%)
      粘土矿物 石英 钾长石 斜长石 方解石 白云石 黄铁矿
      牛55-斜1 3 427.00 层状 30 19 3 38 2 3.95 4.99 14.05 439 6.87
      牛55-斜1 3 439.45 层状 22 20 2 50 5 1 2.33 3.97 11.72 440 5.52
      牛55-斜1 3 439.88 层状 18 18 2 52 8 2.39 3.91 10.14 441
      牛55-斜1 3 447.17 层状 21 26 2 30 13 4.12 6.96 24.46 443 6.07
      牛55-斜1 3 466.20 层状 9 23 1 61 4 2.90 4.75 18.84 441 4.99
      牛55-斜1 3 552.40 纹层状 12 14 3 60 10 2.17 2.99 11.06 443
      牛55-斜1 3 576.90 纹层状 15 15 4 56 7 2.70 2.04 9.23 442 5.65
      牛55-斜1 3 579.20 纹层状 21 14 6 45 4 2.56 3.84 11.60 441 6.25
      牛55-斜1 3 588.93 纹层状 37 23 10 10 17 3.92 7.00 16.76 442
      牛55-斜1 3 592.00 纹层状 9 14 4 61 10 2.28 3.34 9.92 445
      牛55-斜1 3 590.65 纹层状 23 17 7 32 8 2.92 4.13 13.81 443 9.15
      官17-斜10 3 225.00 层状 41 27 10 9 5 4
      官17-斜10 3 225.50 层状 19 34 4 15 17 6 2
      官17-斜10 3 225.60 层状 13 33 4 17 13 15 2
      官17-斜10 3 226.90 层状 47 24 7 6 9 2
      官17-斜10 3 230.05 层状 36 21 6 1 28 4
      官17-斜10 3 231.60 层状 40 13 5 36 2
      官17-斜10 3 234.60 纹层状 20 16 5 54 2
      坨斜729 3 509.00 层状 18 42 7 15 17 1
      坨斜729 3 510.85 层状 31 38 6 13 5 6 1
      坨斜729 3 513.05 层状 22 35 3 14 19 6 1
      坨斜729 3 514.85 层状 16 35 6 18 15 10
      FYP1 3 451.65 纹层状 26 25 6 18 20 5 3.67 1.67 14.80 452
      FYP1 3 456.19 纹层状 5 28 8 32 23 3 0.62 1.89 2.26 441
      FYP1 3 462.95 纹层状 12 16 2 56 12 2 1.02 1.42 3.16 449
      FYP1 3 465.08 纹层状 10 12 4 61 12 1 1.01 2.81 4.41 439
      FYP1 3 468.81 纹层状 20 19 8 33 8 11 4.69 2.21 15.12 450
      FYP1 3 470.55 纹层状 14 18 4 43 17 4 1.31 0.99 3.85 453
      FYP1 3 471.40 纹层状 10 17 2 62 7 2 1.43 1.08 4.55 451
      FYP1 3 473.57 纹层状 27 32 14 9 11 6 5.37 1.75 20.87 454
      GX27 2 300.91 纹层状 14 10 2 55 19 1.96 0.18 11.39 436
      GX27 2 301.90 纹层状 17 10 70 3 6.30 1.84 46.08 435
      GX27 2 302.54 纹层状 24 16 3 4 9 42 2 5.09 2.46 34.38 427
      GX27 2 304.10 纹层状 16 9 3 64 6 2 2.61 0.35 13.33 433
      GX27 2 305.02 纹层状 39 24 4 6 24 3 5.96 0.63 45.04 436
      GX27 2 305.85 纹层状 8 5 2 83 2 7.97 1.25 44.42 438
      GX27 2 310.02 纹层状 16 13 3 4 60 4 6.05 1.95 41.34 437
      GX27 2 307.78 纹层状 11 9 79 1 5.03 0.62 26.47 435
      GX27 2 308.02 纹层状 43 29 6 11 5 1 5 10.10 0.44 78.14 443
      GX27 2 308.40 纹层状 7 5 13 72 3
      下载: 导出CSV

      表  3  东营凹陷沙四上亚段主要页岩岩相组合类型

      Table  3.   Main shale lithofacies combinations and characteristics in the Upper Es4 Sub-member of Dongying Sag

