• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    川南泸州地区页岩气甜点地质工程一体化关键要素耦合关系及攻关方向

    姜振学 梁志凯 申颍浩 唐相路 吴伟 李卓 薛子鑫 石学文 郭婕

    姜振学, 梁志凯, 申颍浩, 唐相路, 吴伟, 李卓, 薛子鑫, 石学文, 郭婕, 2023. 川南泸州地区页岩气甜点地质工程一体化关键要素耦合关系及攻关方向. 地球科学, 48(1): 110-129. doi: 10.3799/dqkx.2022.139
    引用本文: 姜振学, 梁志凯, 申颍浩, 唐相路, 吴伟, 李卓, 薛子鑫, 石学文, 郭婕, 2023. 川南泸州地区页岩气甜点地质工程一体化关键要素耦合关系及攻关方向. 地球科学, 48(1): 110-129. doi: 10.3799/dqkx.2022.139
    Jiang Zhenxue, Liang Zhikai, Shen Yinghao, Tang Xianglu, Wu Wei, Li Zhuo, Xue Zixin, Shi Xuewen, Guo Jie, 2023. Coupling Key Factors of Shale Gas Sweet Spot and Research Direction of Geology-Engineering Integration in Southern Sichuan. Earth Science, 48(1): 110-129. doi: 10.3799/dqkx.2022.139
    Citation: Jiang Zhenxue, Liang Zhikai, Shen Yinghao, Tang Xianglu, Wu Wei, Li Zhuo, Xue Zixin, Shi Xuewen, Guo Jie, 2023. Coupling Key Factors of Shale Gas Sweet Spot and Research Direction of Geology-Engineering Integration in Southern Sichuan. Earth Science, 48(1): 110-129. doi: 10.3799/dqkx.2022.139

    川南泸州地区页岩气甜点地质工程一体化关键要素耦合关系及攻关方向

    doi: 10.3799/dqkx.2022.139
    基金项目: 

    国家自然科学基金项目 42072151

    中国石油西南油气田公司科研项目 2020-57912

    中国石油西南油气田公司科研项目 20210604-02

    详细信息
      作者简介:

      姜振学(1963-),男,教授,博士生导师,主要从事含油气盆地分析、常规和非常规油气研究.ORCID:0000-0002-2553-4573. E-mail:jiangzx@cup.edu.cn

    • 中图分类号: P618.13

    Coupling Key Factors of Shale Gas Sweet Spot and Research Direction of Geology-Engineering Integration in Southern Sichuan

    • 摘要: 页岩气甜点地质工程一体化关键要素分析与评价是页岩气高效勘探开发的必要工作.从甜点优选、钻完井工程、压裂工艺等多方面对川南泸州地区开展研究,结合地质工程一体化研究思路,系统分析了工程要素与地质要素的耦合关系.结果表明:泸州地区地质条件复杂,水平最大主应力方向为NWW-SEE向,由西向东裂缝发育程度减少;天然裂缝方向与最大主应力方向和井轨迹有效匹配提高压裂改造体积,井轨迹方位与地应力夹角大于60°、与裂缝主方向夹角大于20°时,水平井压裂效果越好;通过加密分簇、提高排量、暂堵转向、提高加砂强度等技术优化,可保证深层页岩改造体积及缝网有效性.综上,利用工程与地质双因素耦合分析,开展深层井轨迹与甜点预测关系、深层裂缝体积改造与地应力关系、深层钻‒完井工程与岩石力学关系技术攻关,能够有效推动地质工程一体化的动态运行,提高单井最大可采量和区块最大动用量.

       

    • 图  1  四川盆地东南缘泸州地区构造纲要图

      Fig.  1.  Structural outline map of the Luzhou area on the southeastern margin of the Sichuan Basin

      图  2  泸州地区典型构造样式特征

      a.断背斜组合地震剖面;b.断背斜组合类型模式图;c.背冲断裂组合地震剖面;d.背冲断裂组合模式图;e.对冲断裂组合地震剖面;f.对冲断裂组合模式图

      Fig.  2.  Characteristics of typical structural styles in Luzhou area

      图  3  泸州地区五峰‒龙马溪组不同向斜裂缝走向玫瑰花图

      Fig.  3.  The rose pattern of different syncline cracks of Wufeng-Longmaxi Formation in Luzhou area

