Characteristics and Geological Significance of Biomarker for the Upper Permian Dalong Formation Shale in Southern Anhui Province
-
摘要: 为阐明下扬子皖南地区上二叠统大隆组页岩特征,通过对港地1井岩心进行取样,开展了大隆组页岩样品的有机地球化学测试、氩离子抛光—扫面电镜观察、矿物组成分析等工作.结果表明皖南地区大隆组页岩TOC含量为1.18%~4.35%,干酪根以Ⅰ型为主,少数为Ⅱ1型,Ro介于1.15%~1.29%,反映大隆组页岩整体处于成熟的生油气阶段.饱和烃气相色谱图呈典型的单峰型分布,正构烷烃主峰碳数分布在nC18~nC22之间,nC25+高碳数正构烷烃含量较低.规则甾烷的丰度整体上表现为C27≈C29>C28,属于V型分布,且高、低碳数的正构烷烃单体碳同位素δ13C相差较大(3.0‰~5.6‰),略高于单一来源的不同碳数正构烷烃的δ13C变化(一般小于1.6‰),反映大隆组页岩有机质主体来源于菌藻类等低等水生生物,局部存在陆源高等植物.TOC与TS的相关性、Pr/Ph比值、Pr/nC17-Ph/nC18图解共同指示皖南地区大隆组页岩形成于缺氧—贫氧环境,有利于有机质保存.Abstract: In order to elucidate shale characteristics of the Upper Permian Dalong Formation in southern Anhui Province in the Lower Yangtze, a total of 20 shale samples collected from Gangdi-1 Well were analyzed by conducting organic geochemical test, argon ion polishing-scanning electron microscopy (SEM) observation, and mineral composition analysis. Results show that total organic carbon (TOC) content for the Dalong Formation shale in southern Anhui Province is in the range of 1.18%-4.35%. The kerogen type is dominated by type Ⅰ and followed by type Ⅱ1. The vitrinite reflectance (Ro) is between 1.15% and 1.29%, demonstrating that the Dalong Formation shale is in a mature stage of hydrocarbon generation. Moreover, the Dalong Formation shale extracts display a full range of C11-C35 n-alkanes and acyclic isoprenoids. The chromatograms are characterized by a unimodal distribution of n-alkanes with carbon peak in the range of nC18-nC22 and low quantities of long-chain (nC25+) n-alkanes. Furthermore, the steranes are dominated by C27, C28, and C29 sterane homologs of regular steranes, with the following relative distributions: C27≈C29>C28 regular steranes, which belongs to the V-shaped distribution, indicating that the organic matters in Dalong Formation black shale are mainly originated from lower aquatic organisms (e.g., bacteria and algae) and followed by higher plants in a local area. This conclusion is also supported by the variations of the δ13C values of C13-C26 n-alkanes for the target samples being in the range of 3.0‰-5.6‰ offset, which is slightly higher than the corresponding value (1.6‰) of n-alkanes from a single source. In addition, the cross plot of TOC vs. TS as well as the Pr/Ph ratio and the Pr/nC17-Ph/nC18 diagram indicate that Dalong Formation black shale was mainly formed in a marine anoxic-dysoxic environment, which is beneficial to the preservation of organic matter.