      岩相组合类型 沉积环境 宏、微观特征 孔隙度(%) 含油性
      TOC
      (%)
      S1
      (mg/g)
      孔隙度(%)×
      含油饱和度(%)
      纹层状泥质灰岩和灰质泥岩互层 弱‒静水环境半湿润、少物源、咸水 宏观岩心以明暗相间为主,具纹层结构;镜下纹层显著,多数纹层平直,细/亮晶方解石纹层与富有机质粘土层(或有机质层/粘土层)界限清晰;储集空间以方解石晶间孔及晶间溶蚀孔及伊蒙混层I/S晶间孔为主、含油性较好 7.3~16.4(11.46) 2.17~2.92(2.75) 0.54~11.23(5.57) 0.85~6.57
      (3.37)
      层状泥质灰岩
      夹灰质泥岩
      气候半潮湿、半咸水、半深水‒浅水、较多物源的还原环境. 宏观岩心以深色为主,具层状结构;镜下矿物呈现定向或弱定向组构,灰泥透镜体大小不一、断续分布,局部纹层连续性较好,少量长英质矿物零星分布;储集类型以粘土矿物晶间孔和方解石晶间孔为主,少量石英和长石等粒间孔发育 7.6~11.0(9.15) 2.9~4.12(3.138) 1.07~10.8(3.62) 1.69~7.76
      (3.59)
      纹层状泥质灰岩夹块状白云岩 气候干燥、少物源、咸水的沉积环境 宏观岩心以浅灰色‒灰色为主,具纹层结构;镜下岩石主要为白云石(泥晶结构),少部分泥质,微量黄铁矿,偶见陆源碎屑;储集空间主要发育泥晶白云石晶间孔和少量亮晶方解石晶间孔 9.2~18.9(12.24) 0.15~2.04(1.15) 0.06~1.97(0.37) 0.03~3.43
      (1.79)
      纹层状泥质灰岩和白云岩互层 气候干燥、物源少‒中等、半深水、
      咸水‒半咸水的
      强还原环境
      宏观岩心以灰黑色‒褐色为主,具纹层结构;镜下岩石以泥质灰岩为主,同时发育白云岩,含量最高达72%,部分样品混积及交代作用明显;储集类型以白云石晶间孔为主,方解石和白云石边缘或边角处可见不规则溶蚀孔,部分样品可见球粒状黄铁矿晶间孔和有机质收缩缝 10.3~19.1(15.00) 1.77~6.05(5.07) 2.60~19.07(6.20) 0.90~4.71
      (2.70)
      下载: 导出CSV
    • [1] Abouelresh, M. O., Slatt, R. M., 2012. Lithofacies and Sequence Stratigraphy of the Barnett Shale in East-Central Fort Worth Basin, Texas. AAPG Bulletin, 96(1): 1-22. https://doi.org/10.1306/04261110116
      [2] Cao, Y. C., Zhang, Q. Q., Wang, Y. Z., et al., 2017. Delta Front Gravity Flow Deposits in the Middle Submember of the Third Member of the Shahejie Formation in the Dongying Depression: Lithofacies and Lithofacies Association Types and Their Distribution. Sedimentary Geology and Tethyan Geology, 37(1): 9-17 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-3850.2017.01.002
      [3] Chen, S. Y., Zhang, S., Liu, H. M., et al., 2017. Discussion on Mixing of Fine-Grained Sediments in Lacustrine Deep Water. Journal of Palaeogeography (Chinese Edition), 19(2): 271-284 (in Chinese with English abstract).
      [4] Chen, S. Y., Zhang, S., Wang, Y. S., et al., 2016. Lithofacies Types and Reservoirs of Paleogene Fine-Grained Sedimentary Rocks in Dongying Sag, Bohai Bay Basin. Petroleum Exploration and Development, 43(2): 198-208 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1876380416300258
      [5] Deng, H. W., Qian, K., 1990. The Genetic Types and Association Evolution of Deep Lacustrine Facies Mudstones. Acta Sedimentologica Sinica, 8(3): 1-21 (in Chinese with English abstract).