      图  4  川南泸州构造区五峰‒龙马溪组不同类型裂缝密度统计图

      Fig.  4.  Statistical map of the density of different types of fractures of Wufeng-Longmaxi Formation in the Luzhou structural area in southern Sichuan

      图  5  川南泸州地区各个构造区五峰组‒龙马溪组孔隙度统计图

      Fig.  5.  Porosity statistical map of Wufeng Formation-Longmaxi Formation in various structural areas in Luzhou area, southern Sichuan

      图  6  泸州地区不同构造单元五峰‒龙马溪组页岩总含气量及损失气和解吸气含量箱状图

      Fig.  6.  Box plot of total gas content, lost gas, and desorbed gas content of Wufeng-Longmaxi Formation shales in different tectonic units in the Luzhou area

      图  7  泸州地区不同构造区五峰‒龙马溪组页岩总含气量影响因素分析

      Fig.  7.  Analysis on the influencing factors of gas content of Wufeng-Longmaxi Formation shales in different structural areas in the Luzhou area

      图  8  泸州地区不同构造单元页岩垂向脆性指数分布

      Fig.  8.  Distribution of yertical brittleness index of shales in different teetonic units in Luzhou area

      图  9  泸州地区地应力方向分布

      Fig.  9.  Distribution of in-situ stress directions in Luzhou area

      图  10  泸州地区不同构造单元五峰‒龙马溪组页岩覆压孔隙度变化

      Fig.  10.  Variations of overlying pressure porosity of Wufeng-Longmaxi Formation shales of different structural units in Luzhou area

      图  11  岩石不同水平应力及垂向应力的裂缝发育模式

      Fig.  11.  Fracture development model of different horizontal and vertical stresses in rocks

      图  12  不同最大主应力与自然裂缝夹角下岩石压裂效果模型

      Fig.  12.  Rock fracturing effect model under different maximum principal stress and natural fracture angle

      图  13  每米测试产量与井轨迹及最大主应力夹角的关系

      Fig.  13.  The relationship between the test output per meter and the good trajectory and the maximum principal stress angle

      图  14  泸州地区五峰‒龙马溪组页岩测试产量与靶体钻遇率相关统计图

      Fig.  14.  Statistical graphs related to testing production of shale in Wufeng-Longmaxi Formation in Luzhou area and target drilling encounter rate and test production

      图  15  泸州地区五峰‒龙马溪组页岩单轴及三轴实验应力变化

      Fig.  15.  Uniaxial and triaxial experimental stress variations of Wufeng-Longmaxi Formation shale in Luzhou area

      图  16  川南地区五峰‒龙马溪组水平井段长度和储层钻遇率统计

      Fig.  16.  Statistics of the length of the horizontal well section and the drilling encounter rate of the Wufeng-Longmaxi Formation in the southern Sichuan

      图  17  川南地区不同井地层温度与垂深的关系

      Fig.  17.  The relationship between formation temperature and vertical depth in different wells in southern Sichuan

      图  18  页岩气甜点地质工程一体化关键要素耦合关系图

      Fig.  18.  Coupling relationship diagram of key elements of shale gas sweet spot geology-engineering integration

      表  1  泸州地区五峰-龙马溪组岩石应力实验结果

      Table  1.   Experimental results of rock stress of Wufeng-Longmaxi Formation shales in Luzhou area

      井位 深度(m) 实验条件 实验结果
      温度
      (℃)
      上覆岩层压力
      (MPa)
      围压
      (MPa)
      孔压
      (MPa)
      抗压强度(MPa) 杨氏模量
      (104MPa)
      泊松比
      泸205 4 027.39
      4 027.61
      129.0 102.7 82.2 68.5 402.93 2.473 0.230
      359.66 2.468 0.254
      泸207 3 454.76
      4 548.81
      109.0 89.8 71.8 65.6 597.9 5.004 0.212
      600.6 4.880 0.215
      下载: 导出CSV

      表  2  泸州地区不同构造单元地应力实验统计

      Table  2.   Experimental statistics of in-situ stress in different tectonic units in the Luzhou area