-
图 1 研究区范围及港地1井位置分布(据黄保家等,2013修改)
Fig. 1. The scope of the studied area and the location distribution of Gangdi-1 Well (modified from Huang et al., 2013)
图 5 港地1井大隆组页岩孔隙发育特征
a.有机孔大量发育,GD-1,984.9 m;b.有机孔,GD-6,971.7 m;c.图b局部放大,GD-6,971.7 m;d.有机孔大量发育,GD-7,967.5 m;e.有机孔和黏土矿物层间孔,GD-4,975.5 m;f.黏土矿物层间孔,GD-9,959.1 m;g.粒间孔,具纸房构造,GD-19,924.1 m;h.黏土矿物层间孔和有机质边缘收缩缝,GD-7,967.5 m;i.有机质边缘收缩缝,图h局部放大,GD-7,967.5 m
Fig. 5. Pore development characteristics of the Dalong Formation shale from Gangdi-1 Well
图 9 皖南地区上二叠统大隆组页岩Pr/nC17和Ph/nC18交汇图(底图据Rangel et al., 2017修改)
Fig. 9. Plot of Pr/nC17 versus Ph/nC18 of the Dalong Formation shale in southern Anhui Province (modified from Rangel et al., 2017)
图 10 皖南地区港地1井大隆组页岩规则甾烷C27-C28-C29三角图(底图据Hakimi et al., 2016修改)
Fig. 10. Ternary diagram of C27, C28 and C29 regular steranes of Dalong Formation rock samples from Gangdi-1 Well in southern Anhui Province (modified from Hakimi et al., 2016)
表 1 皖南地区港地1井大隆组页岩有机地化参数
Table 1. Geochemical parameters of the Dalong Formation shale from Gangdi-1 Well in southern Anhui Province
样品编号 深度
(m)TOC
(%)TS
(%)Ro
(%)S1
(mg/g)S2
(mg/g)S3
(mg/g)Tmax
(℃)HI
(mg/g)S1+S2
(mg/g)PI GD-20 919.5 1.24 1.69 1.17 0.39 1.96 0.15 447 158.06 2.35 0.17 GD-19 924.1 1.18 2.74 1.24 0.35 1.35 0.18 448 114.41 1.70 0.21 GD-18 927.4 2.89 2.48 1.19 0.45 2.72 0.17 449 94.12 3.17 0.14 GD-17 930.5 2.18 2.67 1.16 0.33 1.42 0.18 452 65.14 1.75 0.19 GD-16 934.2 1.71 2.81 1.18 0.37 1.68 0.21 451 98.25 2.05 0.18 GD-15 937.8 1.70 2.84 1.21 0.47 1.73 0.21 450 101.76 2.20 0.21 GD-14 941.8 1.86 2.67 1.24 0.29 1.19 0.18 448 63.98 1.48 0.20 GD-13 945.9 2.81 1.65 1.15 0.51 2.00 0.22 453 71.17 2.51 0.20 GD-12 950.0 3.94 3.40 1.17 0.54 3.21 0.29 452 81.47 3.75 0.14 GD-11 953.5 2.05 2.82 1.25 0.41 1.52 0.16 450 74.15 1.93 0.21 GD-10 955.6 1.19 2.68 1.18 0.46 2.37 0.19 450 199.16 2.83 0.16 GD-9 959.1 3.52 2.63 1.20 0.58 3.72 0.24 453 105.68 4.30 0.13 GD-8 964.0 3.20 3.33 1.19 0.65 2.40 0.20 454 75.00 3.05 0.21 GD-7 967.5 3.68 3.02 1.24 0.22 0.81 0.27 455 22.01 1.03 0.21 GD-6 971.7 2.67 2.31 1.19 0.41 2.12 0.19 454 79.40 2.53 0.16 GD-5 973.7 3.05 2.94 1.17 0.61 2.67 0.25 452 87.54 3.28 0.19 GD-4 975.5 4.35 3.10 1.21 0.87 5.59 0.33 451 128.51 6.46 0.13 GD-3 979.3 2.02 1.19 1.20 0.37 1.61 0.14 455 79.70 1.98 0.19 GD-2 982.0 1.89 0.99 1.24 0.68 2.54 0.20 450 134.39 3.22 0.21 GD-1 984.9 3.54 1.80 1.29 0.90 4.33 0.28 453 122.32 5.23 0.17 平均值 2.53 2.49 1.20 0.49 2.35 0.21 451 97.81 2.84 0.18 表 2 皖南地区港地1井大隆组页岩样品干酪根显微组成
Table 2. Maceral compositions of the Dalong Formation shale samples from Gangdi-1 Well in southern Anhui Province
