Types and Characteristics of Shale Lithofacies Combinations in Continental Faulted Basins: A Case Study from Upper Sub-Member of Es4 in Dongying Sag, Jiyang Depression
-
摘要: 目前尚未有划分陆相断陷盆地页岩岩相组合的研究成果和技术方法,不同页岩岩相组合的基本特征还需要进一步明确.在页岩油井取心井段岩心精细观察描述的基础上,利用岩石薄片观察和X射线‒全岩矿物衍射分析明确取心段页岩的基本岩石和岩相类型,通过主要矿物成分及主微量元素测试分析,提取济阳坳陷古近系页岩沉积古环境信息;依据四古环境(古气候、古物源、古盐度、古水深)基本特征,按照沉积环境相似性以及内部结构均一性等原则对东营凹陷沙四上亚段页岩层系进行岩相组合划分,建立了基于沉积环境主控的页岩岩相组合分级划分方案,并结合储层和有机地化分析测试明确了主要岩相组合的储集性和含油性特征.结果表明:(1)东营凹陷沙四上页岩是典型的富碳酸盐页岩(碳酸盐质页岩)和混积型页岩,纹层特征显著,孔隙类型多样,层理缝和构造缝较发育,有机质丰度高,演化程度中等‒低,埋藏深、压力系数高.(2)依据沉积构造部位、古环境,东营凹陷沙四上亚段页岩可划分为8类岩相组合,在盆地中心以发育基质型碳酸盐质页岩岩相组合为主、块状白云岩夹层型页岩岩相组合为辅,在北部陡斜坡带主要发育砂岩夹层型页岩岩相组合,在南部缓斜坡带主要发育块状白云岩夹层型以及纹层状灰质泥岩和白云岩互层等页岩岩相组合.(3)一般地,作为细粒沉积的主体,东营凹陷洼陷中心沙四上亚段基质型页岩层系自底至顶依次发育纹层状泥质灰岩夹块状白云岩相、纹层状泥质灰岩和白云岩互层相、纹层状泥质灰岩和灰质泥岩互层相、纹层状泥质灰岩夹灰质泥岩相、层状泥质灰岩和灰质泥岩互层相、层状泥质灰夹灰质泥岩相等,揭示沉积古环境由干旱、咸水、半深水、少物源向半湿润、半咸水、深水、较多物源的变化.(4)纹层状泥质灰岩夹灰质泥岩组合以及纹层状泥质灰岩和灰质泥岩互层组合最为发育,储集空间类型多样、大孔径孔隙占比高且连通性较好;纹层状泥质灰岩和灰质泥岩互层含油饱和度相对较高,也是目前济阳坳陷页岩油获得突破的一种有利岩相组合类型;纹层状泥质灰岩夹块状白云岩组合具有较好的含油性和脆性.进一步分析不同岩相组合的基本地质特征及含油性特征、厘定主要页岩岩相组合的发育分布特征对陆相断陷盆地页岩油勘探具有现实的指导意义.Abstract: There are no relevant research results and technical methods on the classification of shale lithofacies combinations in continental faulted basins, and the basic characteristics of different shale lithofacies assemblages need to be further clarified. Based on the fine observation and description of the core samples, the basic rock and lithofacies types of the sampled shale sections were identified by observing rock thin sections and performing X-ray-based full-rock mineral diffraction analysis. By analyzing the major mineral composition and major and trace element contents of the samples, information about the sedimentary paleoenvironment of the Jiyang Depression was extracted. According to the basic characteristics of the four paleoenvironment factors (paleoclimate, paleosource, paleosalinity, paleowater depth), the shale stratigraphy of the Upper Sub-member of the Fourth Member of Shahejie Formation (Es4s) in the Dongying Sag was divided into lithofacies combinations based on the principle of sedimentary environment similarity and internal structure uniformity. A lithofacies combination classification scheme based on sedimentary environment control was established, and combined with reservoir and organic geochemical analysis, the main lithofacies combination reservoir and oil-bearing characteristics were clarified. Results show that: (1) Es4s shale in the Dongying Sag is a typical carbonate-rich shale (carbonate shale) and mixed shale, with significant lamination features, various types of pores, well-developed bedding and structural fractures, high organic matter abundance, moderate-to-low evolutionary degree, deep burial depth and high pressure coefficient. (2) Based on sedimentary structural position and paleoenvironment, the Es4s shale in the Dongying Sag can be divided into 8 