      [6] Fu, J. H., Deng, X. Q., Chu, M. J., et al., 2013. Features of Deepwater Lithofacies, Yanchang Formation in Ordos Basin and Its Petroleum Significance. Acta Sedimentologica Sinica, 31(5): 928-938 (in Chinese with English abstract).
      [7] Guo, X. S., 2022. Discussion and Research Direction of Future Onshore Oil and Gas Exploration in China. Earth Science, 47(10): 3511-3523 (in Chinese with English abstract).
      [8] Hickey, J. J., Henk, B., 2007. Lithofacies Summary of the Mississippian Barnett Shale, Mitchell 2 T. P. Sims Well, Wise County, Texas. AAPG Bulletin, 91(4): 437-443. https://doi.org/10.1306/12040606053
      [9] Jiang, Z. X., Liang, C., Wu, J., et al., 2013. Several Issues in Sedimentological Studies on Hydrocarbon-Bearing Fine-Grained Sedimentary Rocks. Acta Petrolei Sinica, 34(6): 1031-1039 (in Chinese with English abstract).
      [10] Jiang, Z. X., Zhang, W. Z., Liang, C., et al., 2014. Characteristics and Evaluation Elements of Shale Oil Reservoir. Acta Petrolei Sinica, 35(1): 184-196 (in Chinese with English abstract).
      [11] Krumbein, W. C., 1932. The Mechanical Analysis of Fine-Grained Sediments. Journal of Sedimentary Research, 2(3): 140-149. https://doi.org/10.2110/jsr.2.140
      [12] Liang, C., Jiang, Z. X., Yang, Y. T., et al., 2012. Characteristics of Shale Lithofacies and Reservoir Space of the Wufeng-Longmaxi Formation, Sichuan Basin. Petroleum Exploration and Development, 39(6): 691-698 (in Chinese with English abstract).
      [13] Liu, H. M., Wang, Y., Yang, Y. H., et al., 2020. Sedimentary Environment and Lithofacies of Fine-Grained Hybrid Sedimentary in Dongying Sag: A Case of Fine-Grained Sedimentary System of the Es4. Earth Science, 45(10): 3543-3555 (in Chinese with English abstract).
      [14] Liu, Z. X., Xu, L. L., Wen, Y. R., et al., 2022. Accumulation Characteristics and Comprehensive Evaluation of Shale Gas in Cambrian Niutitang Formation, Hubei. Earth Science, 47(5): 1586-1603 (in Chinese with English abstract).
      [15] Loucks, R. G., Ruppel, S. C., 2007. Mississippian Barnett Shale: Lithofacies and Depositional Setting of a Deep-Water Shale-Gas Succession in the Fort Worth Basin, Texas. AAPG Bulletin, 91(4): 579-601. https://doi.org/10.1306/11020606059
      [16] Lü, D. W., Wang, D. D., Li, Z. X., et al., 2017. Depositional Environment, Sequence Stratigraphy and Sedimentary Mineralization Mechanism in the Coal Bed- and Oil Shale-Bearing Succession: A Case from the Paleogene Huangxian Basin of China. Journal of Petroleum Science and Engineering, 148: 32-51. https://doi.org/10.1016/j.petrol.2016.09.028
      [17] Ma, W. X., Liu, S. G., Huang, W. M., et al., 2012. Mud Shale Reservoirs Characteristics of Qiongzhusi Formation on the Margin of Sichuan Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 39(2): 182-189 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2012.02.011
      [18] MacQuaker, J. H. S., Taylor, K. G., Keller, M., et al., 2014. Compositional Controls on Early Diagenetic Pathways in Fine-Grained Sedimentary Rocks: Implications for Predicting Unconventional Reservoir Attributes of Mudstones. AAPG Bulletin, 98(3): 587-603. https://doi.org/10.1306/08201311176
      [19] Milliken, K. L., Esch, W. L., Reed, R. M., et al., 2012. Grain Assemblages and Strong Diagenetic Overprinting in Siliceous Mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas. AAPG Bulletin, 96(8): 1553-1578. https://doi.org/10.1306/12011111129
