• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    非常规源岩层系油气形成分布与前景展望

    邹才能 杨智 董大忠 赵群 陈振宏 冯有良 李嘉蕊 王小妮

    邹才能, 杨智, 董大忠, 赵群, 陈振宏, 冯有良, 李嘉蕊, 王小妮, 2022. 非常规源岩层系油气形成分布与前景展望. 地球科学, 47(5): 1517-1533. doi: 10.3799/dqkx.2022.160
    引用本文: 邹才能, 杨智, 董大忠, 赵群, 陈振宏, 冯有良, 李嘉蕊, 王小妮, 2022. 非常规源岩层系油气形成分布与前景展望. 地球科学, 47(5): 1517-1533. doi: 10.3799/dqkx.2022.160
    Zou Caineng, Yang Zhi, Dong Dazhong, Zhao Qun, Chen Zhenhong, Feng Youliang, Li Jiarui, Wang Xiaoni, 2022. Formation, Distribution and Prospect of Unconventional Hydrocarbons in Source Rock Strata in China. Earth Science, 47(5): 1517-1533. doi: 10.3799/dqkx.2022.160
    Citation: Zou Caineng, Yang Zhi, Dong Dazhong, Zhao Qun, Chen Zhenhong, Feng Youliang, Li Jiarui, Wang Xiaoni, 2022. Formation, Distribution and Prospect of Unconventional Hydrocarbons in Source Rock Strata in China. Earth Science, 47(5): 1517-1533. doi: 10.3799/dqkx.2022.160

    非常规源岩层系油气形成分布与前景展望

    doi: 10.3799/dqkx.2022.160
    基金项目: 

    中石油科技项目 2021DJ18

    详细信息
      作者简介:

      邹才能(1963-),男,重庆北碚人,博士,中国科学院院士,中国石油勘探开发研究院教授级高级工程师、博士生导师,主要从事常规‒非常规油气地质学理论研究与实践、新能源与能源战略等研究.E⁃mail:zcn@petrochina.com.cn

      通讯作者:

      杨智,E⁃mail: yangzhi2009@petrochina.com.cn

    • 中图分类号: P618

    Formation, Distribution and Prospect of Unconventional Hydrocarbons in Source Rock Strata in China

    • 摘要: 经过十余年理论技术持续攻关,中国陆上实现了致密砂岩气规模发展、页岩气快速发展、煤层气持续发展、致密油稳步发展和页岩油加快探索,源岩层系油气已成为中国非常规油气增储上产的主要组成部分.源岩层系油气包括源岩油气和致密油气2种资源类型,普遍具备有效配置的烃源岩、储集层和聚集保存3个方面基础地质形成条件,展现出源内或近源大面积连续分布标志特征,海相页岩气主要分布于深水陆棚区,致密砂岩气和煤层气一般分布于主要聚煤期煤系,页岩层系石油一般主要发育于长期持续沉降的富油湖盆.源岩层系油气开发追求“平面甜点区”“纵向甜点段”较好经济资源条件,页岩气需含气量高、孔隙度高、TOC含量高、热演化程度适中、气层埋藏适中、保存条件好、储层可压性好、储量规模大,致密砂岩气需全天候气源、中粗粒砂岩、含气层系多、大面积聚集、稳定斜坡区、中浅层埋藏,致密油甜点区段一般具有烃源性、储集性、含油性、流动性、成缝性和经济性“六特性”经济资源条件.中国非常规源岩层系油气资源丰富,源岩层系天然气是天然气上产的“主力”,源岩层系石油是石油稳产的“砝码”,实现地下原位“煤岩燃烧气化、页岩熟化气化”“2个革命性领域”突破是推进源岩层系油气领域“跨越式”发展的关键路径.

       

    • 图  1  美国(a)和中国(b)非常规源岩层系油气历年油气产量(美国数据来源:EIA,2022

      Fig.  1.  Annual output of hydrocarbons in shale strata in the United States (a) and China (b)

      图  2  中国非常规源岩层系油气资源分布(据邹才能等,2019修改)

      Fig.  2.  Distribution of oil and gas resources in unconventional source rock strata in China(according to Zou et al., 2019 modified)

      图  3  大型坳陷湖盆细粒沉积模式

      Fig.  3.  Fine grain sedimentary model of large depression lake basin

      图  4  中国源岩层系油气资源综合柱状图(据杨智等,2021修改)

      Fig.  4.  Comprehensive histogram of oil and gas resources of source rock strata in China(modified according to Yang et al., 2021)

      图  5  中国非常规源岩油气和致密油气理论认识、关键技术和战略定位(据杨智等,2020; Li et al.,2021)

      Fig.  5.  Theoretical understanding.key techmnologies and strategie positioning of unconventional sourerockoil andgas and tight oil and gas in China(accordingto Yang et al.2020; Li et al.,2021)