lithofacies combinations. In the central part of the basin, the matrix carbonate shale lithofacies combination is dominant, with some interbedded block dolomite shale lithofacies combination. In the northern steep slope belt, the sandstone interbedded shale lithofacies combination is mainly developed, and in the southern gentle slope belt, the block dolomite shale interbedded lithofacies combination and the laminar carbonate mudstone and dolomite shale interbedded lithofacies combination are mainly developed. (3) In general, as the main body of fine-grained sediments, the Es4s matrix shale stratigraphy in the center of the Dongying Sag develops from bottom to top: laminar carbonate shale interbedded with block dolomite shale lithofacies, laminar carbonate shale and dolomite shale interbedded lithofacies, laminar carbonate shale and carbonate mudstone interbedded lithofacies, laminar carbonate shale interbedded with carbonate mudstone lithofacies, laminated carbonate shale and carbonate mudstone interbedded lithofacies, laminated carbonate shale interbedded with carbonate mudstone lithofacies, etc., revealing the change in sedimentary paleoenvironment from arid, brackish water, semi-deep water, and less source rocks to semi-wet, semi-brackish water, deep water, and more source rocks. (4) The laminar carbonate shale interbedded with carbonate mudstone lithofacies combination and the laminar carbonate shale and carbonate mudstone interbedded lithofacies combination are the most developed, with a variety of reservoir space types, high proportion of large-diameter pores and good connectivity. The laminar carbonate shale and carbonate mudstone interbedded lithofacies combination has relatively high oil saturation, and is also a favorable lithofacies combination type for achieving breakthroughs in shale oil in the Jiyang Depression. The laminar carbonate shale interbedded with block-type dolomite shale lithofacies combination has good oil-bearing and brittle properties. Further analysis of the basic geological characteristics and oil-bearing characteristics of different lithofacies combinations and determination of the development and distribution characteristics of the main shale lithofacies combinations are of practical significance for exploring shale oil in continental faulted basins.
-
Key words:
- shale /
- lithofacies combination /
- sedimentary environment /
- reservoir space /
- oil-bearing /
- faulted basin /
- Dongying Sag /
- petroleum geology
-
图 4 纹层状(粗晶)泥质灰岩和灰质泥岩互层岩心和普通岩石薄片镜下特征
c. 富有机质纹层状泥质灰岩相,纹层特征显著,方解石以细晶和亮晶为主,方解石纹层与富有机质粘土层频繁互层,牛55-斜1井,3 590.17 m;d. 富有机质纹层状灰质泥岩相,局部发育亮晶方解石纹层,牛55-斜1井,3 590.65 m;e. 纹层状泥质灰岩,方解石以泥晶为主,牛55-斜1井,3 592.00 m
Fig. 4. Microscopic images of laminated argillaceous limestone and calcareous mudstone interbedded cores with sparry calcite particle
图 5 纹层状(泥晶)泥质灰岩和灰质泥岩互层岩心和普通岩石薄片镜下特征