      [20] Milliken, K. L., Rudnicki, M., Awwiller, D. N., et al., 2013. Organic Matter-Hosted Pore System, Marcellus Formation (Devonian), Pennsylvania. AAPG Bulletin, 97(2): 177-200. https://doi.org/10.1306/07231212048
      [21] Ning, F. X., 2015. Mechanism of Shale Oil Enrichment in Jiyang Depression. Special Oil & Gas Reservoirs, 22(3): 27-30, 152 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-6535.2015.03.006
      [22] Peng, X. F., Wang, L. J., Jiang, L. P., 2012. Geochemical Characteristics of the Lucaogou Formation Oil Shale in the Southeastern Margin of the Junggar Basin and Its Environmental Implications. Bulletin of Mineralogy, Petrology and Geochemistry, 31(2): 121-127, 151 (in Chinese with English abstract). doi: 10.2110/jsr.69.909
      [23] Schieber, J., 1999. Distribution and Deposition of Mudstone Facies in the Upper Devonian Sonyea Group of New York. Journal of Sedimentary Research, 69(4): 909-925. https://doi.org/10.2110/jsr.69.909
      [24] Song, M. S., 2019. Practice and Current Status of Shale Oil Exploration in Jiyang Depression. Petroleum Geology and Recovery Efficiency, 26(1): 1-12 (in Chinese with English abstract).
      [25] Song, M. S., Liu, H. M., Wang, Y., et al., 2020. Enrichment Rules and Exploration Practices of Paleogene Shale Oil in Jiyang Depression, Bohai Bay Basin, China. Petroleum Exploration and Development, 47(2): 225-235 (in Chinese with English abstract). doi: 10.1016/S1876-3804(20)60041-6
      [26] Teng, J. B., 2018. Genesis of Dolomite in Shale Drilled by Well Liye1 in Dongying Sag and Its Significance on Sequence Boundary Indication. Petroleum Geology and Recovery Efficiency, 25(2): 1-7, 36 (in Chinese with English abstract).
      [27] Wang, G. M., 2012. Laminae Combination and Genetic Classification of Eogene Shale in Jiyang Depression. Journal of Jilin University (Earth Science Edition), 42(3): 666-671, 680 (in Chinese with English abstract).
      [28] Wang, H. B., 2009. Research of the Depositional Period inside Glutenite Body in Yanjia Oilfield of Dongying Depression. Journal of Oil and Gas Technology, 31(5): 45-49, 430 (in Chinese with English abstract).
      [29] Wang, Y., Wang, X. J., Song, G. Q., et al., 2016. Genetic Connection between Mud Shale Lithofacies and Shale Oil Enrichment in Jiyang Depression, Bohai Bay Basin. Petroleum Exploration and Development, 43(5): 696-704 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S187638041630091X
      [30] Wang, Y. S., Wang, W. Q., Hao, Y. Q., 2013. Shale Reservoir Characteristics Analysis of the Paleogene Shahejie Formation in Luojia Area of Zhanhua Sag, Jiyang Depression. Journal of Palaeogeography, 15(5): 657-662 (in Chinese with English abstract).
      [31] Wu, X. L., Gao, B., Ye, X., et al., 2013. Shale Oil Accumulation Conditions and Exploration Potential of Faulted Basins in the East of China. Oil & Gas Geology, 34(4): 455-462 (in Chinese with English abstract).
      [32] Yang, W. Q., Jiang, Y. L., Wang, Y., 2015. Study on Shale Facies Sedimentary Environment of Lower Es3-Upper Es4 in Dongying Sag. Journal of China University of Petroleum (Edition of Natural Science), 39(4): 19-26 (in Chinese with English abstract).