      表  1  中国陆上源岩层系油气的主要地质特征(据邹才能等,2017修改)

      Table  1.   Main geological characteristics of oil and gas in onshore source rock strata in China (modified according to Zou et al., 2017)

      特征 页岩气 致密砂岩气 煤层气 页岩油 致密油
      分布特征 靠近盆地沉降‒沉积中心 盆地中心或斜坡部位 盆地或坳陷向斜区 深凹或斜坡页岩发育地区 盆地中心或斜坡部位
      源储关系 生储盖三位一体 源储直接接触或邻近 生储盖三位一体 生储盖三位一体 源储直接接触或邻近
      运移方式 无运移或烃源层内短距离初次运移 初次运移或短距离二次运移 无运移或烃源层内短距离初次运移 无运移或烃源层内短距离初次运移 初次运移或短距离二次运移
      聚集作用 页岩内弥散式分布,裂缝区富集 构造区或裂缝区富集高产 裂隙或割理为富集区 存在纳米孔喉系统,裂缝发育区富集 构造区或裂缝区富集高产
      流体特征 以干气为主,吸附在干酪根、孔隙中,游离于裂缝中,游离气比例为40%~70% 含气饱和度差异大,多数小于60%,游离气比例为90%~100% 吸附气、游离气,游离气比例为5%~20% 以中高成熟度石油为主,游离烃比例为10%~30% 以中高成熟度石油为主,游离烃比例为20%~50%
      产烃组成特征 初期产气游离气占比为80%~100%,累计产气游离气占比为30%~60% 初期产气游离气占比为90%~100%,累计产气游离气占比为95%~100% 初期产气游离气占比为5%~10%,累计产气游离气占比为
      0%~5%
      初期产油游离烃占比为95%~100%,累计产烃游离烃占比为90%~100% 初期产油游离烃占比为90%~100%,累计产烃游离烃占比为80%~100%
      开采工艺 产量低、采收率低、生产周期长,需水平井、分段压裂等技术 储层致密,自然产能低,常需水平井压裂改造等 低产,无自然产能,生产周期长,需水平井、压裂等技术 产量低,无或低自然产能,需水平井压裂、原位加热等改造改质技术 储层致密,自然产能低,需水平井增能驱油压裂等针对性技术
      可采资源 全球 210×1012 m3 456×1012 m3 256×1012 m3 15 000×108 t (400~600)×108 t
      中国 (9~13)×1012 m3 (10~25)×1012 m3 11×1012 m3 (200~300)×108 t (20~25)×108 t
      2021年产量 美国 7 643×108 m3 830×108 m3 200×108 m3 3.62×108 t
      中国 228×108 m3 526×108 m3 83×108 m3 350×104 t
      典型实例 四川盆地下古生界页岩气等 鄂尔多斯盆地石炭‒二叠系、四川盆地三叠系致密砂岩气等 沁水、鄂尔多斯盆地石炭‒二叠系煤层气等 鄂尔多斯盆地三叠系、松辽盆地白垩系等致密油、页岩油
      下载: 导出CSV
    • [1] Boulesteix, K., Poyatos-More, M., Flint, S. S., et al., 2019. Transport and Deposition of Mud in Deep-Water Environments: Processes and Stratigraphic Implications. Sedimentology, 66: 2894-2925. doi: 10.1111/sed.12614
      [2] Cao, D. S., Zeng, L. B., Lü, W. Y., et al., 2021. Progress in Brittleness Evaluation and Prediction Methods in Unconventional Reservoirs. Petroleum Science Bulletin, 6(1): 31-45 (in Chinese with English abstract).
      [3] Dai, J. X., Ni, Y. Y., Wu, X. Q., 2012. Tight Gas in China and Its Significance in Exploration and Exploitation. Petroleum Exploration and Development, 39(3): 257-264 (in Chinese with English abstract).
      [4] Du, J. H., Hu, S. Y., Pang, Z. L., et al., 2019. The Types, Potentials and Prospects of Continental Shale Oil in China. China Petroleum Exploration, 24(5): 560-568 (in Chinese with English abstract).
      [5] EIA(U. S. Energy Information Administration), 2022. Drilling Productivity Report: For Key Tight Oil and Shale Gas Regions. EIA Independent Statistics & Analysis, Washington.
      [6] Feng, Y., Zou, C. N., Li, J., et al., 2021. Sediment Gravity-Flow Deposits in Late Cretaceous Songliao Postrift Down Warped Lacustrine Basin, Northeastern China. Marine and Petroleum Geology, 134: 105378. doi: 10.1016/j.marpetgeo.2021.105378
      [7] Fu, S. T., Yao, J. L., Li, S. X., et al., 2020. Enrichment Characteristics and Resource Potential of Continental Shale Oil in Mesozoic Yanchang Formation, Ordos Basin. Petroleum Geology & Experiment, 42(5): 698-710 (in Chinese with English abstract).
      [8] Gao, J., Li, Y. Q., He, S., et al., 2021. Exploration Discovery of Shale Gas and Its Indicative Significance to Mineralization of MVT Lead-Zinc Deposit in Yichang Area, West Hubei. Earth Science, 46(6): 2230-2245 (in Chinese with English abstract).
      [9] Gao, Z. Y., Xiong, S. L., 2021. Methane Adsorption Capacity Reduction Process of Water-Bearing Shale Samples and Its Influencing Factors: One Example of Silurian Longmaxi Formation Shale from the Southern Sichuan Basin in China. Journal of Earth Science, 32(4): 946-959. https://doi.org/10.1007/s12583-020-1120-5