样品编号 组分含量(%) 类型指数 类型 腐泥组 壳质组 镜质组 惰质组 GD-20 90.7 1 7.5 0.8 84.8 Ⅰ GD-19 86.3 1 11.8 0.9 77.1 Ⅱ1 GD-18 88.4 0 10.4 1.2 79.4 Ⅱ1 GD-17 91.8 0 7.4 0.8 85.5 Ⅰ GD-16 89.6 1 8.3 1.1 82.8 Ⅰ GD-15 90.5 0 8.9 1.0 82.8 Ⅰ GD-14 90.2 0 8.4 1.4 82.5 Ⅰ GD-13 94.5 0 5.0 0.5 90.3 Ⅰ GD-12 91.2 0 8.1 0.7 84.4 Ⅰ GD-11 86.6 3 9.3 1.1 80.0 Ⅰ GD-10 89.7 1 8.5 0.8 83.0 Ⅰ GD-9 90.5 0 8.4 1.1 83.1 Ⅰ GD-8 89.4 0 9.4 1.2 81.2 Ⅰ GD-7 87.7 0 10.7 1.7 78.0 Ⅱ1 GD-6 89.9 0 8.9 1.2 82.0 Ⅰ GD-5 89.7 0 9.3 1.0 81.7 Ⅰ GD-4 88.9 0 10.3 0.8 80.4 Ⅰ GD-3 92.7 0 6.7 0.7 87.0 Ⅰ GD-2 81.5 0 16.7 1.8 67.2 Ⅱ1 GD-1 73.7 0 25.0 1.3 53.7 Ⅱ1 平均值 88.7 0.4 10.0 1.1 80.3 表 3 皖南地区港地1井上二叠统大隆组页岩样品正构烷烃相关参数
Table 3. Biomarker parameters of normal alkanes (m/z 85) for the Upper Permian Dalong Formation shale samples from Gangdi-1 Well in southern Anhui Province
样品编号 主峰碳数 nC17/
nC31nC21-/
nC22+(nC21+nC22)/
(nC28+nC29)CPI OEP Pr/Ph Pr/nC17 Ph/nC18 GD-20 nC19 2.16 0.81 1.64 1.12 1.00 0.98 0.73 0.70 GD-19 nC19 2.24 0.83 1.52 1.09 1.01 1.06 0.80 0.72 GD-17 nC19 1.86 0.73 1.43 1.08 1.01 0.94 0.75 0.75 GD-15 nC20 2.33 0.79 1.52 1.09 1.00 0.92 0.67 0.68 GD-14 nC19 1.86 0.72 1.54 1.25 1.01 0.92 0.72 0.69 GD-13 nC20 2.74 0.93 1.68 1.14 1.00 1.06 0.76 0.68 GD-11 nC22 1.01 0.46 1.13 1.14 0.99 0.95 0.87 0.77 GD-10 nC19 1.89 0.64 1.69 1.13 1.01 0.88 0.62 0.59 GD-8 nC19 3.97 1.22 2.04 1.15 1.03 1.02 0.60 0.56 GD-7 nC21 1.17 0.55 1.39 1.15 1.01 0.83 0.54 0.52 GD-5 nC21 1.45 0.65 1.78 1.12 1.01 0.68 0.58 0.59 GD-3 nC19 1.71 0.68 1.52 1.09 1.01 0.86 0.64 0.63 GD-1 nC18 3.47 0.92 2.06 1.11 0.98 0.90 0.57 0.57 平均值 2.14 0.76 1.61 1.13 1.00 0.92 0.68 0.65 表 4 皖南地区港地1井上二叠统大隆组页岩萜烷与甾烷类化合物相关参数
Table 4. Biomarker parameters of terpanes (m/z 191) and steranes (m/z 217) for the Upper Permian Dalong Formation shale from Gangdi-1 Well in southern Anhui Province
样品编号 C29/ C30H Tm/ Ts Ts/ (Ts+Tm) γ蜡烷/C30藿烷 三环萜烷/藿烷 规则甾烷(%) C27/ C29 C27 C28 C29 GD-20 0.32 0.52 0.68 0.20 0.85 39.05 26.37 34.58 1.13 GD-19 0.28 0.49 0.67 0.19 0.96 36.43 27.24 36.33 1.00 GD-17 0.31 0.60 0.63 0.21 1.05 37.37 25.32 37.31 1.00 GD-15 0.31 0.45 0.69 0.20 0.56 38.25 25.74 36.00 1.06 GD-14 0.37 0.42 0.70 0.20 0.42 37.87 25.98 36.15 1.05 GD-13 0.34 0.17 0.86 0.16 0.40 34.46 27.37 38.17 0.90 GD-11 0.30 0.37 0.73 0.20 0.37 35.42 26.65 37.93 0.93 GD-10 0.34 0.43 0.69 0.28 0.36 40.56 25.72 33.72 1.20 GD-8 0.40 0.18 0.85 0.18 0.45 38.61 26.90 34.48 1.12 GD-7 0.36 0.49 0.67 0.19 0.49 38.99 23.88 37.13 1.05 GD-5 0.35 0.76 0.57 0.20 0.64 42.36 24.99 32.65 1.30 GD-3 0.32 0.61 0.62 0.38 0.56 44.52 23.86 31.62 1.41 GD-1 0.33 0.76 0.57 0.47 0.52 39.31 24.19 36.50 1.08 平均值 0.33 0.48 0.69 0.24 0.59 38.68 25.65 35.67 1.09 注:C29为C29-降藿烷;C30H为C30-藿烷;Ts为C27 18α(H)-22,29,30-三降藿烷;Tm为C27 17α(H)-22,29,30-三降藿烷. 表 5 皖南地区大隆组页岩与四川盆地典型页岩特征对比