c.富有机质纹层状灰质泥岩相,富有机质粘土层特征明显,石英颗粒顺层分布,樊页平1井,3 469.80 m. d、e. 富有机质纹层状泥质灰岩相,樊页平1井,图b中泥晶方解石纹层与富有机质粘土层界限清晰,3 470.30 m;图c中发育近垂直异常超压缝,内部充填方解石,3 470.70 m
Fig. 5. Microscopic images of laminated argillaceous limestone and calcareous mudstone interbedded cores with micritic calcite particle
图 8 层状泥质灰岩和灰质泥岩互层组合扫描电镜下储集空间类型
a.孔隙中充填方解石,方解石中溶蚀微孔分布(牛55-斜1井,3 430.45 m);b.片状伊蒙混层I/S中层间缝隙和微孔隙分布(牛55-斜1井,3 463.84 m);c.孔隙中充填白云石、石盐晶粒、方解石、片状伊蒙混层、白云石和方解石,其中方解石发育溶蚀孔隙(牛55-斜1井,3 545.10 m). Cc为方解石,D为白云石,I/S为伊蒙混层,HI为石盐
Fig. 8. Reservoir space type of combination of layered argillaceous limestone and calcareous mudstone observed with scanning electron microscope
表 1 东营凹陷沙四上亚段主要页岩岩相组合类型
Table 1. Main shale lithofacies combinations in the Upper Es4 Sub-member of Dongying Sag
类型 岩相组合类型 发育层段 体系域 环境特征 基
质
型纹层状泥质灰岩和灰质泥岩互层 Es4cs3 TST 半干旱/咸水/少物源/半深水 纹层状泥质灰岩夹灰质泥岩 Es4cs2 HST 半湿润/半咸水/少物源/半深水 层状泥质灰岩和灰质泥岩互层 Es4cs1-2 HST 半干旱/半咸水/较少物源/半深水 纹层状泥质灰岩和白云岩互层 Es4cs3 TST 半干旱/半咸水/少物源/浅水 层状泥质灰岩夹灰质泥岩 Es4cs1 HST 湿润/微咸水/多物源/深水 夹
层
型碳酸盐岩夹层 层状泥质灰岩夹块状白云岩 Es4cs4/Es4cx LST 干旱/咸水/少物源/较浅水 砂岩夹层 (纹)层状灰质泥岩夹层状砂岩 Es4cs TST 半湿润/微咸水/多物源/半深水 层状灰质泥岩夹块状砂岩 Es4cx TST 半湿润/微咸水/多物源/深水 表 2 东营凹陷沙四上亚段页岩基本特征
Table 2. Basic characteristics of shale in the Upper Es4 Sub-member of Dongying Sag
井名 埋深(m) 沉积构造 矿物含量(%) TOC
(%)S1
(mg/g)S2
(mg/g)Tmax
(℃)孔隙度(%) 粘土矿物 石英 钾长石 斜长石 方解石 白云石 黄铁矿 牛55-斜1 3 427.00 层状 30 19 3 38 2 3.95 4.99 14.05 439 6.87 牛55-斜1 3 439.45 层状 22 20 2 50 5 1 2.33 3.97 11.72 440 5.52 牛55-斜1 3 439.88 层状 18 18 2 52 8 2.39 3.91 10.14 441 牛55-斜1 3 447.17 层状 21 26 2 30 13 4.12 6.96 24.46 443 6.07 牛55-斜1 3 466.20 层状 9 23 1 61 4 2.90 4.75 18.84 441 4.99 牛55-斜1 3 552.40 纹层状 12 14 3 60 10 2.17 2.99 11.06 443 牛55-斜1 3 576.90 纹层状 15 15 4 56 7 2.70 2.04 9.23 442 5.65 牛55-斜1 3 579.20 纹层状 21 14 6 45 4 2.56 3.84 11.60 441 6.25 牛55-斜1 3 588.93 纹层状 37 23 10 10 17 3.92 7.00 16.76 442 牛55-斜1 3 592.00 纹层状 9 14 4 61 10 2.28 3.34 9.92 445 牛55-斜1 3 590.65 纹层状 23 17 7 32 8 2.92 4.13 13.81 443 9.15 官17-斜10 3 225.00 层状 41 27 10 9 5 4 官17-斜10 3 225.50 层状 19 34 4 15 17 6 2 官17-斜10 3 225.60 层状 13 33 4 17 13 15 2 官17-斜10 3 226.90 层状 47 24 7 6 9 2 官17-斜10 3 230.05 层状 36 21 6 1 28 4 官17-斜10 3 231.60 层状 40 13 5 36 2 官17-斜10 3 234.60 纹层状 20 16 5 54 2 坨斜729 3 509.00 层状 18 42 7 15 17 1 坨斜729 3 510.85 层状 31 38 6 13 5 6 1 坨斜729 3 513.05 层状 22 35 3 14 19 6 1 坨斜729 3 514.85 层状 16 35 6 18 15 10 FYP1 3 451.65 纹层状 26 25 6 18 20 5 3.67 1.67 14.80 452 FYP1 3 456.19 纹层状 5 28 8 32 23 3 0.62 1.89 2.26 441 FYP1 3 462.95 纹层状 12 16 2 56 12 2 1.02 1.42 3.16 449 FYP1 3 465.08 纹层状 10 12 4 61 12 1 1.01 2.81 4.41 439 FYP1 3 468.81 纹层状 20 19 8 33 8 11 4.69 2.21 15.12 450 FYP1 3 470.55 纹层状 14 18 4 43 17 4 1.31 0.99 3.85 453 FYP1 3 471.40 纹层状 10 17 2 62 7 2 1.43 1.08 4.55 451 FYP1 3 473.57 纹层状 27 32 14 9 11 6 5.37 1.75 20.87 454 GX27 2 300.91 纹层状 14 10 2 55 19 1.96 0.18 11.39 436 GX27 2 301.90 纹层状 17 10 70 3 6.30 1.84 46.08 435 GX27 2 302.54 纹层状 24 16 3 4 9 42 2 5.09 2.46 34.38 427 GX27 2 304.10 纹层状 16 9 3 64 6 2 2.61 0.35 13.33 433 GX27 2 305.02 纹层状 39 24 4 6 24 3 5.96 0.63 45.04 436 GX27 2 305.85 纹层状 8 5 2 83 2 7.97 1.25 44.42 438 GX27 2 310.02 纹层状 16 13 3 4 60 4 6.05 1.95 41.34 437 GX27 2 307.78 纹层状 11 9 79 1 5.03 0.62 26.47 435 GX27 2 308.02 纹层状 43 29 6 11 5 1 5 10.10 0.44 78.14 443 GX27 2 308.40 纹层状 7 5 13 72 3 表 3 东营凹陷沙四上亚段主要页岩岩相组合类型