      [10] Gautier, D. L., Doltong, L., Hashiki, T., et al., 1995. National Assessment of United States Oil and Gas Resources Results, Methodology, and Supporting Data. U. S. Geological Survey Digital Data Series DDS-30, Washington.
      [11] Guo, X. S., Hu, D. F., Li, Y. P., et al., 2017. Geological Factors Controlling Shale Gas Enrichment and High Production in Fuling Shale Gas Field. Petroleum Exploration and Development, 44(4): 481-491 (in Chinese with English abstract).
      [12] Han, Y. J., Horsfield, B., Mahlstedt, N., et al., 2021. Bitumen Geochemistry and Producibility in the Upper Cretaceous Niobrara Formation Shale Oil Play. AAPG Bulletin, 105(10): 2017-2039. doi: 10.1306/03122118078
      [13] Hao, F., Zou, H. Y., Lu, Y. C., 2013. Mechanisms of Shale Gas Storage: Implications for Shale Gas Exploration in China. AAPG Bulletin, 97(8): 1325-1346. https://doi.org/10.1306/02141312091
      [14] Hu, S. Y., Zhao, W. Z., Hou, L. H., et al., 2020. Development Potential and Technical Strategy of Continental Shale Oil in China. Petroleum Exploration and Development, 47(4): 819-828 (in Chinese with English abstract).
      [15] Hu, T., Pang, X. Q., Jiang, F. J., et al., 2021. Key Factors Controlling Shale Oil Enrichment in Saline Lacustrine Rift Basin: Implications from Two Shale oil Wells in Dongpu Depression, Bohai Bay Basin. Petroleum Science, 18(3): 687-711.
      [16] Jia, C. Z., 2017. Breakthrough and Significance of Unconventional Oil and Gas to Classical Petroleum Geological Theory. Petroleum Exploration and Development, 44(1): 1-11 (in Chinese with English abstract). doi: 10.1016/S1876-3804(17)30002-2
      [17] Jia, C. Z., Zou, C. N., Yang, Z., et al., 2018. Significant Progress of Continental Petroleum Geology Theory in Basins of Central and Western China. Petroleum Exploration and Development, 45(4): 546-560 (in Chinese with English abstract).
      [18] Jiao, F. Z., Zou, C. N., Yang, Z., 2020. Geological Theory and Exploration & Development Practice of Hydrocarbon Accumulation Inside Continental Source Kitchens. Petroleum Exploration and Development, 47(6): 1067-1078 (in Chinese with English abstract).
      [19] Jin, Z. J., Bai, Z. R., Gao, B., et al., 2019. Has China Ushered in the Shale Oil and Gas Revolution?. Oil & Gas Geology, 40(3): 451-458 (in Chinese with English abstract).
      [20] Jin, Z. J., Hu, Z. Q., Gao, B., et al., 2016. Controlling Factors on the Enrichment and High Productivity of Shale Gas in the Wufeng-Longmaxi Formations, Southeastern Sichuan Basin. Earth Science Frontiers, 23(1): 1-10 (in Chinese with English abstract).
      [21] Ju, Y., Wang, G., Li, S., et al., 2020. Geodynamic Mechanism and Classification of Basins in the Earth System. Gondwana Research. https://doi.org/10.1016/j.gr.2020.08.017
      [22] Kang, Y. Z., 2020. Potential and Exploration Direction of Unconventional Natural Gas Resources in the Middle Yangtze Region. Petroleum Science Bulletin, 5(2): 141-147 (in Chinese with English abstract).
      [23] Kuang, L. C., Hou, L. H., Yang, Z., et al., 2021. Key Parameters and Methods of Lacustrine Shale Oil Reservoir Characterization. Acta Petrolei Sinica, 42(1): 1-14 (in Chinese with English abstract). doi: 10.1038/s41401-020-0366-x
      [24] Law, B. E., Curtis, J. B., 2002. Introduction to Unconventional Petroleum Systems. AAPG Bulletin, 86(11): 1851-1852. https://doi.org/10.1306/61EEDDA0-173E-11D7-8645000102C1865D