Table 5. Comparison of the characteristics between Dalong Formation shale in southern Anhui Province and typical shales in Sichuan Basin
页岩层系 龙马溪组 大隆组 大隆组 区块或地区 焦石坝 长宁‒昭通 川东北 皖南 时代 奥陶系 奥陶系 二叠系 二叠系 典型钻井 焦页1HF 宁201-H1 乐坝1 港地1 沉积相 深水陆棚 深水陆棚、半深水陆棚 深水陆棚‒盆地相 深水陆棚、浅水陆棚 埋深(m) 2 250~3 500 2 300~3 200 2 500~6 000 800~2 500 优质页岩厚度TOC>2% (m) 38 37.8 15~40 12~35 TOC(%) 0.46~7.13/2.66 3.0~5.0/3.8 0.56~22.05/7.19 1.18~4.35/2.53 Ro(%) 2.42~2.80 2.14~2.87 1.49~2.99/2.15 1.15~1.29/1.20 有机质类型 Ⅰ-Ⅱ1 Ⅰ-Ⅱ1 Ⅰ-Ⅱ1 Ⅰ型为主,少数Ⅱ1型 孔隙度(%) 2.8~7.1/4.8 4.0~7.0/5.4 1.3~5.7/3.5 1.2~6.8/3.9 石英含量(%) 46.0~65.0/55.5 46.4 4.1~77.8/44.7 34.9~58.4/48.3 含气量(m3/t) 5.0~10.0/7.5 2.9~7.4/4.5 0.6~11.5/4.6 0.5~1.5 压力系数 1.6 1.2~2.0 1.4~1.7 / 天然裂缝发育程度 发育 不发育‒发育 一般 不发育 天然裂缝脉体类型 方解石脉和石英脉 方解石脉 方解石脉 方解石脉 改造强度 较弱 较弱 较强 强 注:“/”后为平均值;长宁‒昭通区块龙马溪组数据据梁兴等(2020)和马新华等(2020)汇编;川东北地区大隆组部分数据据王威等(2020). -
[1] Bai, L. H., Shi, W. Z., Zhang, X. M., et al., 2021. Characteristics of Permian Marine Shale and Its Sedimentary Environment in Xuanjing Area, South Anhui Province, Lower Yangtze Area. Earth Science, 46(6): 2204-2217 (in Chinese with English abstract). [2] Chen, P., Zhang, M. Q., Xu, Y. Z., et al., 2013. The Shale Reservoir Characteristic of Dalong Formation Upper Permian in Chaohu-Jingxian, Lower Yangtze Area. Acta Petrologica Sinica, 29(8): 2925-2935 (in Chinese with English abstract). [3] Cheng, P., Xiao, X. M., Tian, H., et al., 2014. Effects of Maturity on the Pr/Ph Ratio of the Soluble Organic Matters in the Terrestrial Source Rocks. Acta Sedimentologica Sinica, 32(1): 182-188 (in Chinese with English abstract). [4] Ding, J. H., Zhang, J. C., Huo, Z. P., et al., 2021. Controlling Factors and Formation Models of Organic Matter Accumulation for the Upper Permian Dalong Formation Black Shale in the Lower Yangtze Region, South China: Constraints from Geochemical Evidence. ACS Omega, 6(5): 3681-3692. https://doi.org/10.1021/acsomega.0c04979 [5] Ding, J. H., Zhang, J. C., Shi, G., et al., 2021a. Sedimentary Environment and Organic Matter Accumulation for the Longtan Formation Shale in Xuancheng Area. Acta Sedimentologica Sinica, 39(2): 324-340 (in Chinese with English abstract). [6] Ding, J. H., Zhang, J. C., Shi, G., et al., 2021b. Sedimentary Environment and Organic Matter Enrichment Mechanisms of the Upper Permian Dalong Formation Shale, Southern Anhui Province, China. Oil & Gas Geology, 42(1): 158-172 (in Chinese with English abstract). [7] Fu, J. M., Sheng, G. Y., et al., 1991. Application of Biomarker Compounds in Assessment of Paleoenvironments of Chinese