      [33] Yuan, X. J., Lin, S. H., Liu, Q., et al., 2015. Lacustrine Fine-Grained Sedimentary Features and Organic-Rich Shale Distribution Pattern: A Case Study of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China. Petroleum Exploration and Development, 42(1): 34-43 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1876380415600040
      [34] Zhang, S., Chen, S. Y., Tan, M. Y., et al., 2014. Characterization of Sedimentary Microfacies of Shale in the Lower Third Sub-Member of Shahejie Formation, Western Dongying Sag. Acta Petrolei Sinica, 35(4): 633-645 (in Chinese with English abstract).
      [35] Zhang, S., Liu, H. M., Song, G. Q., et al., 2016. Genesis and Control Factors of Shale Oil Reserving Space in Dongying Sag. Acta Petrolei Sinica, 37(12): 1495-1507, 1527 (in Chinese with English abstract).
      [36] Zhang, X. R., Fang, S., Hu, K., et al., 2011. Paleo-Climate Analysis of the Geochemical Element Records in the Late Holocene Peat Deposits of Dunhua Basin, NE China. Arid Land Geography, 34(5): 726-732 (in Chinese with English abstract).
      [37] Zhou, L. H., Pu, X. G., Chen, C. W., et al., 2018. Concept, Characteristics and Prospecting Significance of Fine-Grained Sedimentary Oil Gas in Terrestrial Lake Basin: A Case from the Second Member of Paleogene Kongdian Formation of Cangdong Sag, Bohai Bay Basin. Earth Science, 43(10): 3625-3639 (in Chinese with English abstract).
      [38] Zou, C. N., Yang, Z., Dong, D. Z., et al., 2022. Formation, Distribution and Prospect of Unconventional Hydrocarbons in Source Rock Strata in China. Earth Science, 47(5): 1517-1533 (in Chinese with English abstract).
      [39] 操应长, 张青青, 王艳忠, 等, 2017. 东营凹陷沙三中亚段三角洲前缘滑塌型重力流岩相类型及其分布特征. 沉积与特提斯地质, 37(1): 9-17. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201701002.htm
      [40] 陈世悦, 张顺, 刘惠民, 等, 2017. 湖相深水细粒物质的混合沉积作用探讨. 古地理学报, 19(2): 271-284. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201702008.htm
      [41] 陈世悦, 张顺, 王永诗, 等, 2016. 渤海湾盆地东营凹陷古近系细粒沉积岩岩相类型及储集层特征. 石油勘探与开发, 43(2): 198-208. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602006.htm
      [42] 邓宏文, 钱凯, 1990. 深湖相泥岩的成因类型和组合演化. 沉积学报, 8(3): 1-21. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199003000.htm
      [43] 付金华, 邓秀芹, 楚美娟, 等, 2013. 鄂尔多斯盆地延长组深水岩相发育特征及其石油地质意义. 沉积学报, 31(5): 928-938. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201305018.htm
      [44] 郭旭升, 2022. 我国陆上未来油气勘探领域探讨与攻关方向. 地球科学, 47(10): 3511-3523. doi: 10.3799/dqkx.2022.873
      [45] 姜在兴, 梁超, 吴靖, 等, 2013. 含油气细粒沉积岩研究的几个问题. 石油学报, 34(6): 1031-1039. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201306001.htm
      [46] 姜在兴, 张文昭, 梁超, 等, 2014. 页岩油储层基本特征及评价要素. 石油学报, 35(1): 184-196. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201401027.htm
      [47] 梁超, 姜在兴, 杨镱婷, 等, 2012. 四川盆地五峰组‒龙马溪组页岩岩相及储集空间特征. 石油勘探与开发, 39(6): 691-698. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201206007.htm