      [25] Li, C. X., Liu, D. D., Xiao, L., et al., 2021. Research into Pore Evolution in Cretaceous Continental Shales in the Songliao Basin. Petroleum Science Bulletin, 6(2): 181-195 (in Chinese with English abstract).
      [26] Li, G. X., Zhu, R. K., 2020. Progress, Challenges and Key Issues of Unconventional Oil and Gas Development of CNPC. China Petroleum Exploration, 25(2): 1-13 (in Chinese with English abstract).
      [27] Li, J. R., Yang, Z., Wu, S. T., et al., 2021. Key Issues and Development Direction of Petroleum Geology Research of Source Rock Strata in China. Advances in Geo-Energy Research, 5(2): 121-126. doi: 10.46690/ager.2021.02.02
      [28] Li, M. W., Ma, X. X., Jiang, Q. G., et al., 2019. Enlightenment from Formation Conditions and Enrichment Characteristics of Marine Shale Oil in North America. Petroleum Geology and Recovery Efficiency, 26(1): 13-28 (in Chinese with English abstract).
      [29] Liu, Q., Wu, X., Wang, X., et al., 2019. Carbon and Hydrogen Isotopes of Methane, Ethane, and Propane: A Review of Genetic Identification of Natural Gas. Earth-Sci. Rev., 190: 247-272. doi: 10.1016/j.earscirev.2018.11.017
      [30] Liu, Q. Y., Li, P., Jin, Z. J., et al., 2021. Preservation of Organic Matter in Shale Linked to Bacterial Sulfate Rreduction (BSR) and Volcanic Activity under Marine and Lacustrine Depositional Environments. Mar. Pet. Geol., 127: 104950. doi: 10.1016/j.marpetgeo.2021.104950
      [31] Ma, X. H., Xie, J., 2018. The Progress and Prospects of Shale Gas Exploration and Exploitation in Southern Sichuan Basin, NW China. Petroleum Exploration and Development, 45(1): 161-169 (in Chinese with English abstract).
      [32] Ma, Y. S., Cai, X. Y., Zhao, P. R., 2018. China's Shale Gas Exploration and Development: Understanding and Practice. Petroleum Exploration and Development, 45(4): 561-574(in Chinese with English abstract).
      [33] Ma, Y. S., Feng, J. H., Mu, Z. H., et al., 2012. The Potential and Exploring Progress of Unconventional Hydrocarbon Resources in SINOPEC. Engineering Sciences, 14(6): 22-30 (in Chinese with English abstract).
      [34] National Technical Committee on Petroleum and Natural Gas of Standardization Administration of China, 2014. Geological Evaluation Method for Tight Sandstone Gas: GB/T 30501-2014. Standards Press of China, Beijing (in Chinese).
      [35] National Technical Committee on Petroleum and Natural Gas of Standardization Administration of China, 2015. Geological Evaluation Method for Shale Gas: GB/T 31483-2015. Standards Press of China, Beijing (in Chinese).
      [36] National Technical Committee on Petroleum and Natural Gas of Standardization Administration of China, 2018. Geological Evaluation Method for Tight Oil: GB/T 34906-2017. Standards Press of China, Beijing (in Chinese).
      [37] National Technical Committee on Petroleum and Natural Gas of Standardization Administration of China, 2020. Geological Evaluation Method for Shale Oil: GB/T 38718-2020. Standards Press of China, Beijing (in Chinese).
      [38] Pollastro R. M., 2007. Total Petroleum System Assessment of Undiscovered Resources in the Giant Barnett Shale Continuous (Unconventional) Gas Accumulation, Fort Worth Basin, Texas. AAPG Bulletin, 91(4): 551-578. doi: 10.1306/06200606007
      [39] Qiu, Z., Tao, H. F., Lu, B., et al., 2021. Controlling Factors on Organic Matter Accumulation of Marine Shale across the Ordovician-Silurian Transition in South China: Constraints from Trace-Element Geochemistry. Journal of Earth Science, 32(4): 887-900. https://doi.org/10.1007/s12583-020-1359-x