      区块 井号 三向主应力(MPa) 水平应力差(MPa)
      水平最大 水平最小 垂向
      荔枝滩构造 201 101.1 87.2 94.4 14.0
      海潮向斜 202 114.7 93.8 108.4 20.9
      福集向斜 203H57-3 102.6 89.7 95.5 12.9
      207 94.5 83.6 89.8 10.9
      德胜向斜 101H4-4 112.6 98.7 103.6 13.9
      宝藏向斜 101H53-3 111.8 95.5 106.5 16.3
      101H56-1 115.8 100.0 106.7 15.8
      101H65-5 106.4 94.2 102.1 12.2
      来苏‒云锦向斜 101H91-4 113.5 98.9 108.9 14.6
      210 113.8 98.4 109.1 15.4
      下载: 导出CSV

      表  3  足201及足203井压裂开发参数及产量统计

      Table  3.   Fracturing development parameters and production statistics of Well Zu201 and Well Zu203

      井号 分段段长(m) 簇间距
      (m)
      施工排量(m3/min) 加砂强度
      (t/m)
      用液强度
      (m3/m)
      40/70目陶粒占比
      (%)
      暂堵
      转向
      全井SRV
      (104m3
      测试产量
      (104m3/d)
      Z201-H1 62.4 20.8 10~12 1.4 32.6 10.6 2 800 10.56
      Z203 55.2 18.4 16~17 1.8 41.9 70.8 6 189 21.3
      下载: 导出CSV
    • [1] Bowker, K. A., 2007. Barnett Shale Gas Production, Fort Worth Basin: Issues and Discussion. AAPG Bulletin, 91(4): 523-533. https://doi.org/10.1306/06190606018
      [2] Chen, S. B., Zhu, Y. M., Chen, S., et al., 2017. Hydrocarbon Generation and Shale Gas Accumulation in the Longmaxi Formation, Southern Sichuan Basin, China. Marine and Petroleum Geology, 86: 248-258. https://doi.org/10.1016/j.marpetgeo.2017.05.017
      [3] Chen, T. Y., Feng, X. T., Yang, C. X., et al., 2014. Research on Confining Pressure Sensitivity and Anisotropy for Gas Shale Permeability. Journal of Mining & Safety Engineering, 31(4): 639-643 (in Chinese with English abstract).
      [4] Feng, G. Q., Zhao, L. Q., Bian, X. B., et al., 2017. Multi-Scale Hydraulic Fracturing of Horizontal Wells in Deep Shale Gas Plays. Petroleum Drilling Techniques, 45(6): 77-82 (in Chinese with English abstract).
      [5] Guo, T. L., 2021. Progress and Research Direction of Deep Shale Gas Exploration and Development. Reservoir Evaluation and Development, 11(1): 1-6 (in Chinese with English abstract).
      [6] Guo, W., Feng, Q. L., Khan, M. Z., 2021. Organic Matter Enrichment Mechanism of Black Shale in Wufeng- Longmaxi Formations: A Case Study from Jiaoye 143-5 Well at Chongqing. Earth Science, 46(2): 572-582 (in Chinese with English abstract).
      [7] He, J. H., Ding, W. L., Wang, Z., et al., 2015. Main Controlling Factors of Fracture Network Formation of Volume Fracturing in Shale Reservoirs and Its Evaluation Method. Geological Science and Technology Information, 34(4): 108-118 (in Chinese with English abstract).
      [8] Hou, B., Chang, Z., Wu, A. A., et al., 2022. Simulation of Competitive Propagation of Multi-Fractures on Shale Oil Reservoir Multi-Clustered Fracturing in Jimsar Sag. Acta Petrolei Sinica, 43(1): 75-90 (in Chinese with English abstract).
      [9] Hu, W. R., 2017. Geology-Engineering Integration—A Necessary Way to Realize Profitable Exploration and Development of Complex Reservoirs. China Petroleum Exploration, 22(1): 1-5 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2017.01.001
      [10] Huang, H. Y., 2018. Formation and Evolution of Paleo-Uplift in Southeastern Sichuan Basin and Its Control on Hydrocarbon Accumulation (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      [11] Li, G. X., Wang, F., Pi, X. J., et al., 2019. Optimized Application of Geology-Engineering Integration Data of Unconventional Oil and Gas Reservoirs. China Petroleum Exploration, 24(2): 147-152 (in Chinese with English abstract).