Table 3. Main shale lithofacies combinations and characteristics in the Upper Es4 Sub-member of Dongying Sag
岩相组合类型 沉积环境 宏、微观特征 孔隙度(%) 含油性 TOC
(%)S1
(mg/g)孔隙度(%)×
含油饱和度(%)纹层状泥质灰岩和灰质泥岩互层 弱‒静水环境半湿润、少物源、咸水 宏观岩心以明暗相间为主,具纹层结构;镜下纹层显著,多数纹层平直,细/亮晶方解石纹层与富有机质粘土层(或有机质层/粘土层)界限清晰;储集空间以方解石晶间孔及晶间溶蚀孔及伊蒙混层I/S晶间孔为主、含油性较好 7.3~16.4(11.46) 2.17~2.92(2.75) 0.54~11.23(5.57) 0.85~6.57
(3.37)层状泥质灰岩
夹灰质泥岩气候半潮湿、半咸水、半深水‒浅水、较多物源的还原环境. 宏观岩心以深色为主,具层状结构;镜下矿物呈现定向或弱定向组构,灰泥透镜体大小不一、断续分布,局部纹层连续性较好,少量长英质矿物零星分布;储集类型以粘土矿物晶间孔和方解石晶间孔为主,少量石英和长石等粒间孔发育 7.6~11.0(9.15) 2.9~4.12(3.138) 1.07~10.8(3.62) 1.69~7.76
(3.59)纹层状泥质灰岩夹块状白云岩 气候干燥、少物源、咸水的沉积环境 宏观岩心以浅灰色‒灰色为主,具纹层结构;镜下岩石主要为白云石(泥晶结构),少部分泥质,微量黄铁矿,偶见陆源碎屑;储集空间主要发育泥晶白云石晶间孔和少量亮晶方解石晶间孔 9.2~18.9(12.24) 0.15~2.04(1.15) 0.06~1.97(0.37) 0.03~3.43
(1.79)纹层状泥质灰岩和白云岩互层 气候干燥、物源少‒中等、半深水、
咸水‒半咸水的
强还原环境宏观岩心以灰黑色‒褐色为主,具纹层结构;镜下岩石以泥质灰岩为主,同时发育白云岩,含量最高达72%,部分样品混积及交代作用明显;储集类型以白云石晶间孔为主,方解石和白云石边缘或边角处可见不规则溶蚀孔,部分样品可见球粒状黄铁矿晶间孔和有机质收缩缝 10.3~19.1(15.00) 1.77~6.05(5.07) 2.60~19.07(6.20) 0.90~4.71
(2.70) -
[1] Abouelresh, M. O., Slatt, R. M., 2012. Lithofacies and Sequence Stratigraphy of the Barnett Shale in East-Central Fort Worth Basin, Texas. AAPG Bulletin, 96(1): 1-22. https://doi.org/10.1306/04261110116 [2] Cao, Y. C., Zhang, Q. Q., Wang, Y. Z., et al., 2017. Delta Front Gravity Flow Deposits in the Middle Submember of the Third Member of the Shahejie Formation in the Dongying Depression: Lithofacies and Lithofacies Association Types and Their Distribution. Sedimentary Geology and Tethyan Geology, 37(1): 9-17 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-3850.2017.01.002 [3] Chen, S. Y., Zhang, S., Liu, H. M., et al., 2017. Discussion on Mixing of Fine-Grained Sediments in Lacustrine Deep Water. Journal of Palaeogeography (Chinese Edition), 19(2): 271-284 (in Chinese with English abstract). [4] Chen, S. Y., Zhang, S., Wang, Y. S., et al., 2016. Lithofacies Types and Reservoirs of Paleogene Fine-Grained Sedimentary Rocks in Dongying Sag, Bohai Bay Basin. Petroleum Exploration and Development, 43(2): 198-208 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1876380416300258 [5] Deng, H. W., Qian, K., 1990. The Genetic Types and Association Evolution of Deep Lacustrine Facies Mudstones. Acta Sedimentologica Sinica, 8(3): 1-21 (in Chinese with English abstract). [6] Fu, J. H., Deng, X. Q., Chu, M. J., et al., 2013. Features of Deepwater Lithofacies, Yanchang Formation in Ordos Basin and Its Petroleum Significance. Acta Sedimentologica Sinica, 31(5): 928-938 (in Chinese with English abstract). [7] Guo, X. S., 2022. Discussion and Research Direction of Future