      [40] Schmoker, J. W., 1995. Method for Assessing Continuous-Type (Unconventional) Hydrocarbon Accumulations. U. S. Geological Survey Digital Data Series DDS-30, Washington.
      [41] Song, Y., Liu, S. B., Ma, X. Z., et al., 2016. Research on Formation Model and Geological Evaluation Method of the Middle to High Coal Rank Coalbed Methane Enrichment and High Production Area. Earth Science Frontiers, 23(3): 1-9 (in Chinese with English abstract).
      [42] Song, Y., Zhang, X. M., Liu, S. B., 2005. Progress in the Basic Studies and Exploration & Development Techniques of Coalbed Methane in China. Natural Gas Industry, 25(1): 1-7 (in Chinese with English abstract).
      [43] Sun, F. J., Wang, B., Li, M. X., et al., 2014. Major Geological Factors Controlling the Enrichment and High Yield of Coalbed Methane in the Southern Qinshui Basin. Acta Petrolei Sinica, 35(6): 1070-1079 (in Chinese with English abstract).
      [44] Sun, H. Q., Cai, X. Y., Zhou, D. H., et al., 2019. Practice and Prospect of Sinopec Shale Oil Exploration. China Petroleum Exploration, 24(5): 569-575 (in Chinese with English abstract).
      [45] Sun, L. D., 2020. Gulong Shale Oil (Preface). Petroleum Geology & Oilfield Development in Daqing, 39(3): 1-7 (in Chinese with English abstract).
      [46] Sun, L. D., Zou, C. N., Jia, A. L., et al., 2019. Development Characteristics and Orientation of Tight Oil and Gas in China. Petroleum Exploration and Development, 46(6): 1015-1026 (in Chinese with English abstract).
      [47] Sun, Q. P., Zhao, Q., Jiang, X. C., et al., 2021. Prospects and Strategies of CBM Exploration and Development in China under the New Situation. Journal of China Coal Society, 46(1): 65-76 (in Chinese with English abstract).
      [48] Sun, Z. D., Jia, C. Z., Li, X. F., et al., 2011. Unconventional Oil and Gas Exploration and Development. Petroleum Industry Press, Beijing (in Chinese).
      [49] Wang, J. H., Mei, M. H., Liang, Z. Z., et al., 2019. Quantitative Evaluation of High Production Areas of CBM with High Coal Rank in Southern Qinshui Basin. Reservoir Evaluation and Development, 9(4): 68-72 (in Chinese with English abstract).
      [50] Wu, S. T., Li, S. X., Yuan, X. J., et al., 2021. Fluid Mobility Evaluation of Tight Sandstones in Chang 7 Member of Yanchang Formation, Ordos Basin. Journal of Earth Science, 32(4): 850-862. https://doi.org/10.1007/s12583-020-1050-2
      [51] Xiao, Q. L., Liu, A., Li, C. X., et al., 2020. Formation and Evolution of Nanopores in Highly Matured Shales at Over-Mature Stage: Insights from the Hydrous Pyrolysis Experiments on Cambrain Shuijintuo Shale from the Middle Yangtze Region. Earth Science, 45(6): 2160-2171 (in Chinese with English abstract).
      [52] Yang, W., Cai, J. F., Wang, Q. Y., et al., 2020. The Controlling Effect of Organic Matter Coupling with Organic Matter Porosity on Shale Gas Enrichment of the Wufeng-Longmaxi Marine Shale. Petroleum Science Bulletin, 5(2): 148-160 (in Chinese with English abstract).
      [53] Yang, Z., Hou, L. H., Tao, S. Z., et al., 2015. Formation Conditions and "Sweet Spot" Evaluation of Tight Oil and Shale Oil. Petroleum Exploration and Development, 42(5): 555-565 (in Chinese with English abstract).