      [12] Li, Q. H., Chen, M., Jin, Y., et al., 2012. Rock Mechanical Properties and Brittleness Evaluation of Shale Gas Reservoir. Petroleum Drilling Techniques, 40(4): 17-22 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-0890.2012.04.004
      [13] Li, Y. X., Qiao, D. W., Jiang, W. L., et al., 2011. Gas Content of Gas-Bearing Shale and Its Geological Evaluation Summary. Geological Bulletin of China, 30(2-3): 308-317 (in Chinese with English abstract).
      [14] Liu, Q. Y., Zhu, H. Y., Chen, P. J., 2021. Research Progress and Direction of Geology-Engineering Integrated Drilling Technology: A Case Study on the Deep Shale Gas Reservoirs in the Sichuan Basin. Natural Gas Industry, 41(1): 178-188 (in Chinese with English abstract).
      [15] Jiang, Z. X., Song, Y., Tang, X. L., et al., 2020. Controlling Factors of Marine Shale Gas Differential Enrichment in Southern China. Petroleum Exploration and Development, 47(3): 617-628 (in Chinese with English abstract).
      [16] Mei, L. F., Liu, Z. Q., Tang, J. G., et al., 2010. Mesozoic Intra-Continental Progressive Deformation in Western Hunan-Hubei-Eastern Sichuan Provinces of China: Evidence from Apatite Fission Track and Balanced Cross-Section. Earth Science, 35(2): 161-174 (in Chinese with English abstract).
      [17] Meng, Y., 2018. Mechanism of Gas Diffusion-Seepage in High-Rank Coal and Productivity Evaluation of Coalbed Methane Wells (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      [18] Meng, Y., Li, Z. P., 2015. Experimental Study on the Porosity and Permeability of Coal in Net Confining Stress and Its Stress Sensitivity. Journal of China Coal Society, 40(1): 154-159 (in Chinese with English abstract).
      [19] Nie, H. K., He, Z. L., Liu, G. X., et al., 2020a. Genetic Mechanism of High-Quality Shale Gas Reservoirs in the Wufeng-Longmaxi Fms in the Sichuan Basin. Natural Gas Industry, 40(6): 31-41 (in Chinese with English abstract).
      [20] Nie, H. K., Zhang, B. Q., Liu, G. X., et al., 2020b. Geological Factors Contributing to High Shale Gas Yield in the Wufeng-Longmaxi Fms of Sichuan Basin: A Case Study of Well JY6-2HF in Fuling Shale Gas Field. Oil & Gas Geology, 41(3): 463-473 (in Chinese with English abstract).
      [21] Shao, S. Q., Tian, S. C., Li, G. S., et al., 2014. Propagating Orientation of Hydraulic Fractures in Muddy Shale Formation. Petroleum Drilling Techniques, 42(3): 27-31 (in Chinese with English abstract).
      [22] Sheng, Q. H., Li, W. C., 2016. Evaluation Method of Shale Fracability and Its Application in Jiaoshiba Area. Progress in Geophysics, 31(4): 1473-1479 (in Chinese with English abstract).
      [23] Sun, C. X., Nie, H. K., Liu, G. X., et al., 2019. Quartz Type and Its Control on Shale Gas Enrichment and Production: A Case Study of the Wufeng-Longmaxi Formations in the Sichuan Basin and Its Surrounding Areas, China. Earth Science, 44(11): 3692-3704 (in Chinese with English abstract).
      [24] Tang, S. H., Zhu, B. C., Yan, Z. F., 2011. Effect of Crustal Stress on Hydraulic Fracturing in Coalbed Methane Wells. Journal of China Coal Society, 36(1): 65-69 (in Chinese with English abstract).