Onshore Oil and Gas Exploration in China. Earth Science, 47(10): 3511-3523 (in Chinese with English abstract). [8] Hickey, J. J., Henk, B., 2007. Lithofacies Summary of the Mississippian Barnett Shale, Mitchell 2 T. P. Sims Well, Wise County, Texas. AAPG Bulletin, 91(4): 437-443. https://doi.org/10.1306/12040606053 [9] Jiang, Z. X., Liang, C., Wu, J., et al., 2013. Several Issues in Sedimentological Studies on Hydrocarbon-Bearing Fine-Grained Sedimentary Rocks. Acta Petrolei Sinica, 34(6): 1031-1039 (in Chinese with English abstract). [10] Jiang, Z. X., Zhang, W. Z., Liang, C., et al., 2014. Characteristics and Evaluation Elements of Shale Oil Reservoir. Acta Petrolei Sinica, 35(1): 184-196 (in Chinese with English abstract). [11] Krumbein, W. C., 1932. The Mechanical Analysis of Fine-Grained Sediments. Journal of Sedimentary Research, 2(3): 140-149. https://doi.org/10.2110/jsr.2.140 [12] Liang, C., Jiang, Z. X., Yang, Y. T., et al., 2012. Characteristics of Shale Lithofacies and Reservoir Space of the Wufeng-Longmaxi Formation, Sichuan Basin. Petroleum Exploration and Development, 39(6): 691-698 (in Chinese with English abstract). [13] Liu, H. M., Wang, Y., Yang, Y. H., et al., 2020. Sedimentary Environment and Lithofacies of Fine-Grained Hybrid Sedimentary in Dongying Sag: A Case of Fine-Grained Sedimentary System of the Es4. Earth Science, 45(10): 3543-3555 (in Chinese with English abstract). [14] Liu, Z. X., Xu, L. L., Wen, Y. R., et al., 2022. Accumulation Characteristics and Comprehensive Evaluation of Shale Gas in Cambrian Niutitang Formation, Hubei. Earth Science, 47(5): 1586-1603 (in Chinese with English abstract). [15] Loucks, R. G., Ruppel, S. C., 2007. Mississippian Barnett Shale: Lithofacies and Depositional Setting of a Deep-Water Shale-Gas Succession in the Fort Worth Basin, Texas. AAPG Bulletin, 91(4): 579-601. https://doi.org/10.1306/11020606059 [16] Lü, D. W., Wang, D. D., Li, Z. X., et al., 2017. Depositional Environment, Sequence Stratigraphy and Sedimentary Mineralization Mechanism in the Coal Bed- and Oil Shale-Bearing Succession: A Case from the Paleogene Huangxian Basin of China. Journal of Petroleum Science and Engineering, 148: 32-51. https://doi.org/10.1016/j.petrol.2016.09.028 [17] Ma, W. X., Liu, S. G., Huang, W. M., et al., 2012. Mud Shale Reservoirs Characteristics of Qiongzhusi Formation on the Margin of Sichuan Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 39(2): 182-189 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2012.02.011 [18] MacQuaker, J. H. S., Taylor, K. G., Keller, M., et al., 2014. Compositional Controls on Early Diagenetic Pathways in Fine-Grained Sedimentary Rocks: Implications for Predicting Unconventional Reservoir Attributes of Mudstones. AAPG Bulletin, 98(3): 587-603. https://doi.org/10.1306/08201311176 [19] Milliken, K. L., Esch, W. L., Reed, R. M., et al., 2012. Grain Assemblages and