      [54] Yang, Z., Tang, Z. X., Chen, X., et al., 2020. "Exploring Oil Inside Source Kitchen": Main Types of Tight Oil and Progress of Geology-Engineering Integration. China Petroleum Exploration, 25(2): 73-83 (in Chinese with English abstract).
      [55] Yang, Z., Zou, C. N., 2019. "Exploring Petroleum Inside Source Kitchen": Connotation and Prospects of Source Rock Oil and Gas. Petroleum Exploration and Development, 46(1): 173-184 (in Chinese with English abstract). doi: 10.1016/S1876-3804(19)30017-5
      [56] Yang, Z., Zou, C. N., Fu, J. H., et al., 2017. Selection of Pilot Areas for Testing In-Situ Conversion/Upgrading Processing in Lacustrine Shale: A Case Study of Yanchang-7 Member in Ordos Basin. Journal of Shenzhen University (Science & Engineering), 34(3): 221-228 (in Chinese with English abstract).
      [57] Yang, Z., Zou, C. N., Wu, S. T., et al., 2019. Formation, Distribution and Resource Potential of the "Sweet Areas(Sections)" of Continental Shale Oil in China. Marine and Petroleum Geology, 102: 48-60. doi: 10.1016/j.marpetgeo.2018.11.049
      [58] Yang, Z., Zou, C. N., Wu, S. T., et al., 2021. From Source Control Theory to Source-Reservoir Symbiosis System: On the Theoretical Understanding and Practice of Source Rock Strata Oil and Gas Geology in China. Acta Geologica Sinica, 95(3): 618-631 (in Chinese with English abstract).
      [59] Yang, Z., Zou, C. N., Wu, S. T., et al., 2022. Reservoir Fracturing or Hydrocarbon Generating? —On the Reservoir and Source Rock Properties of Source Rock Strata Oil and Gas. Acta Geologica Sinica, 96(1): 183-194 (in Chinese with English abstract).
      [60] Zhang, J. C., Jin, Z. J., Yuan, M. S., 2004. Reservoiring Mechanism of Shale Gas and Its Distribution. Natural Gas Industry, 24(7): 15-18, 131 (in Chinese with English abstract).
      [61] Zhao, W. Z., Hu, S. Y., Hou, L. H., et al., 2020. Types and Resource Potential of Continental Shale Oil in China and Its Boundary with Tight Oil. Petroleum Exploration and Development, 47(1): 1-10 (in Chinese with English abstract). doi: 10.1016/S1876-3804(20)60001-5
      [62] Zhao, X. Z., Zhou, L. H., Pu, X. G., et al., 2020. Geological Characteristics and Exploration Breakthrough of Shale Oil in Member 3 of Shahejie Formation of Qibei Subsag, Qikou Sag. Acta Petrolei Sinica, 41(6): 643-657 (in Chinese with English abstract).
      [63] Zou, C. N., Pan, S. Q., Jing, Z. H., et al., 2020. Shale Oil and Gas Revolution and Its Impact. Acta Petrolei Sinica, 41(1): 1-12 (in Chinese with English abstract). doi: 10.1038/s41401-019-0299-4
      [64] Zou, C. N., Tao, S. Z., Hou, L. H., et al., 2014. Unconventional Petroleum Geology. Geological Publishing House, Beijing (in Chinese).
      [65] Zou, C. N., Yang, Z., Tao, S. Z., et al., 2012. Nano-Hydrocarbon and the Accumulation in Coexisting Source and Reservoir. Petroleum Exploration and Development, 39(1): 13-26 (in Chinese with English abstract).
      [66] Zou, C. N., Yang, Z., Zhang, G. S., et al., 2019. Establishment and Practice of Unconventional Oil and Gas Geology. Acta Geologica Sinica, 93(1): 12-23 (in Chinese with English abstract). doi: 10.1111/1755-6724.13759
      [67] Zou, C. N., Yang, Z., Zhu, R. K., et al., 2015. Progress in China's Unconventional Oil & Gas Exploration and Development and Theoretical Technologies. Acta Geologica Sinica, 89(6): 979-1007 (in Chinese with English abstract).
      [68] Zou, C. N., Zhang, G. S., Yang, Z., et al., 2013. Geological Concepts, Characteristics, Resource Potential and Key Techniques of Unconventional Hydrocarbon: On Unconventional Petroleum Geology. Petroleum Exploration and Development, 40(4): 385-399, 454 (in Chinese with English abstract).