Terrestrial Sediments. Geochimica, 20(1): 1-12 (in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.1991.01.001 [8] Hakimi, M. H., Abdullah, W. H., Alqudah, M., et al., 2016. Organic Geochemical and Petrographic Characteristics of the Oil Shales in the Lajjun Area, Central Jordan: Origin of Organic Matter Input and Preservation Conditions. Fuel, 181: 34-45. https://doi.org/10.1016/j.fuel.2016.04.070 [9] Hou, D. J., Feng Z. H., 2011. Hydrocarbon Geochemistry. Petroleum Industry Press, Beijing (in Chinese). [10] Huang, B. J., Shi, R. F., Zhao, X. B., et al., 2013. Geological Conditions of Paleozoic Shale Gas Formation and Its Exploration Potential in the South Anhui, Lower Yangtze Area. Journal of China Coal Society, 38(5): 877-882 (in Chinese with English abstract). [11] Li, M. J., Wang, T. G., Lillis, P. G., et al., 2012. The Significance of 24-Norcholestanes, Triaromatic Steroids and Dinosteroids in Oils and Cambrian-Ordovician Source Rocks from the Cratonic Region of the Tarim Basin, NW China. Applied Geochemistry, 27(8): 1643-1654. https://doi.org/10.1016/j.apgeochem.2012.03.006 [12] Liang, D. G., Guo, T. L., Chen, J. P., et al., 2008. Some Progresses on Studies of Hydrocarbon Generation and Accumulation in Marine Sedimentary Regions, Southern China (Part 1): Distribution of Four Suits of Regional Marine Source Rocks. Marine Origin Petroleum Geology, 13(2): 1-16 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2008.02.001 [13] Liang, D. G., Guo, T. L., Chen, J. P., et al., 2009. Some Progresses on Studies of Hydrocarbon Generation and Accumulation in Marine Sedimentary Regions, Southern China (Part 2): Geochemical Characteristics of Four Suits of Regional Marine Source Rocks, South China. Marine Origin Petroleum Geology, 14(1): 1-15 (in Chinese with English abstract). [14] Liang, X., Xu, Z. Y., Zhang, Z., et al., 2020. Breakthrough of Shallow Shale Gas Exploration in Taiyang Anticline Area and Its Significance for Resource Development in Zhaotong, Yunnan Province, China. Petroleum Exploration and Development, 47(1): 11-28 (in Chinese with English abstract). [15] Liao, Z. W., Hu, W. X., Cao, J., et al., 2016. A Preliminary Investigation of the Development and Hydrocarbon Potential of the Black Shales in the Upper Permian Dalong Formation, Southern Anhui Province in the Lower Yangze Region, China. Geological Journal of China Universities, 22(1): 138-151 (in Chinese with English abstract). [16] Liu, Q. Y., Liu, W. H., 2007. Biomarker Evidences of Biodegradation for Jurassic Coal in Tarim Basin. Acta Petrolei Sinica, 28(1): 50-53 (in Chinese with English abstract). doi: 