      [48] 刘惠民, 王勇, 杨永红, 等, 2020. 东营凹陷细粒混积岩发育环境及其岩相组合: 以沙四上亚段泥页岩细粒沉积为例. 地球科学, 45(10): 3543-3555. doi: 10.3799/dqkx.2020.156
      [49] 刘早学, 许露露, 温雅茹, 等, 2022. 湖北寒武系牛蹄塘组页岩气成藏条件与综合评价. 地球科学, 47(5): 1586-1603. doi: 10.3799/dqkx.2021.214
      [50] 马文辛, 刘树根, 黄文明, 等, 2012. 四川盆地周缘筇竹寺组泥页岩储层特征. 成都理工大学学报(自然科学版), 39(2): 182-189. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201202012.htm
      [51] 宁方兴, 2015. 济阳坳陷页岩油富集机理. 特种油气藏, 22(3): 27-30, 152. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201503006.htm
      [52] 彭雪峰, 汪立今, 姜丽萍, 2012. 准噶尔盆地东南缘芦草沟组油页岩元素地球化学特征及沉积环境指示意义. 矿物岩石地球化学通报, 31(2): 121-127, 151. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201202004.htm
      [53] 宋明水, 2019. 济阳坳陷页岩油勘探实践与现状. 油气地质与采收率, 26(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901001.htm
      [54] 宋明水, 刘惠民, 王勇, 等, 2020. 济阳坳陷古近系页岩油富集规律认识与勘探实践. 石油勘探与开发, 47(2): 225-235. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002003.htm
      [55] 滕建彬, 2018. 东营凹陷利页1井泥页岩中白云石成因及层序界面意义. 油气地质与采收率, 25(2): 1-7, 36. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201802001.htm
      [56] 王冠民, 2012. 济阳坳陷古近系页岩的纹层组合及成因分类. 吉林大学学报(地球科学版), 42(3): 666-671, 680. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201203010.htm
      [57] 王洪宝, 2009. 东营凹陷盐家油田砂砾岩体内幕沉积期次精细划分. 石油天然气学报, 31(5): 45-49, 430. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX200905012.htm
      [58] 王勇, 王学军, 宋国奇, 等, 2016. 渤海湾盆地济阳坳陷泥页岩岩相与页岩油富集关系. 石油勘探与开发, 43(5): 696-704. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201605005.htm
      [59] 王永诗, 王伟庆, 郝运轻, 2013. 济阳坳陷沾化凹陷罗家地区古近系沙河街组页岩储集特征分析. 古地理学报, 15(5): 657-662.
      [60] 武晓玲, 高波, 叶欣, 等, 2013. 中国东部断陷盆地页岩油成藏条件与勘探潜力. 石油与天然气地质, 34(4): 455-462. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201304007.htm
      [61] 杨万芹, 蒋有录, 王勇, 2015. 东营凹陷沙三下‒沙四上亚段泥页岩岩相沉积环境分析. 中国石油大学学报(自然科学版), 39(4): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201504003.htm
      [62] 袁选俊, 林森虎, 刘群, 等, 2015. 湖盆细粒沉积特征与富有机质页岩分布模式——以鄂尔多斯盆地延长组长7油层组为例. 石油勘探与开发, 42(1): 34-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201501005.htm
      [63] 张顺, 陈世悦, 谭明友, 等, 2014. 东营凹陷西部沙河街组三段下亚段泥页岩沉积微相. 石油学报, 35(4): 633-645. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201404003.htm
      [64] 张顺, 刘惠民, 宋国奇, 等, 2016. 东营凹陷页岩油储集空间成因及控制因素. 石油学报, 37(12): 1495-1507, 1527. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201612005.htm
      [65] 张新荣, 方石, 胡克, 等, 2011. 敦化盆地晚全新世泥炭沉积中化学元素记录的古气候分析. 干旱区地理, 34(5): 726-732. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201105004.htm
      [66] 周立宏, 蒲秀刚, 陈长伟, 等, 2018. 陆相湖盆细粒岩油气的概念、特征及勘探意义: 以渤海湾盆地沧东凹陷孔二段为例. 地球科学, 43(10): 3625-3639. doi: 10.3799/dqkx.2018.990
      [67] 邹才能, 杨智, 董大忠, 等, 2022. 非常规源岩层系油气形成分布与前景展望. 地球科学, 47(5): 1517-1533. doi: 10.3799/dqkx.2022.160
    • 加载中
    图(14) / 表(3)
    计量
    • 文章访问数:  189
    • HTML全文浏览量:  77
    • PDF下载量:  67
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-01-21
    • 网络出版日期:  2023-02-01
    • 刊出日期:  2023-01-25

    目录

      /

      返回文章
      返回