Thermal Evolution History and Shale Gas Accumulation Significance of Lower Cambrian Qiongzhusi Formation in Southwest Sichuan Basin
-
摘要: 页岩热演化史与页岩气的成烃、成藏过程关系极为密切.一方面,页岩热演化过程决定了页岩生烃过程、页岩气类型和生气量;另一方面,页岩有机孔隙的形成与页岩热演化过程密切相关.在前期热史恢复基础上,以锆石(U-Th)/He和沥青反射率Rb等古温标进行标定,模拟了川西南地区代表性钻孔下寒武统筇竹寺组页岩热演化史,探讨了页岩热演化过程与页岩气成烃、成藏的关系.研究结果表明,川西南地区下寒武统筇竹寺组页岩热演化过程和生烃史差异性明显,可以识别出两种模式:加里东期坳陷区,筇竹寺组页岩在加里东期成熟,中‒晚二叠世期间快速演化定型,两个生烃高峰期分别出现在志留纪(生油高峰‒湿气阶段)、中‒晚二叠世(干气阶段),此后再无明显的生烃活动;加里东期古隆起区,筇竹寺组页岩在加里东期未熟‒低熟,晚海西期‒燕山期持续增熟,亦存在两期生烃高峰,分别是中‒晚二叠世(生油高峰阶段)、晚侏罗世‒早白垩世(湿气‒干气阶段),筇竹寺组页岩生烃过程持续到晚白垩世末期.分析表明中‒晚二叠世期间筇竹寺组页岩的埋深差异造成了其受峨眉山地幔柱热效应的影响不同,进而决定了加里东期坳陷区与隆起区筇竹寺组页岩热演化过程和生烃史差异,并最终导致了威远‒犍为地区筇竹寺组页岩含气性优于盆地外围.综合川西南地区筇竹寺页岩生烃史和孔隙度演化模型,将川西南成藏条件相对优越的威远‒犍为地区筇竹寺组页岩气成藏过程分为4个阶段:早古生代时期源‒储‒盖形成和生物气成藏阶段、中‒晚二叠世期间初始成藏阶段、晚侏罗世‒早白垩世主成藏阶段和晚白垩世以后调整改造阶段.该成果以页岩热演化过程为切入点解释了川西南威远‒犍为地区与盆地外围下寒武统筇竹寺组页岩气成藏差异的原因.Abstract: The thermal evolution history is closely related to shale gas generation and accumulation process. On the one hand, the maturity evolution history determines the hydrocarbon generation process, type and amount of shale gas in the geological history. On the other hand, the formation of organic matter hosted pore is extremely relevant to the thermal evolution history of gas shale. In this paper, through analysis of burial and thermal history, it examined representative boreholes for the thermal evolution simulation of the Qiongzhusi Formation shale in the Southwest Sichuan basin, where the zircon (U-Th)/He and bitumen reflectance (Rb) were used for calibration. Then, the relationship between the thermal evolution history and the shale gas generation and accumulation was discussed. The results show that they differed from borehole to borehole on the thermal evolution and hydrocarbon generation history of Qiongzhusi Formation shale in the Southwest Sichuan basin and two patterns were summarized. The Qiongzhusi Formation shale in the Caledonian depression entered the mature stage during Caledonian period and typing stage during the Middle-Late Permian because of Emeishan mantle plume. Accordingly, the two hydrocarbon generation peaks occurred in the Silurian (oil and wet gas generation stage) and the Middle-Late Permian (dry gas generation stage), respectively, which indicates that the organic matter had been nearly exhausted during the Middle-Late Permian and there was no obvious hydrocarbon generating activities since then. The Qiongzhusi Formation shale in the Caledonian uplift area was very different from the former on the thermal evolution and hydrocarbon generation history. They had not yet or just exceeded the generation threshold during the Caledonian, and continually entered the mature and overmature stage during the late Hercynian to Yanshanian. There were also two rapid hydrocarbon generation stages of the Qiongzhusi Formation shale in the Caledonian uplift