10.3321/j.issn:0253-2697.2007.01.009 [17] Ma, X. H., Xie, J., Yong, R., et al., 2020. Geological Characteristics and High Production Control Factors of Shale Gas Reservoirs in Silurian Longmaxi Formation, Southern Sichuan Basin, SW China. Petroleum Exploration and Development, 47(5): 841-855 (in Chinese with English abstract). [18] Mansour, A., Geršlová, E., Sýkorová, I., et al., 2020. Hydrocarbon Potential and Depositional Paleoenvironment of a Middle Jurassic Succession in the Falak-21 Well, Shushan Basin, Egypt: Integrated Palynological, Geochemical and Organic Petrographic Approach. International Journal of Coal Geology, 219: 103374. https://doi.org/10.1016/j.coal.2019.103374 [19] Moldowan, J. M., Fago, F. J., Carlson, R. M. K., et al., 1991. Rearranged Hopanes in Sediments and Petroleum. Geochimica et Cosmochimica Acta, 55(11): 3333-3353. https://doi.org/10.1016/0016-7037(91)90492-N [20] Monson, K. D., Hayes, J. M., 1982. Biosynthetic Control of the Natural Abundance of Carbon 13 at Specific Positions within Fatty Acids in Saccharomyces Cerevisiae: Isotopic Fractionation in Lipid Synthesis as Evidence for Peroxisomal Regulation. Journal of Biological Chemistry, 257(10): 5568-5575. https://doi.org/10.1016/S0021-9258(19) 70310-X doi: 10.1016/S0021-9258(19)70310-X [21] Nie, H. K., He, Z. L., Liu, G. X., et al., 2020. Status and Direction of Shale Gas Exploration and Development in China. Journal of China University of Mining & Technology, 49(1): 13-35 (in Chinese with English abstract). [22] Pan, J. P., Qiao, D. W., Li, S. Z., et al., 2011. Shale-Gas Geological Conditions and Exploration Prospect of the Paleozoic Marine Strata in Lower Yangtze Area, China. Geological Bulletin of China, 30(2-3): 337-343 (in Chinese with English abstract). [23] Peters, K. E., Walters, C. C., Moldowan, J. M., 2005. The Biomarker Guide: Biomarkers and Isotopes in Petroleum Exploration and Earth History. Cambridge University Press, New York, 45-71. [24] Rangel, A., Osorno, J. F., Ramirez, J. C., et al., 2017. Geochemical Assessment of the Colombian Oils Based on Bulk Petroleum Properties and Biomarker Parameters. Marine and Petroleum Geology, 86: 1291-1309. https://doi.org/10.1016/j.marpetgeo.2017.07.010 [25] Shi, G., Xu, Z. Y., Zheng, H. J., et al., 2019. "Three-Gas-One-Oil" Drilling Findings and Reservoir Formation Geological Conditions in the Lower Yangtze Area: Exemplified by Gang Di 1 Well in South Anhui. Geological Bulletin of China, 38(9): 1564-1570 (in Chinese with English abstract). [26] Sousa Júnior, G. R., Santos, A. L. S., de Lima, S. G., et al., 2013. Evidence for Euphotic Zone Anoxia