• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东天山黄山东和黄山西铜镍硫化物矿床含矿超镁铁岩的成岩-成矿作用机制:来自斜长石成分的约束

    石煜 王玉往 王京彬 周国超 王海

    石煜, 王玉往, 王京彬, 周国超, 王海, 2022. 东天山黄山东和黄山西铜镍硫化物矿床含矿超镁铁岩的成岩-成矿作用机制:来自斜长石成分的约束. 地球科学, 47(9): 3244-3257. doi: 10.3799/dqkx.2022.136
    引用本文: 石煜, 王玉往, 王京彬, 周国超, 王海, 2022. 东天山黄山东和黄山西铜镍硫化物矿床含矿超镁铁岩的成岩-成矿作用机制:来自斜长石成分的约束. 地球科学, 47(9): 3244-3257. doi: 10.3799/dqkx.2022.136
    Shi Yu, Wang Yuwang, Wang Jingbin, Zhou Guochao, Wang Hai, 2022. Petrogenesis and Metallogenesis Mechanism of the Ore-Bearing Ultramafic Rocks from the Huangshandong and Huangshanxi Ni-Cu Sulfide Deposits, Eastern Tianshan: Constraints from Plagioclase Compositions. Earth Science, 47(9): 3244-3257. doi: 10.3799/dqkx.2022.136
    Citation: Shi Yu, Wang Yuwang, Wang Jingbin, Zhou Guochao, Wang Hai, 2022. Petrogenesis and Metallogenesis Mechanism of the Ore-Bearing Ultramafic Rocks from the Huangshandong and Huangshanxi Ni-Cu Sulfide Deposits, Eastern Tianshan: Constraints from Plagioclase Compositions. Earth Science, 47(9): 3244-3257. doi: 10.3799/dqkx.2022.136

    东天山黄山东和黄山西铜镍硫化物矿床含矿超镁铁岩的成岩-成矿作用机制:来自斜长石成分的约束

    doi: 10.3799/dqkx.2022.136
    基金项目: 

    国家重点研发计划项目 2017YFC0601204

    详细信息
      作者简介:

      石煜(1986-),男,助理研究员,博士,主要从事幔源岩浆岩成岩与成矿作用研究. ORCID:0000-0002-6352-3963. E-mail:orounaxiong@sina.com

    • 中图分类号: P612

    Petrogenesis and Metallogenesis Mechanism of the Ore-Bearing Ultramafic Rocks from the Huangshandong and Huangshanxi Ni-Cu Sulfide Deposits, Eastern Tianshan: Constraints from Plagioclase Compositions

    • 摘要: 东天山黄山东和黄山西镁铁-超镁铁岩是区域早二叠世大规模幔源岩浆作用的产物,赋存有两个大型岩浆铜镍硫化物矿床.黄山东和黄山西矿床的主要矿体均赋存于超镁铁岩中,其含矿超镁铁岩的成因机制研究对揭示区域铜镍硫化物成矿作用机制具有重要意义.本文对黄山东和黄山西含矿超镁铁岩进行了详细的电子背散射图像研究,发现其斜长石斑晶存在显著的不平衡结构,并系统进行了电子探针成分剖面分析.结果显示斜长石具有剧烈变化的成分环带,其中黄山东超镁铁岩斜长石An值介于48.6~75.6,黄山西含矿超镁铁岩斜长石An值介于44.9~79.2,表明两个矿床含矿超镁铁岩的母岩浆在侵位过程中发生过显著的成分变化.结合黄山东和黄山西镁铁-超镁铁杂岩体地质特征,本文认为高分异镁铁质岩浆的加入导致了低分异超镁铁质岩浆成分发生显著变化,致使岩浆硫化物熔离,以及黄山东和黄山西大型铜镍硫化物矿床的形成.

       

    • 图  1  东天山构造格架及矿床分布(据王京彬等, 2006

      Fig.  1.  Map of the tectonic framework and deposit distribution in East Tianshan (after Wang et al., 2006)

      图  2  黄山东镁铁‒超镁铁岩地质简图和勘探线剖面

      图据新疆维吾尔自治区人民政府305项目办公室,1989,黄山铜镍成矿带地质、地球物理和地球化学综合研究及找矿靶区优选报告

      Fig.  2.  Geological map and a cross section of the Huangshandong mafic-ultramafic intrusion

      图  3  黄山西镁铁‒超镁铁岩地质简图和勘探线剖面

      图据新疆维吾尔自治区人民政府305项目办公室,1989,黄山铜镍成矿带地质、地球物理和地球化学综合研究及找矿靶区优选报告

      Fig.  3.  Geological map and cross section of the Huangshanxi mafic-ultramafic intrusion

      图  4  黄山东和黄山西含矿超镁铁岩电子背散射图像

      矿物缩写:Cr.铬尖晶石;Ol.橄榄石;Opx.斜方辉石;Cpx.单斜辉石;Pl.斜长石;Hb.角闪石

      Fig.  4.  BSE images of ore-bearing ultramafic rocks from the Huangshandong and Huangshanxi ore-bearing intrusions

      图  5  黄山东和黄山西含矿超镁铁岩斜长石分类

      Fig.  5.  Classfication of plagioclase from Huangshandong and Huangshanxi ore-bearing ultramafic rocks