Strong Diagenetic Overprinting in Siliceous Mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas. AAPG Bulletin, 96(8): 1553-1578. https://doi.org/10.1306/12011111129 [20] Milliken, K. L., Rudnicki, M., Awwiller, D. N., et al., 2013. Organic Matter-Hosted Pore System, Marcellus Formation (Devonian), Pennsylvania. AAPG Bulletin, 97(2): 177-200. https://doi.org/10.1306/07231212048 [21] Ning, F. X., 2015. Mechanism of Shale Oil Enrichment in Jiyang Depression. Special Oil & Gas Reservoirs, 22(3): 27-30, 152 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-6535.2015.03.006 [22] Peng, X. F., Wang, L. J., Jiang, L. P., 2012. Geochemical Characteristics of the Lucaogou Formation Oil Shale in the Southeastern Margin of the Junggar Basin and Its Environmental Implications. Bulletin of Mineralogy, Petrology and Geochemistry, 31(2): 121-127, 151 (in Chinese with English abstract). doi: 10.2110/jsr.69.909 [23] Schieber, J., 1999. Distribution and Deposition of Mudstone Facies in the Upper Devonian Sonyea Group of New York. Journal of Sedimentary Research, 69(4): 909-925. https://doi.org/10.2110/jsr.69.909 [24] Song, M. S., 2019. Practice and Current Status of Shale Oil Exploration in Jiyang Depression. Petroleum Geology and Recovery Efficiency, 26(1): 1-12 (in Chinese with English abstract). [25] Song, M. S., Liu, H. M., Wang, Y., et al., 2020. Enrichment Rules and Exploration Practices of Paleogene Shale Oil in Jiyang Depression, Bohai Bay Basin, China. Petroleum Exploration and Development, 47(2): 225-235 (in Chinese with English abstract). doi: 10.1016/S1876-3804(20)60041-6 [26] Teng, J. B., 2018. Genesis of Dolomite in Shale Drilled by Well Liye1 in Dongying Sag and Its Significance on Sequence Boundary Indication. Petroleum Geology and Recovery Efficiency, 25(2): 1-7, 36 (in Chinese with English abstract). [27] Wang, G. M., 2012. Laminae Combination and Genetic Classification of Eogene Shale in Jiyang Depression. Journal of Jilin University (Earth Science Edition), 42(3): 666-671, 680 (in Chinese with English abstract). [28] Wang, H. B., 2009. Research of the Depositional Period inside Glutenite Body in Yanjia Oilfield of Dongying Depression. Journal of Oil and Gas Technology, 31(5): 45-49, 430 (in Chinese with English abstract). [29] Wang, Y., Wang, X. J., Song, G. Q., et al., 2016. Genetic Connection between Mud Shale Lithofacies and Shale Oil Enrichment in Jiyang Depression, Bohai Bay Basin. Petroleum Exploration and Development, 43(5): 696-704 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S187638041630091X [30] Wang, Y. S., Wang, W. Q., Hao, Y. Q., 2013. Shale Reservoir Characteristics Analysis of the Paleogene Shahejie Formation in Luojia Area of Zhanhua Sag, Jiyang Depression. Journal of Palaeogeography, 15(5): 657-662 (in Chinese with English abstract). [31] Wu, X. L., Gao, B., Ye, X., et al., 2013. Shale Oil Accumulation Conditions