      [69] Zou, C. N., Zhao, Q., Dong, D. Z., et al., 2017. Geological Characteristics, Main Challenges and Future Prospect of Shale Gas. Natural Gas Geoscience, 28(12): 1781-1796 (in Chinese with English abstract).
      [70] 曹东升, 曾联波, 吕文雅, 等, 2021. 非常规油气储层脆性评价与预测方法研究进展. 石油科学通报, 6(1): 31-45. doi: 10.3969/j.issn.2096-1693.2021.01.003
      [71] 戴金星, 倪云燕, 吴小奇, 2012. 中国致密砂岩气及在勘探开发上的重要意义. 石油勘探与开发, 39(3): 257-264. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201203002.htm
      [72] 杜金虎, 胡素云, 庞正炼, 等, 2019. 中国陆相页岩油类型、潜力及前景. 中国石油勘探, 24(5): 560-568. doi: 10.3969/j.issn.1672-7703.2019.05.003
      [73] 付锁堂, 姚泾利, 李士祥, 等, 2020. 鄂尔多斯盆地中生界延长组陆相页岩油富集特征与资源潜力. 石油实验地质, 42(5): 698-710. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202005009.htm
      [74] 高键, 李英强, 何生, 等, 2021. 鄂西宜昌地区页岩气勘探发现对MVT铅锌矿成矿的指示意义. 地球科学, 46(6): 2230-2245. 鄂西宜昌地区页岩气勘探发
      [75] 郭旭升, 胡东风, 李宇平, 等, 2017. 涪陵页岩气田富集高产主控地质因素. 石油勘探与开发, 44(4): 481-491. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201704002.htm
      [76] 胡素云, 赵文智, 侯连华, 等, 2020. 中国陆相页岩油发展潜力与技术对策. 石油勘探与开发, 47(4): 819-828. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202004021.htm
      [77] 贾承造, 2017. 论非常规油气对经典石油天然气地质学理论的突破及意义. 石油勘探与开发, 44(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701002.htm
      [78] 贾承造, 邹才能, 杨智, 等, 2018. 陆相油气地质理论在中国中西部盆地的重大进展. 石油勘探与开发, 45(4): 546-560. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804002.htm
      [79] 焦方正, 邹才能, 杨智, 2020. 陆相源内石油聚集地质理论认识及勘探开发实践. 石油勘探与开发, 47(6): 1067-1078. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202006002.htm
      [80] 金之钧, 白振瑞, 高波, 等, 2019. 中国迎来页岩油气革命了吗? 石油与天然气地质, 40(3): 451-458. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903002.htm
      [81] 金之钧, 胡宗全, 高波, 等, 2016. 川东南地区五峰组‒龙马溪组页岩气富集与高产控制因素. 地学前缘, 23(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601002.htm
      [82] 康玉柱, 2020. 中扬子地区非常规天然气资源潜力及勘查方向. 石油科学通报, 5(2): 141-147. doi: 10.3969/j.issn.2096-1693.2020.02.014
      [83] 匡立春, 侯连华, 杨智, 等, 2021. 陆相页岩油储层评价关键参数及方法. 石油学报, 42(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202101001.htm
      [84] 李灿星, 刘冬冬, 肖磊, 等, 2021. 松辽盆地白垩系陆相页岩孔隙演化过程研究. 石油科学通报, 6(2): 181-195. doi: 10.3969/j.issn.2096-1693.2021.02.015
      [85] 李国欣, 朱如凯, 2020. 中国石油非常规油气发展现状、挑战与关注问题. 中国石油勘探, 25(2): 1-13. doi: 10.3969/j.issn.1672-7703.2020.02.001
      [86] 黎茂稳, 马晓潇, 蒋启贵, 等, 2019. 北美海相页岩油形成条件、富集特征与启示. 油气地质与采收率, 26(1): 13-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201901002.htm
      [87] 马新华, 谢军, 2018. 川南地区页岩气勘探开发进展及发展前景. 石油勘探与开发, 45(1): 161-169. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201801020.htm
      [88] 马永生, 蔡勋育, 赵培荣, 2018. 中国页岩气勘探开发理论认识与实践. 石油勘探与开发, 45(4): 561-574. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201804004.htm
      [89] 马永生, 冯建辉, 牟泽辉, 等, 2012. 中国石化非常规油气资源潜力及勘探进展. 中国工程科学, 14(6): 22-30. doi: 10.3969/j.issn.1009-1742.2012.06.004
      [90] 全国石油天然气标准化技术委员会, 2014. 致密砂岩气地质评价方法: GB/T 30501-2014. 北京: 中国标准出版社.
      [91] 全国石油天然气标准化技术委员会, 2015. 页岩气地质评价方法: GB/T 31483-2015. 北京: 中国标准出版社.
      [92] 全国石油天然气标准化技术委员会, 2018. 致密油地质评价方法: GB/T 34906-2017. 北京: 中国标准出版社.
      [93] 全国石油天然气标准化技术委员会, 2020. 页岩油地质评价方法: GB/T 38718-2020. 北京: 中国标准出版社.
      [94] 宋岩, 柳少波, 马行陟, 等, 2016. 中高煤阶煤层气富集高产区形成模式与地质评价方法. 地学前缘, 23(3): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201603002.htm
      [95] 宋岩, 张新民, 柳少波, 2005. 中国煤层气基础研究和勘探开发技术新进展. 天然气工业, 25(1): 1-7. doi: 10.3321/j.issn:1000-0976.2005.01.002