during the Deposition of Aptian Source Rocks Based on Aryl Isoprenoids in Petroleum, Sergipe-Alagoas Basin, Northeastern Brazil. Organic Geochemistry, 63: 94-104. https://doi.org/10.1016/j.orggeochem.2013.07.009 [27] Sun, P. C., 2013. Environmental Dynamics of Oganic Accumulation in the Oil Shale bearing Layers in the Upper Cretaceous, Southeast Songliao Basin (NE China) (Dissertation). Jilin University, Changchun (in Chinese with English abstract). [28] Wang, T. G., Sheng, G. Y., Chen, J. H., et al., 1994. Identification and Genetic Significance of Methyltri- and Methyltetracyclic Terpanes. Chinese Science Bulletin, 39(10): 933-935 (in Chinese). doi: 10.1360/csb1994-39-10-933 [29] Wang, W., Shi, W. B., Fu, X. P., et al., 2020. Shale Gas Exploration Potential and Target of Permian Dalong Formation in Northern Sichuan. Petroleum Geology & Experiment, 42(6): 892-899, 956 (in Chinese with English abstract). [30] Wang, Y. J., Cai, C., Xiao, Y., et al., 2021. Geochemical Characteristics and Oil-Source Correlation of Crude Oils of Buried Hills in Shulu Sag, Jizhong Depression. Earth Science, 46(10): 3629-3644 (in Chinese with English abstract). [31] Xie, X. N., Hao, F., Lu, Y. C., et al., 2017. Differential Enrichment Mechanism and Key Technology of Shale Gas in Complex Areas of South China. Earth Science, 42(7): 1045-1056 (in Chinese with English abstract). [32] Zhang, J. C., Huo, Z. P., Tang, X., et al., 2016. Shale Gas Geological Characteristics in China. East China University of Technology Press, Shanghai, 73-80 (in Chinese). [33] Zhao, C. J., Kang, Z. H., Hou, Y. H., et al., 2020. Geochemical Characteristics of Rare Earth Elements and Their Geological Significance of Permian Shales in Lower Yangtze Area. Earth Science, 45(11): 4118-4127 (in Chinese with English abstract). [34] Zhu, W. B., Zhang, X. H., Zhou, D. R., et al., 2021. New Cognition on Pore Structure Characteristics of Permian Marine Shale in the Lower Yangtze Region and Its Implications for Shale Gas Exploration. Natural Gas Industry, 41(7): 41-55 (in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2021.07.005 [35] 白卢恒, 石万忠, 张晓明, 等, 2021. 下扬子皖南宣泾地区二叠系海相页岩特征及其沉积环境. 地球科学, 46(6): 2204-2217. doi: 10.3799/dqkx.2020.372 [36] 陈平, 张敏强, 许永哲, 等, 2013. 下扬子巢湖—泾县地区上二叠统大隆组泥页岩储层特征. 岩石学报, 29(8): 2925-2935. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201308028.htm [37] 程鹏, 肖贤明, 田辉, 等, 2014. 成熟度对陆相烃源岩可溶有机质Pr/Ph比值的影响. 沉积学报, 32(1): 182-188. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201401021.htm [38] 丁江辉, 张金川, 石刚, 等, 2021a. 宣城地区龙潭组页岩沉积环境与有机质富集. 沉积学报, 39(2): 324-340. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202102005.htm [39] 丁江辉, 张金川, 石刚, 等, 2021b. 