area, namely during the Middle-Late Permian (oil generation stage) and the Late Jurassic to Late Cretaceous (wet and dry gas generation stage). With the basin uplift and cooling, the hydrocarbon generation was effectively halted at the end of the Late Cretaceous. It shows that the different burial depths of Qiongzhusi Formation shale during the Middle-Late Permian caused dominantly the different influence by high heat flow associated with Emeishan mantle plume, and eventually led to the differences on the thermal evolution, hydrocarbon generation history and gas-bearing characteristics of Qiongzhusi Formation shale between the Caledonian depression and uplift area. The Qiongzhusi Formation shale gas accumulation process in Weiyuan-Qianwei area was divided into four phases on the basis of hydrocarbon generating and porosity evolution history analysis: the source-reservoir-cap deposition and biogenic gas accumulation stage during Early Paleozoic, the initial accumulation stage during the Middle-Late Permian, the main accumulation stage from the Late Jurassic to Early Cretaceous, and the adjustment stage since the Late Cretaceous. The thermal evolution analysis explains the Qiongzhusi Formation shale gas accumulation differences between the Weiyuan-Qianwei and periphery in the Southwest Sichuan basin.
-
图 1 四川盆地下寒武统筇竹寺组页岩厚度、Ro等值线及研究区位置和钻孔井位(据赵文智等, 2016修改)
Fig. 1. The thickness, Ro isogram of the Lower Cambrian Qiongzhusi shale in the Sichuan basin, study area and borehole location
图 2 四川盆地代表性钻孔晚志留世以来热流演化史(据Jiang et al., 2018)
Fig. 2. The heat flow evolution history since Late Silurian of representative boreholes in the Sichuan basin
表 1 中国南方下寒武统筇竹寺组页岩气测试产量统计
Table 1. Shale gas test production statistics in the Lower Cambrian Qiongzhusi Formation in southern China
地区 井号 初始测试产量(m3/d) 盆地内
(威远‒犍为)威201 1.08×104 威201-H3 2.83×104 金石1 2.50×104 金页1 8.60×104 盆地外围 天星1 2 000 黄页1 420 方深1 20 岑页1 微气 永福1 未测试,气测含气性差 注:据赵文智等(2016). 表 2 川西南地区龙马溪组、筇竹寺组和灯影组实测沥青反射率
Table 2. Measured bitumen reflectance of the S1l, ∈1q and Z1d formations in SW Sichuan basin
采样位置 深度(m) 层位 岩性 沥青反射率(Rb, %) 采样个数 永福1井 2 694~2 795 龙马溪组 黑色碳质泥岩 2.23~2.79 3 永福1井 4 777~4 863 筇竹寺组 灰黑色碳质页岩 3.97~4.33 3 民页1井 3 039~3 124 龙马溪组 黑色碳质页岩 2.34~2.89 5 金石1井 3 680~3 740 筇竹寺组 灰黑色碳质页岩 3.15~3.26 2 永善长坪 露头 龙马溪组 黑色碳质页岩 2.19~3.20 3 永善长坪 露头 筇竹寺组 灰黑色碳质泥岩 3.38~4.51 2 永善长坪 露头 灯影组 黑色硅质页岩 4.30~4.51 2 雷波抓抓岩 露头 龙马溪组 黑色碳质页岩 3.06 1 雷波抓抓岩 露头 筇竹寺组 灰黑色碳质页岩 4.24 1 甘洛新基站 露头 龙马溪组 灰黑色碳质页岩 2.62~2.86 3 雷波芭蕉滩 露头 龙马溪组 灰黑色碳质泥岩 3.16 1 表 3 川西南地区锆石(U⁃Th)/He测试结果
Table 3. Zircon (U⁃Th) /He test results in SW Sichuan basin
采样地区 采样位置 mol 238U Std. mol 238U mol 232Th Std. mol 232Th mol 4He Std. mol 4He 年龄(Ma) ± σ (Ma) FT Cor年龄(Ma) ± σ (Ma) Th/U 质量(μg) Rs(μm) 长坪地区 28°14′24.8″N