      [96] 孙粉锦, 王勃, 李梦溪, 等, 2014. 沁水盆地南部煤层气富集高产主控地质因素. 石油学报, 35(6): 1070-1079. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201406005.htm
      [97] 孙焕泉, 蔡勋育, 周德华, 等, 2019. 中国石化页岩油勘探实践与展望. 中国石油勘探, 24(5): 569-575. doi: 10.3969/j.issn.1672-7703.2019.05.004
      [98] 孙龙德, 2020. 古龙页岩油(代序). 大庆石油地质与开发, 39(3): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202003001.htm
      [99] 孙龙德, 邹才能, 贾爱林, 等, 2019. 中国致密油气发展特征与方向. 石油勘探与开发, 46(6): 1015-1026. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201906002.htm
      [100] 孙钦平, 赵群, 姜馨淳, 等, 2021. 新形势下中国煤层气勘探开发前景与对策思考. 煤炭学报, 46(1): 65-76. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB202101007.htm
      [101] 孙赞东, 贾承造, 李相方, 等, 2011. 非常规油气勘探与开发. 北京: 石油工业出版社.
      [102] 王镜惠, 梅明华, 梁正中, 等, 2019. 沁水盆地南部高煤阶煤层气高产区定量评价. 油气藏评价与开发, 9(4): 68-72. doi: 10.3969/j.issn.2095-1426.2019.04.013
      [103] 肖七林, 刘安, 李楚雄, 等, 2020. 高演化页岩纳米孔隙在过熟阶段的形成演化特征及主控因素: 中扬子地区寒武系水井沱组页岩含水热模拟实验. 地球科学, 45(6): 2160-2171. doi: 10.3799/dqkx.2019.248
      [104] 杨威, 蔡剑锋, 王乾右, 等, 2020. 五峰‒龙马溪组海相页岩生‒储耦合演化及对页岩气富集的控制效应. 石油科学通报, 5(2): 148-160. doi: 10.3969/j.issn.2096-1693.2020.02.015
      [105] 杨智, 侯连华, 陶士振, 等, 2015. 致密油与页岩油形成条件与"甜点区"评价. 石油勘探与开发, 42(5): 555-565. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201505002.htm
      [106] 杨智, 唐振兴, 陈旋, 等, 2020. "进源找油": 致密油主要类型及地质工程一体化进展. 中国石油勘探, 25(2): 73-83. doi: 10.3969/j.issn.1672-7703.2020.02.008
      [107] 杨智, 邹才能, 2019. "进源找油": 源岩油气内涵与前景. 石油勘探与开发, 46(1): 173-184. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901018.htm
      [108] 杨智, 邹才能, 付金华, 等, 2017. 基于原位转化/改质技术的陆相页岩选区评价: 以鄂尔多斯盆地三叠系延长组7段页岩为例. 深圳大学学报(理工版), 34(3): 221-228. https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL201703001.htm
      [109] 杨智, 邹才能, 吴松涛, 等, 2021. 从源控论到源储共生系统: 论源岩层系油气地质理论认识及实践. 地质学报, 95(3): 618-631. doi: 10.3969/j.issn.0001-5717.2021.03.002
      [110] 杨智, 邹才能, 吴松涛, 等, 2022. 造缝产烃还是改质造烃? 论含油气源岩层系的储集层属性和烃源岩属性. 地质学报, 96(1): 183-194. doi: 10.3969/j.issn.0001-5717.2022.01.015
      [111] 张金川, 金之钧, 袁明生, 2004. 页岩气成藏机理和分布. 天然气工业, 24(7): 15-18, 131. doi: 10.3321/j.issn:1000-0976.2004.07.005
      [112] 赵文智, 胡素云, 侯连华, 等, 2020. 中国陆相页岩油类型、资源潜力及与致密油的边界. 石油勘探与开发, 47(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001002.htm
      [113] 赵贤正, 周立宏, 蒲秀刚, 等, 2020. 歧口凹陷歧北次凹沙河街组三段页岩油地质特征与勘探突破. 石油学报, 41(6): 643-657. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202006003.htm
      [114] 邹才能, 潘松圻, 荆振华, 等, 2020. 页岩油气革命及影响. 石油学报, 41(1): 1-12. doi: 10.3969/j.issn.1001-8719.2020.01.001
      [115] 邹才能, 陶士振, 侯连华, 等, 2014. 非常规油气地质学. 北京: 地质出版社.
      [116] 邹才能, 杨智, 陶士振, 等, 2012. 纳米油气与源储共生型油气聚集. 石油勘探与开发, 39(1): 13-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201201003.htm
      [117] 邹才能, 杨智, 张国生, 等, 2019. 非常规油气地质学建立及实践. 地质学报, 93(1): 12-23. doi: 10.3969/j.issn.0001-5717.2019.01.003
      [118] 邹才能, 杨智, 朱如凯, 等, 2015. 中国非常规油气勘探开发与理论技术进展. 地质学报, 89(6): 979-1007. doi: 10.3969/j.issn.0001-5717.2015.06.001
      [119] 邹才能, 张国生, 杨智, 等, 2013. 非常规油气概念、特征、潜力及技术: 兼论非常规油气地质学. 石油勘探与开发, 40(4): 385-399, 454. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201304000.htm
      [120] 邹才能, 赵群, 董大忠, 等, 2017. 页岩气基本特征、主要挑战与未来前景. 天然气地球科学, 28(12): 1781-1796. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201712001.htm
    • 加载中
    图(5) / 表(1)
    计量
    • 文章访问数:  800
    • HTML全文浏览量:  372
    • PDF下载量:  270
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-03-11
    • 刊出日期:  2022-05-25

    目录

      /

      返回文章
      返回