and Exploration Potential of Faulted Basins in the East of China. Oil & Gas Geology, 34(4): 455-462 (in Chinese with English abstract). [32] Yang, W. Q., Jiang, Y. L., Wang, Y., 2015. Study on Shale Facies Sedimentary Environment of Lower Es3-Upper Es4 in Dongying Sag. Journal of China University of Petroleum (Edition of Natural Science), 39(4): 19-26 (in Chinese with English abstract). [33] Yuan, X. J., Lin, S. H., Liu, Q., et al., 2015. Lacustrine Fine-Grained Sedimentary Features and Organic-Rich Shale Distribution Pattern: A Case Study of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China. Petroleum Exploration and Development, 42(1): 34-43 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1876380415600040 [34] Zhang, S., Chen, S. Y., Tan, M. Y., et al., 2014. Characterization of Sedimentary Microfacies of Shale in the Lower Third Sub-Member of Shahejie Formation, Western Dongying Sag. Acta Petrolei Sinica, 35(4): 633-645 (in Chinese with English abstract). [35] Zhang, S., Liu, H. M., Song, G. Q., et al., 2016. Genesis and Control Factors of Shale Oil Reserving Space in Dongying Sag. Acta Petrolei Sinica, 37(12): 1495-1507, 1527 (in Chinese with English abstract). [36] Zhang, X. R., Fang, S., Hu, K., et al., 2011. Paleo-Climate Analysis of the Geochemical Element Records in the Late Holocene Peat Deposits of Dunhua Basin, NE China. Arid Land Geography, 34(5): 726-732 (in Chinese with English abstract). [37] Zhou, L. H., Pu, X. G., Chen, C. W., et al., 2018. Concept, Characteristics and Prospecting Significance of Fine-Grained Sedimentary Oil Gas in Terrestrial Lake Basin: A Case from the Second Member of Paleogene Kongdian Formation of Cangdong Sag, Bohai Bay Basin. Earth Science, 43(10): 3625-3639 (in Chinese with English abstract). [38] Zou, C. N., Yang, Z., Dong, D. Z., et al., 2022. Formation, Distribution and Prospect of Unconventional Hydrocarbons in Source Rock Strata in China. Earth Science, 47(5): 1517-1533 (in Chinese with English abstract). [39] 操应长, 张青青, 王艳忠, 等, 2017. 东营凹陷沙三中亚段三角洲前缘滑塌型重力流岩相类型及其分布特征. 沉积与特提斯地质, 37(1): 9-17. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201701002.htm [40] 陈世悦, 张顺, 刘惠民, 等, 2017. 湖相深水细粒物质的混合沉积作用探讨. 古地理学报, 19(2): 271-284. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201702008.htm [41] 陈世悦, 张顺, 王永诗, 等, 2016. 渤海湾盆地东营凹陷古近系细粒沉积岩岩相类型及储集层特征. 石油勘探与开发, 43(2): 198-208. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201602006.htm [42] 邓宏文, 钱凯, 1990. 深湖相泥岩的成因类型和组合演化. 沉积学报, 8(3): 1-21. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199003000.htm [43] 付金华, 邓秀芹, 楚美娟, 等, 2013. 鄂尔多斯盆地延长组深水岩相发育特征及其石油地质意义. 沉积学报, 31(5): 928-938. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201305018.htm [44] 郭旭升, 2022. 我国陆上未来油气勘探领域探讨与攻关方向. 地球科学, 47(10): 3511-3523. doi: 10.3799/dqkx.2022.873 [45] 姜在兴, 梁超, 吴靖, 等, 2013. 含油气细粒沉积岩研究的几个问题. 石油学报, 34(6): 1031-1039. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201306001.htm [46] 姜在兴, 张文昭, 梁超, 等, 2014. 