103°51′2.9″E1.04E-11 1.76E-13 4.14E-12 6.83E-14 2.04E-13 3.39E-15 13.91 0.32 0.776 17.93 0.99 0.4 4.11 50.8 5.63E-12 8.31E-14 2.40E-12 3.84E-14 2.30E-13 4.05E-15 28.91 0.64 0.716 40.38 2.21 0.4 1.68 40.0 2.94E-12 4.61E-14 2.03E-12 2.01E-14 8.44E-14 1.40E-15 19.30 0.41 0.797 24.22 1.32 0.7 5.31 57.0 3.92E-12 6.15E-14 2.39E-12 3.14E-14 9.58E-14 1.48E-15 16.70 0.35 0.712 23.46 1.27 0.6 2.20 38.7 美姑地区 28°9′46.6″N
103°27′35.6″E9.15E-13 1.36E-14 4.52E-13 9.53E-15 8.83E-15 1.65E-16 6.75 0.16 0.651 10.37 0.57 0.5 1.01 30.9 1.05E-12 1.67E-14 7.59E-13 8.72E-15 8.89E-15 1.74E-16 5.66 0.14 0.527 10.74 0.60 0.7 0.42 22.3 3.90E-13 6.21E-15 4.33E-13 7.94E-15 4.47E-15 7.92E-17 7.11 0.16 0.513 13.86 0.76 1.1 0.36 21.8 8.77E-13 1.37E-14 6.12E-13 8.96E-15 8.34E-15 1.32E-16 6.39 0.13 0.485 13.18 0.71 0.7 0.30 20.1 -
[1] Cander, H., 2012. Sweet Spots in Shale Gas and Liquids Plays: Prediction of Fluid Composition and Reservoir Pressure. Search & Discovery Article, 40936. [2] Chen, G. H., Lu, S. F., Liu, K. Y., et al., 2020. Occurrence State and Micro Mechanisms of Shale Gas on Pore Walls. Earth Science, 45(5): 1782-1790 (in Chinese with English abstract). [3] Chen, S. B., Zhu, Y. M., Chen, S., et al., 2017. Hydrocarbon Generation and Shale Gas Accumulation in the Longmaxi Formation, Southern Sichuan Basin, China. Marine & Petroleum Geology, 86: 248-258. [4] Cheng, K. M., Wang, S. Q., Dong, D. Z., et al., 2009. Accumulation Conditions of Shale Gas Reservoirs in the Lower Cambrian Qiongzhusi Formation, the Upper Yangtze Region. Natural Gas Industry, 29(5): 40-44, 136 (in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2009.05.008 [5] Curtis, M. E., Cardott, B. J., Sondergeld, C. H., et al., 2012. Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity. International Journal of Coal Geology, 103(23): 26-31. [6] He, L. J., 2014. Permian to Late Triassic Evolution of the Longmenshan Foreland Basin (Western Sichuan): Model Results from Both the Lithospheric Extension and Flexure. Journal of Asian Earth Sciences, 93(93): 49-59. [7] He, L. J., Huang, F., Liu, Q. Y., et al., 2014. Tectono⁃Thermal Evolution of Sichuan Basin in Early Paleozoic. Journal of Earth Sciences and Environment, 36(2): 10-17 (in Chinese with English abstract). [8] He, L. J., Xu, H. H., Wang, J. Y., 2011. Thermal Evolution and Dynamic Mechanism of the Sichuan Basin during the Early Permian⁃Middle Triassic. Science China Earth Sciences, 54(12): 1948-1954. https://doi.org/10.1007/s11430⁃011⁃4240⁃z [9] Huang, F., Liu, Q. Y., He, L. J., 2012. Tectono⁃Thermal Modeling of the Sichuan Basin since the Late Himalayan Period. Chinese Journal of Geophysics, 55(11): 3742-3753 (in Chinese with English abstract). doi: 10.6038/j.issn.0001-5733.2012.11.021 [10] Huang, J. L., Zou, C. N., Li, J. Z., et al., 2012. Shale Gas Generation and Potential of the Lower Cambrian Qiongzhusi Formation in Southern Sichuan Basin, China. Petroleum Exploration and Development, 39(1): 69-75 (in