      [25] Tang, Y., Zhou, L. F., Chen, K. Q., et al., 2018. Analysis of Tectonic Stress Field of Southeastern Sichuan and Formation Mechanism of Tectonic Deformation. Geological Review, 64(1): 15-28 (in Chinese with English abstract).
      [26] Wang, H. Y., Liu, Y. Y., Zhang, X. W., et al., 2023. Geology-Engineering Integration Shale Gas Sweet Spots Evaluation Based on Analytic Hierarchy Process: Application to Zhaotong Shale Gas Demonstration District, Taiyang Shale Gas Field, Haiba Area, X Well Region. Earth Science, 48(1): 92-109 (in Chinese with English abstract).
      [27] Wang, Z. P., Zhang, Q., Liu, Z. P., et al., 2021. Efficient Development Technology Slope-Type Strongly Heterogeneous Shale Gas Reservoirs: A Case Study on the Longmaxi Formation Shale Gas Reservoir in the Weiyuan Area of the Southern Sichuan Basin. Natural Gas Industry, 41(4): 72-81 (in Chinese with English abstract).
      [28] Wen, Z., Kang, Y. S., Kang, L. X., et al., 2021. Geological Evaluation Indexes and Lowest Limit Standards for Selection of Shale Gas Industrial Construction Areas: Case Study of X Block in Southern Sichuan Basin. Natural Gas Geoscience, 32(7): 950-960 (in Chinese with English abstract).
      [29] Wu, G. S., Yu, W. J., Wang, P., et al., 2018. Deformation Failure Mechanism and Experimental Study of Gas-Bearing Coal Rock Mass Based on Percolation Mechanism. Journal of China Coal Society, 43(3): 724-734 (in Chinese with English abstract).
      [30] Wu, J. F., Zhao, S. X., Fan, C. H., et al., 2021. Fracture Characteristics of the Longmaxi Formation Shale and Its Relationship with Gas-Bearing Properties in Changning Area, Southern Sichuan. Acta Petrolei Sinica, 42(4): 428-446 (in Chinese with English abstract).
      [31] Wu, Q., Hu, W. R., Li, X., 2018. The Phenomenon of "Alienation" of Geology-Engineering Integration in Exploration and Development of Complicated Oil and Gas Reservoirs, and Related Thoughts and Suggestions. China Petroleum Exploration, 23(2): 1-5 (in Chinese with English abstract).
      [32] Wu, Q., Liang, X., Xian, C. G., et al., 2015. Geoscience-to-Production Integration Ensures Effective and Efficient South China Marine Shale Gas Development. China Petroleum Exploration, 20(4): 1-23 (in Chinese with English abstract).
      [33] Xiao, B., Liu, S. G., Ran, B., et al., 2021. Study on Sedimentary Tectonic Pattern of Wufeng Formation and Longmaxi Formation in the Northern Margin of Sichuan Basin, South China. Earth Science, 46(7): 2449-2465 (in Chinese with English abstract).
      [34] Xie, J., Xian, C. G., Wu, J. F., et al., 2019. Optimal Key Elements of Geoengineering Integration in Changning National Shale Gas Demonstration Zone. China Petroleum Exploration, 24(2): 174-185 (in Chinese with English abstract).
      [35] Xie, J., Zhang, H. M., She, C. Y., et al., 2017. Practice of Geology-Engineering Integration in Changning State Shale Gas Demonstration Area. China Petroleum Exploration, 22(1): 21-28 (in Chinese with English abstract).
      [36] Xiong, J., Liu, J. J., Wu, J., et al., 2021. Fracture Propagation Law and Fracability Evaluation of the Tight Reservoirs. Natural Gas Geoscience, 32(10): 1581-1591 (in Chinese with English abstract).