页岩油储层基本特征及评价要素. 石油学报, 35(1): 184-196. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201401027.htm [47] 梁超, 姜在兴, 杨镱婷, 等, 2012. 四川盆地五峰组‒龙马溪组页岩岩相及储集空间特征. 石油勘探与开发, 39(6): 691-698. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201206007.htm [48] 刘惠民, 王勇, 杨永红, 等, 2020. 东营凹陷细粒混积岩发育环境及其岩相组合: 以沙四上亚段泥页岩细粒沉积为例. 地球科学, 45(10): 3543-3555. doi: 10.3799/dqkx.2020.156 [49] 刘早学, 许露露, 温雅茹, 等, 2022. 湖北寒武系牛蹄塘组页岩气成藏条件与综合评价. 地球科学, 47(5): 1586-1603. doi: 10.3799/dqkx.2021.214 [50] 马文辛, 刘树根, 黄文明, 等, 2012. 四川盆地周缘筇竹寺组泥页岩储层特征. 成都理工大学学报(自然科学版), 39(2): 182-189. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201202012.htm [51] 宁方兴, 2015. 济阳坳陷页岩油富集机理. 特种油气藏, 22(3): 27-30, 152. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201503006.htm [52] 彭雪峰, 汪立今, 姜丽萍, 2012. 准噶尔盆地东南缘芦草沟组油页岩元素地球化学特征及沉积环境指示意义. 矿物岩石地球化学通报, 31(2): 121-127, 151. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201202004.htm [53] 宋明水, 2019. 济阳坳陷页岩油勘探实践与现状. 油气地质与采收率, 26(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901001.htm [54] 宋明水, 刘惠民, 王勇, 等, 2020. 济阳坳陷古近系页岩油富集规律认识与勘探实践. 石油勘探与开发, 47(2): 225-235. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002003.htm [55] 滕建彬, 2018. 东营凹陷利页1井泥页岩中白云石成因及层序界面意义. 油气地质与采收率, 25(2): 1-7, 36. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201802001.htm [56] 王冠民, 2012. 济阳坳陷古近系页岩的纹层组合及成因分类. 吉林大学学报(地球科学版), 42(3): 666-671, 680. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201203010.htm [57] 王洪宝, 2009. 东营凹陷盐家油田砂砾岩体内幕沉积期次精细划分. 石油天然气学报, 31(5): 45-49, 430. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX200905012.htm [58] 王勇, 王学军, 宋国奇, 等, 2016. 渤海湾盆地济阳坳陷泥页岩岩相与页岩油富集关系. 石油勘探与开发, 43(5): 696-704. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201605005.htm [59] 王永诗, 王伟庆, 郝运轻, 2013. 济阳坳陷沾化凹陷罗家地区古近系沙河街组页岩储集特征分析. 古地理学报, 15(5): 657-662. [60] 武晓玲, 高波, 叶欣, 等, 2013. 中国东部断陷盆地页岩油成藏条件与勘探潜力. 石油与天然气地质, 34(4): 455-462. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201304007.htm [61] 杨万芹, 蒋有录, 王勇, 2015. 东营凹陷沙三下‒沙四上亚段泥页岩岩相沉积环境分析. 中国石油大学学报(自然科学版), 39(4): 19-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201504003.htm [62] 袁选俊, 林森虎, 刘群, 等, 2015. 湖盆细粒沉积特征与富有机质页岩分布模式——以鄂尔多斯盆地延长组长7油层组为例. 石油勘探与开发, 42(1): 34-43. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201501005.htm [63] 张顺, 陈世悦, 谭明友, 等, 2014. 东营凹陷西部沙河街组三段下亚段泥页岩沉积微相. 石油学报, 35(4): 633-645. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201404003.htm [64] 张顺, 刘惠民, 宋国奇, 等, 2016. 东营凹陷页岩油储集空间成因及控制因素. 石油学报, 37(12): 1495-1507, 1527. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201612005.htm [65] 张新荣, 方石, 胡克, 等, 2011. 敦化盆地晚全新世泥炭沉积中化学元素记录的古气候分析. 干旱区地理, 34(5): 726-732. https://www.cnki.com.cn/Article/CJFDTOTAL-GHDL201105004.htm [66] 周立宏, 蒲秀刚, 陈长伟, 等, 2018. 陆相湖盆细粒岩油气的概念、特征及勘探意义: 以渤海湾盆地沧东凹陷孔二段为例. 地球科学, 43(10): 3625-3639. doi: 10.3799/dqkx.2018.990 [67] 邹才能, 杨智, 董大忠, 等, 2022. 非常规源岩层系油气形成分布与前景展望. 地球科学, 47(5): 1517-1533. doi: 10.3799/dqkx.2022.160