Chinese with English abstract). [11] Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale Gas Systems: The Mississippian Barnett Shale of North⁃Central Texas as One Model for Thermogenic Shale⁃Gas Assessment. AAPG Bulletin, 91(4): 475-799. doi: 10.1306/12190606068 [12] Jiang, G. Z., Gao, P., Rao, S., et al., 2016. Compilation of Heat Flow Data in the Continental Area of China (4th Edition). Chinese Journal of Geophysics, 59(8): 2892-2910 (in Chinese with English abstract). [13] Jiang, Q., Qiu, N. S., Zhu, C. Q., 2018. Heat Flow Study of the Emeishan Large Igneous Province Region: Implications for the Geodynamics of the Emeishan Mantle Plume. Tectonophysics, 724(31): 11-27. [14] Jiang, Q., Zhu, C. Q., Qiu, N. S., et al., 2015. Paleo⁃Heat Flow and Thermal Evolution of the Lower Cambrian Qiongzhusi Shale in the Southern Sichuan Basin, SW China. Natural Gas Geoscience, 26(8): 1563-1570 (in Chinese with English abstract). [15] Klaver, J., Desbois, G., Littke, R., et al., 2016. BIB⁃SEM Pore Characterization of Mature and Post Mature Posidonia Shale Samples from the Hils Area, Germany. International Journal of Coal Geology, 158(15): 78-89. [16] Li, Y. J., Zhao, S. X., Huang, Y. B., et al., 2013. The Sedimentary Micro⁃Facies Study of the Lower Cambrian Qiongzhusi Formation in Southern Sichuan Basin. Acta Geologica Sinica, 87(8): 1136-1148 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2013.08.008 [17] Liu, B., 2022. Organic Matter in Shales: Types, Thermal Evolution, and Organic Pores. Earth Science, in Press (in Chinese with English abstract). [18] Liu, S. G., Deng, B., Zhong, Y., et al., 2016. Unique Geological Features of Burial and Superimposition of the Lower Paleozoic Shale Gas across the Sichuan Basin and Its Periphery. Earth Science Frontiers, 23(1): 11-28 (in Chinese with English abstract). [19] Liu, W. P., Zhang, C. L., Gao, G. D., et al., 2017. Controlling Factors and Evolution Laws of Shale Porosity in Longmaxi Formation, Sichuan Basin. Acta Petrolei Sinica, 38(2): 175-184 (in Chinese with English abstract). [20] Mastalerz, M., Schimmelmann, A., Drobniak, A., et al., 2013. Porosity of Devonian and Mississippian New Albany Shale across a Maturation Gradient: Insights from Organic Petrology, Gas Adsorption, and Mercury Intrusion. AAPG Bulletin, 97(10): 1621-1643. [21] Nie, H. K., Zhang, J. C., Li, Y. X., 2011. Accumulation Conditions of the Lower Cambrian Shale Gas in the Sichuan Basin and Its Periphery. Acta Petrolei Sinica, 32(6): 959-967 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-8719.2011.06.020 [22] Pommer, M., Milliken, K., 2015. Pore Types and Pore⁃Size Distributions across Thermal Maturity, Eagle Ford Formation, Southern Texas. AAPG Bulletin, 99(9): 1713-1744. doi: 10.1306/03051514151 [23] Rao, S., Hu, D., Hu, S. B., et al., 2019. Tectono⁃ Thermal Reconstruction