      [37] Yang, H. Z., Zhao, S. X., Liu, Y., et al., 2019. Main Controlling Factors of Enrichment and High-Yield of Deep Shale Gas in the Luzhou Block, Southern Sichuan Basin. Natural Gas Industry, 39(11): 55-63 (in Chinese with English abstract).
      [38] Zhang, J. C., Yin, S. X., 2014. Some Technologies of Rock Mechanics Applications and Hydraulic Fracturing in Shale Oil, Shale Gas and Coalbed Methane. Journal of China Coal Society, 39(8): 1691-1699 (in Chinese with English abstract).
      [39] Zhang, R., Ning, Z. F., Yang, F., et al., 2015. Experimental Study of Stress Sensitivity of Shale Reservoirs. Chinese Journal of Rock Mechanics and Engineering, 34(S1): 2617-2622 (in Chinese with English abstract).
      [40] Zhang, T., 2020. Fracture Characteristics and Construal Style in Southern Sichuan Area (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      [41] Zheng, J. X., Zhu, D. X., Yuan, L. C., et al., 2021. Analysis and Prediction Method of Key Parameters for Seismic Steering of Unconventional Horizontal Wells. Oil Geophysical Prospecting, 56(5): 1170-1179, 932 (in Chinese with English abstract).
      [42] 陈天宇, 冯夏庭, 杨成祥, 等, 2014. 含气页岩渗透率的围压敏感性和各向异性研究. 采矿与安全工程学报, 31(4): 639-643. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201404026.htm
      [43] 冯国强, 赵立强, 卞晓冰, 等, 2017. 深层页岩气水平井多尺度裂缝压裂技术. 石油钻探技术, 45(6): 77-82. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201706014.htm
      [44] 郭彤楼, 2021. 深层页岩气勘探开发进展与攻关方向. 油气藏评价与开发, 11(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202101001.htm
      [45] 郭伟, 冯庆来, Khan, M. Z., 2021. 重庆焦页143-5井五峰组‒龙马溪组黑色页岩有机质富集机理. 地球科学, 46(2): 572-582. doi: 10.3799/dqkx.2020.049
      [46] 何建华, 丁文龙, 王哲, 等, 2015. 页岩储层体积压裂缝网形成的主控因素及评价方法. 地质科技情报, 34(4): 108-118. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201504016.htm
      [47] 侯冰, 常智, 武安安, 等, 2022. 吉木萨尔凹陷页岩油密切割压裂多簇裂缝竞争扩展模拟. 石油学报, 43(1): 75-90. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202201007.htm
      [48] 胡文瑞, 2017. 地质工程一体化是实现复杂油气藏效益勘探开发的必由之路. 中国石油勘探, 22(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201701001.htm
      [49] 黄涵宇, 2018. 川东南地区古隆起形成演化及其控油气作用(硕士学位论文). 北京: 中国地质大学.
      [50] 李国欣, 王峰, 皮学军, 等, 2019. 非常规油气藏地质工程一体化数据优化应用的思考与建议. 中国石油勘探, 24(2): 147-152. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201902002.htm
      [51] 李庆辉, 陈勉, 金衍, 等, 2012. 页岩气储层岩石力学特性及脆性评价. 石油钻探技术, 40(4): 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201204005.htm
      [52] 李玉喜, 乔德武, 姜文利, 等, 2011. 页岩气含气量和页岩气地质评价综述. 地质通报, 30(2-3): 308-317. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD2011Z1017.htm
      [53] 刘清友, 朱海燕, 陈鹏举, 2021. 地质工程一体化钻井技术研究进展及攻关方向——以四川盆地深层页岩气储层为例. 天然气工业, 41(1): 178-188. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202101026.htm
      [54] 姜振学, 宋岩, 唐相路, 等, 2020. 中国南方海相页岩气差异富集的控制因素. 石油勘探与开发, 47(3): 617-628. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202003020.htm
      [55] 梅廉夫, 刘昭茜, 汤济广, 等, 2010. 湘鄂西‒川东中生代陆内递进扩展变形: 来自裂变径迹和平衡剖面的证据. 地球科学, 35(2): 161-174. doi: 10.3799/dqkx.2010.017
      [56] 孟雅, 2018. 高煤阶煤中气体扩散渗流机制及煤层气井产能评价研究(博士学位论文). 北京: 中国地质大学.
      [57] 孟雅, 李治平, 2015. 覆压下煤的孔渗性实验及其应力敏感性研究. 煤炭学报, 40(1): 154-159. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201501025.htm
      [58] 聂海宽, 何治亮, 刘光祥, 等, 2020a. 四川盆地五峰组‒龙马溪组页岩气优质储层成因机制. 天然气工业, 40(6): 31-41. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202006004.htm