皖南地区上二叠统大隆组页岩沉积环境与有机质富集机理. 石油与天然气地质, 42(1): 158-172. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202101015.htm [40] 傅家谟, 盛国英, 许家友, 等, 1991. 应用生物标志化合物参数判识古沉积环境. 地球化学, 20(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX199101000.htm [41] 侯读杰, 冯子辉, 2011. 油气地球化学. 北京: 石油工业出版社. [42] 黄保家, 施荣富, 赵幸滨, 等, 2013. 下扬子皖南地区古生界页岩气形成条件及勘探潜力评价. 煤炭学报, 38(5): 877-882. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201305030.htm [43] 梁狄刚, 郭彤楼, 陈建平, 等, 2008. 中国南方海相生烃成藏研究的若干新进展(一) 南方四套区域性海相烃源岩的分布. 海相油气地质, 13(2): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ200802001.htm [44] 梁狄刚, 郭彤楼, 陈建平, 等, 2009. 中国南方海相生烃成藏研究的若干新进展(二) 南方四套区域性海相烃源岩的地球化学特征. 海相油气地质, 14(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ200901004.htm [45] 梁兴, 徐政语, 张朝, 等, 2020. 昭通太阳背斜区浅层页岩气勘探突破及其资源开发意义. 石油勘探与开发, 47(1): 11-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001003.htm [46] 廖志伟, 胡文瑄, 曹剑, 等, 2016. 下扬子皖南大隆组黑色岩系发育特征及油气资源潜力初探. 高校地质学报, 22(1): 138-151. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201601014.htm [47] 刘全有, 刘文汇, 2007. 塔里木盆地煤岩生物降解的生物标志化合物证据. 石油学报, 28(1): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200701008.htm [48] 马新华, 谢军, 雍锐, 等, 2020. 四川盆地南部龙马溪组页岩气储集层地质特征及高产控制因素. 石油勘探与开发, 47(5): 841-855. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005003.htm [49] 聂海宽, 何治亮, 刘光祥, 等, 2020. 中国页岩气勘探开发现状与优选方向. 中国矿业大学学报, 49(1): 13-35. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202001002.htm [50] 潘继平, 乔德武, 李世臻, 等, 2011. 下扬子地区古生界页岩气地质条件与勘探前景. 地质通报, 30(2-3): 337-343. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2011Z1020.htm [51] 石刚, 徐振宇, 郑红军, 等, 2019. 下扬子地区"三气一油"钻探发现及成藏地质条件——以皖南港地1井钻探发现为例. 地质通报, 38(9): 1564-1570. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201909014.htm [52] 孙平昌, 2013. 松辽盆地东南部上白垩统含油页岩系有机质富集环境动力学(博士学位论文). 长春: 吉林大学. [53] 王铁冠, 盛国英, 陈军红, 等, 1994. 甲基三环萜烷与甲基四环萜烷的鉴定及其生源意义. 科学通报, 39(10): 933-935. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB199410018.htm [54] 王威, 石文斌, 付小平, 等, 2020. 川北二叠系大隆组页岩气勘探潜力及方向. 石油实验地质, 42(6): 892-899, 956. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202006004.htm [55] 王元杰, 蔡川, 肖阳, 等, 2021. 冀中坳陷束鹿凹陷潜山原油地球化学特征与油源对比. 地球科学, 46(10): 3629-3644. doi: 10.3799/dqkx.2021.030 [56] 解习农, 郝芳, 陆永潮, 等, 2017. 南方复杂地区页岩气差异富集机理及其关键技术. 地球科学, 42(7): 1045-1056. doi: 10.3799/dqkx.2017.084 [57] 张金川, 霍志鹏, 唐玄, 等, 2016. 中国页岩气地质. 上海: 华东理工大学出版社, 73-80. [58] 赵晨君, 康志宏, 侯阳红, 等, 2020. 下扬子二叠系泥页岩稀土元素地球化学特征及地质意义. 地球科学, 45(11): 4118-4127. doi: 10.3799/dqkx.2019.274 [59] 朱文博, 张训华, 周道容, 等, 2021. 下扬子地区二叠系海相页岩孔隙特征新认识及页岩气勘探启示. 天然气工业, 41(7): 41-55. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202107007.htm