Methods for Deep Zone in Superimposed Basins: A Case Study from Sichuan Basin. Chinese Journal of Geology, 54(1): 159-175 (in Chinese with English abstract). [24] Rao, S., Tang, X. Y., Zhu, C. Q., et al., 2011. The Application of Sensitivity Analysis in the Source Rock Maturity History Simulation: An Example from Palaeozoic Marine Source Rock of Puguang⁃5 Well in the Northeast of Sichuan Basin. Chinese Journal of Geology (Scientia Geologica Sinica), 46(1): 213-225 (in Chinese with English abstract). [25] Rao, S., Zhu, C. Q., Wang, Q., et al., 2013. Thermal Evolution Patterns of the Sinian⁃Lower Paleozoic Source Rocks in the Sichuan Basin, Southwest China. Chinese Journal of Geophysics, 56(5): 1549-1559 (in Chinese with English abstract). [26] Valentine, B. J., Hackley, P. C., Enomoto, C. B., et al., 2014. Organic Petrology of the Aptian⁃Age Section in the Downdip Mississippi Interior Salt Basin, Mississippi, USA: Observations and Preliminary Implications for Thermal Maturation History. International Journal of Coal Geology, 136: 38-51. doi: 10.1016/j.coal.2014.10.008 [27] Wang, Y. M., Dong, D. Z., Cheng, X. Z., et al., 2014. Electric Property Evidences of the Carbonification of Organic Matters in Marine Shales and Its Geologic Significance: A Case of the Lower Cambrian Qiongzhusi Shale in Southern Sichuan Basin. Natural Gas Industry, 34(8): 1-7 (in Chinese with English abstract). [28] Xiao, Q. L., Liu, A., Li, C. X., et al., 2020. Formation and Evolution of Nanopores in Highly Matured Shales at Over⁃Mature Stage: Insights from the Hydrous Pyrolysis Experiments on Cambrain Shuijintuo Shale from the Middle Yangtze Region. Earth Science, 45(6): 2160-2171 (in Chinese with English abstract). [29] Xiao, X. M., Wang, M. L., Wei, Q., et al., 2015. Evaluation of Lower Paleozoic Shale with Shale Gas Prospect in South China. Natural Gas Geoscience, 26(8): 1433-1445 (in Chinese with English abstract). [30] Xu, M., Zhu, C. Q., Tian, Y. T., et al., 2011. Borehole Temperature Logging and Characteristics of Subsurface Temperature in the Sichuan Basin. Chinese Journal of Geophysics, 54(4): 1052-1060 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5733.2011.04.020 [31] Xu, X. M., Sun, W. L., Wang, S. Q., et al., 2019. Maturity Evaluation of Marine Shale in the Lower Paleozoic in South China. Earth Science, 44(11): 3717-3724 (in Chinese with English abstract). [32] Yan, J. F., Men, Y. P., Sun, Y. Y., et al., 2015. Geochemical and Geological Characteristics of the Lower Cambrian Shales in the Middle⁃Upper Yangtze Area of South China and Their Implication for the Shale Gas Exploration. Marine & Petroleum Geology, 70: 1-13. [33] Yan, J. H., Li, Q. G., Zhu, X., 2016. Main Factors Controlling Shale Gas Accumulation and Exploration Targets in the Lower Cambrian, Sichuan Basin and Its Periphery. Petroleum Geology & Experiment, 38(4): 445-452 (in Chinese with English abstract). [34] Yang, W., He, S., Zhai, G. Y., et al. 2021. Maturity Assessment of the Lower Cambrian and Sinian Shales Using Multiple Technical Approaches. Journal of Earth Science, 32(5): 1262-1277. doi: 10.1007/s12583-020-1329-3 [35] Zhang, L., Xiong, Y. Q., Chen, Y., et al., 2017. Mechanisms of Shale Gas Generation from Typically Organic⁃Rich Marine Shales. Earth Science, 42(7): 1092-1106 (in Chinese with English abstract). [36] Zhang, T. S., Yang, Y., Gong, Q. S., et al., 2014. Characteristics and Mechanisms of the Micro⁃Pores in the Early Palaeozoic Marine Shale, Southern Sichuan Basin. Acta Geologica Sinica, 88(9): 1728-1740 (in Chinese with English abstract). [37] Zhao, W. Z., Li, J. Z., Yang, T., et al., 2016. Geological Difference and Its Significance of Marine Shale Gases in South China. Petroleum Exploration and Development, 43(4): 499-510 (in Chinese with English abstract). doi: 10.11698/PED.2016.04.01 [38] Zhao, W. Z., Wang, Z. Y., Wang, H. J., et al., 2011. Further Discussion on the Connotation and Significance of the Natural Gas Relaying Generation Model from Organic Materials. Petroleum Exploration and Development, 38(2): 129-135 (in Chinese with English abstract). doi: 10.1016/S1876-3804(11)60021-9 [39] Zhu, C. Q., Hu, S. B., Qiu, N. S., et al., 2018. Geothermal Constraints on Emeishan Mantle Plume Magmatism: Paleotemperature Reconstruction of the Sichuan Basin, SW China. International Journal of Earth Sciences, 107(1): 71-88. https://doi.org/10.1007/s00531⁃016⁃1404⁃2 [40] Zhu, C. Q., Tian, Y. T., Xu, M., et al., 2010. The Effect of Emeishan Supper Mantle Plume to the Thermal Evolution of Source Rocks in the Sichuan Basin. Chinese Journal of Geophysics, 53(1): 119-127 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5733.2010.01.013 [41] Zhu, C. Q., Xu, M., Shan, J. N., et al., 2009. Quantifying the Denudations of Major Tectonic Events in Sichuan Basin: Constrained by the Paleothermal Records. Geology in China, 36(6): 1268-1277 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2009.06.008 [42] 陈国辉, 卢双舫, 刘可禹, 等, 2020. 页岩气在孔隙表面的赋存状态及其微观作用机理. 地球科学, 45(5): 1782-1790. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202005021.htm [43] 程克明, 王世谦, 董大忠, 等, 2009. 上扬子区下寒武统筇竹寺组页岩气成藏条件. 天然气工业, 29(5): 40-44, 136. doi: 10.3787/j.issn.1000-0976.2009.05.008 [44] 何丽娟, 黄方, 刘琼颖, 等, 2014. 四川盆地早古生代构造‒热演化特征. 地球科学与环境学报, 36(2): 10-17. doi: 10.3969/j.issn.1672-6561.2014.02.004 [45] 黄方, 刘琼颖, 何丽娟, 2012. 晚喜山期以来四川盆地构造‒热演化模拟. 地球物理学报, 55(11): 3742-3753. doi: 10.6038/j.issn.0001-5733.2012.11.021 [46] 黄金亮, 邹才能, 李建忠, 等, 2012. 川南下寒武统筇竹寺组页岩气形成条件及资源潜力. 石油勘探与开发, 39(1): 69-75. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201201009.htm [47] 姜光政, 高堋, 饶松, 等, 2016. 中国大陆地区大地热流数据汇编(第四版). 地球物理学报, 59(8): 2892-2910. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201608015.htm [48] 江强, 朱传庆, 邱楠生, 等, 2015. 川南地区热史及下寒武统筇竹寺组页岩热演化特征. 天然气地球科学, 26(8): 1563-1570. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201508018.htm [49] 李延钧, 赵圣贤, 黄勇斌, 等, 2013. 四川盆地南部下寒武统筇竹寺组页岩沉积微相研究. 地质学报, 87(8): 1136-1148. doi: 10.3969/j.issn.0001-5717.2013.08.008 [50] 刘贝, 2022. 泥页岩中有机质: 类型、热演化与有机孔隙. 地球科学, 待刊. [51] 刘树根, 邓宾, 钟勇, 等, 2016. 四川盆地及周缘下古生界页岩气深埋藏‒强改造独特地质作用. 地学前缘, 23(1): 11-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201601004.htm [52] 刘文平, 张成林, 高贵冬, 等, 2017. 四川盆地龙马溪组页岩孔隙度控制因素及演化规律. 石油学报, 38(2): 175-184. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201702005.htm [53] 聂海宽, 张金川, 李玉喜, 2011. 四川盆地及其周缘下寒武统页岩气聚集条件. 石油学报, 32(6): 959-967. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201106006.htm [54] 饶松, 胡迪, 胡圣标, 等, 2019. 叠合盆地深层构造‒热演化研究方法: 以四川盆地为例. 地质科学, 54(1): 159-175. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202103013.htm [55] 饶松, 唐晓音, 朱传庆, 等, 2011. 敏感性分析在烃源岩成熟度史模拟中的应用: 以川东北地区普光5井古生界海相烃源岩为例. 地质科学, 46(1): 213-225. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201101018.htm [56] 饶松, 朱传庆, 王强, 等, 2013. 四川盆地震旦系‒下古生界烃源岩热演化模式及主控因素. 地球物理学报, 56(5): 1549-1559. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201305014.htm [57] 王玉满, 董大忠, 程相志, 等, 2014. 海相页岩有机质炭化的电性证据及其地质意义——以四川盆地南部地区下寒武统筇竹寺组页岩为例. 天然气工业, 34(8): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201408002.htm [58] 肖七林, 刘安, 李楚雄, 等, 2020. 高演化页岩纳米孔隙在过熟阶段的形成演化特征及主控因素: 中扬子地区寒武系水井沱组页岩含水热模拟实验. 地球科学, 45(6): 2160-2171. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202006027.htm [59] 肖贤明, 王茂林, 魏强, 等, 2015. 中国南方下古生界页岩气远景区评价. 天然气地球科学, 26(8): 1433-1445. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201508002.htm [60] 徐明, 朱传庆, 田云涛, 等, 2011. 四川盆地钻孔温度测量及现今地热特征. 地球物理学报, 54(4): 1052-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201104022.htm [61] 徐学敏, 孙玮琳, 汪双清, 等, 2019. 南方下古生界海相页岩有机质成熟度评价. 地球科学, 44(11): 3717-3724. doi: 10.3799/dqkx.2019.181 [62] 燕继红, 李启桂, 朱祥, 2016. 四川盆地及周缘下寒武统页岩气成藏主控因素与勘探方向. 石油实验地质, 38(4): 445-452. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201604005.htm [63] 张莉, 熊永强, 陈媛, 等, 2017. 中国典型海相富有机质页岩的生气机理. 地球科学, 42(7): 1092-1106. doi: 10.3799/dqkx.2017.088 [64] 张廷山, 杨洋, 龚其森, 等, 2014. 四川盆地南部早古生代海相页岩微观孔隙特征及发育控制因素. 地质学报, 88(9): 1728-1740. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201409009.htm [65] 赵文智, 李建忠, 杨涛, 等, 2016. 中国南方海相页岩气成藏差异性比较与意义. 石油勘探与开发, 43(4): 499-510. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201604002.htm [66] 赵文智, 王兆云, 王红军, 等, 2011. 再论有机质"接力成气"的内涵与意义. 石油勘探与开发, 38(2): 129-135. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201102003.htm [67] 朱传庆, 田云涛, 徐明, 等, 2010. 峨眉山超级地幔柱对四川盆地烃源岩热演化的影响. 地球物理学报, 53(1): 119-127. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201001014.htm [68] 朱传庆, 徐明, 单竞男, 等, 2009. 利用古温标恢复四川盆地主要构造运动时期的剥蚀量. 中国地质, 36(6): 1268-1277. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200906010.htm