      [59] 聂海宽, 张柏桥, 刘光祥, 等, 2020b. 四川盆地五峰组‒龙马溪组页岩气高产地质原因及启示——以涪陵页岩气田JY6-2HF为例. 石油与天然气地质, 41(3): 463-473. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202003004.htm
      [60] 邵尚奇, 田守嶒, 李根生, 等, 2014. 泥页岩地层水力裂缝延伸方位研究. 石油钻探技术, 42(3): 27-31. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201403008.htm
      [61] 盛秋红, 李文成, 2016. 泥页岩可压性评价方法及其在焦石坝地区的应用. 地球物理学进展, 31(4): 1473-1479. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201604009.htm
      [62] 孙川翔, 聂海宽, 刘光祥, 等, 2019. 石英矿物类型及其对页岩气富集开采的控制: 以四川盆地及其周缘五峰组‒龙马溪组为例. 地球科学, 44(11): 3692-3704. doi: 10.3799/dqkx.2019.203
      [63] 唐书恒, 朱宝存, 颜志丰, 2011. 地应力对煤层气井水力压裂裂缝发育的影响. 煤炭学报, 36(1): 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201101015.htm
      [64] 唐永, 周立夫, 陈孔全, 等, 2018. 川东南构造应力场地质分析及构造变形成因机制讨论. 地质论评, 64(1): 15-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201801004.htm
      [65] 王红岩, 刘钰洋, 张晓伟, 等, 2023. 基于层次分析法的页岩气储层地质‒工程一体化甜点评价: 以昭通页岩气示范区太阳页岩气田海坝地区X井区为例. 地球科学, 48(1): 92-109. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202301007.htm
      [66] 王治平, 张庆, 刘子平, 等, 2021. 斜坡型强非均质页岩气藏高效开发技术——以川南威远地区龙马溪组页岩气藏为例. 天然气工业, 41(4): 72-81. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202104011.htm
      [67] 文卓, 康永尚, 康刘旭, 等, 2021. 页岩气工业建产区选区地质评价指标及其下限标准——以蜀南地区X区块为例. 天然气地球科学, 32(7): 950-960. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202107003.htm
      [68] 吴根水, 余伟健, 王平, 等, 2018. 基于逾渗机理的含瓦斯煤体变形破坏机制及试验研究. 煤炭学报, 43(3): 724-734. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201803015.htm
      [69] 吴建发, 赵圣贤, 范存辉, 等, 2021. 川南长宁地区龙马溪组富有机质页岩裂缝发育特征及其与含气性的关系. 石油学报, 42(4): 428-446. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202104002.htm
      [70] 吴奇, 胡文瑞, 李峋, 2018. 地质工程一体化在复杂油气藏效益勘探开发中存在的"异化"现象及思考建议. 中国石油勘探, 23(2): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201802001.htm
      [71] 吴奇, 梁兴, 鲜成钢, 等, 2015. 地质‒工程一体化高效开发中国南方海相页岩气. 中国石油勘探, 20(4): 1-23. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201504001.htm
      [72] 谢军, 鲜成钢, 吴建发, 等, 2019. 长宁国家级页岩气示范区地质工程一体化最优化关键要素实践与认识. 中国石油勘探, 24(2): 174-185. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201902005.htm
      [73] 谢军, 张浩淼, 佘朝毅, 等, 2017. 地质工程一体化在长宁国家级页岩气示范区中的实践. 中国石油勘探, 22(1): 21-28. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201701004.htm
      [74] 熊健, 刘峻杰, 吴俊, 等, 2021. 致密储层压裂缝扩展规律与可压裂性评价. 天然气地球科学, 32(10): 1581-1591. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202110013.htm
      [75] 杨洪志, 赵圣贤, 刘勇, 等, 2019. 泸州区块深层页岩气富集高产主控因素. 天然气工业, 39(11): 55-63. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201911013.htm
      [76] 张金才, 尹尚先, 2014. 页岩油气与煤层气开发的岩石力学与压裂关键技术. 煤炭学报, 39(8): 1691-1699. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201408042.htm
      [77] 张睿, 宁正福, 杨峰, 等, 2015. 页岩应力敏感实验研究及影响因素分析. 岩石力学与工程学报, 34(S1): 2617-2622. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1004.htm
      [78] 张坦, 2020. 川南地区断裂特征与构造样式分析(硕士学位论文). 北京: 中国地质大学.
      [79] 郑建雄, 朱斗星, 袁立川, 等, 2021. 非常规水平井地震导向关键参数分析及预测方法. 石油地球物理勘探, 56(5): 1170-1179, 932. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202105025.htm
      [80] 肖斌, 刘树根, 冉波, 等, 2021. 四川盆地北缘五峰组和龙马溪组沉积构造格局研究. 地球科学, 46(7): 2449-2465. doi: 10.3799/dqkx.2020.208
    • 加载中
    图(18) / 表(3)
    计量
    • 文章访问数:  137
    • HTML全文浏览量:  49
    • PDF下载量:  46
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-01-30
    • 网络出版日期:  2023-02-01
    • 刊出日期:  2023-01-25

    目录

      /

      返回文章
      返回