      图  6  黄山东和黄山西含矿超镁铁岩斜长石An值环带

      Fig.  6.  An value profiles of plagioclase from the Huangshandong and Huangshanxi ore-bearing ultramafic rocks

      图  7  东天山镁铁‒超镁铁岩斜长石An值频率直方图

      黄山东和香山西镁铁质辉长岩类斜长石成分引自夏明哲等(2010)石煜等(2017a)

      Fig.  7.  Hisgram of plagioclase An number of mafic-ultramafic rocks from East Tianshan

      表  1  黄山东和黄山西含矿超镁铁岩斜长石成分(%)

      Table  1.   Plagioclase composition (%) of Huangshandong and Huangshanxi ore-bearing ultramafic rocks

      HSD样号 1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10 1-11 1-12 1-13 1-14 1-15 1-16 1-17 1-18 1-19 1-20
      SiO2 52.3 52.6 51.8 50.9 50.8 50.7 49.7 51.1 51.1 52.7 55.2 55.2 55.2 54.6 54.0 53.8 53.7 54.2 54.0 54.5
      Al2O3 29.7 29.7 30.3 30.8 31.1 31.2 31.3 30.8 30.4 29.9 28.2 28.1 28.0 28.3 28.6 29.2 29.1 28.7 28.5 28.5
      FeO 0.07 0.07 0.07 0.07 0.07 0.04 0.05 0.08 0.07 0.05 0.09 0.09 0.09 0.11 0.12 0.14 0.12 0.16 0.18 0.20
      CaO 12.8 12.8 13.5 14.1 14.3 14.2 14.7 14.1 13.7 12.7 10.6 10.5 10.3 11.0 11.6 11.9 11.6 11.4 11.3 11.3
      Na2O 4.31 4.51 4.00 3.49 3.40 3.38 3.28 3.54 3.71 4.33 5.66 5.63 5.60 5.22 4.84 4.87 4.97 5.12 5.12 5.17
      K2O 0.07 0.06 0.06 0.05 0.04 0.03 0.04 0.04 0.04 0.03 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.05 0.06 0.07
      Total 99.3 99.7 99.6 99.4 99.7 99.6 99.1 99.7 99.0 99.7 99.8 99.5 99.2 99.2 99.2 100.0 99.5 99.6 99.1 99.8
      An 61.9 60.9 64.8 68.9 69.8 69.8 71.1 68.6 67.0 61.7 50.7 50.5 50.3 53.6 56.8 57.3 56.2 55.0 54.8 54.6
      Ab 37.7 38.8 34.9 30.8 30.0 30.1 28.7 31.2 32.8 38.1 49.0 49.2 49.5 46.2 42.9 42.5 43.6 44.7 44.9 45.0
      Kf 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.3 0.3 0.4
      HSD样号 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15 2-16 2-17 2-18 2-19 2-20
      SiO2 55.6 55.3 54.2 53.2 52.6 50.5 49.4 49.7 53.1 53.1 53.2 52.9 50.1 49.7 49.9 50.2 51.2 51.6 52.1 51.9
      Al2O3 28.5 28.7 29.0 29.7 30.1 31.1 32.2 31.8 29.5 29.3 29.7 29.4 31.5 31.8 31.8 31.5 30.9 30.5 29.8 29.9
      FeO 0.27 0.19 0.13 0.12 0.14 0.11 0.12 0.12 0.10 0.11 0.09 0.09 0.12 0.10 0.07 0.11 0.13 0.13 0.40 0.36
      CaO 10.6 11.0 11.7 12.5 13.0 14.2 15.4 15.0 12.5 12.4 12.4 12.5 15.0 15.3 15.3 14.9 14.1 13.6 13.0 13.0
      Na2O 5.45 5.11 4.83 4.39 4.19 3.39 2.76 2.83 4.46 4.38 4.33 4.37 2.90 2.72 2.98 3.02 3.40 3.70 4.14 3.85
      K2O 0.06 0.06 0.03 0.03 0.05 0.03 0.04 0.03 0.06 0.03 0.05 0.04 0.03 0.02 0.02 0.02 0.04 0.03 0.04 0.04
      Total 100.5 100.4 99.9 99.9 100.1 99.3 99.9 99.5 99.7 99.3 99.8 99.3 99.7 99.6 100.1 99.8 99.8 99.6 99.5 99.1
      An 51.6 54.1 57.1 61.0 63.0 69.7 75.3 74.4 60.6 60.9 61.1 61.1 74.0 75.6 73.9 73.1 69.5 66.9 63.3 65.0
      Ab 48.0 45.5 42.7 38.8 36.7 30.1 24.4 25.4 39.1 38.9 38.6 38.7 25.9 24.3 26.0 26.8 30.3 32.9 36.5 34.8
      Kf 0.3 0.4 0.2 0.2 0.3 0.2 0.2 0.2 0.3 0.2 0.3 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.2
      HSD样号 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 3-10 3-11 3-12 3-13 3-14 3-15 3-16 3-17 3-18 3-19 3-20
      SiO2 53.6 53.5 53.4 53.2 52.9 53.1 53.2 53.1 53.0 51.0 50.0 50.4 50.7 50.1 49.4 50.3 51.2 52.0 52.5 52.2
      Al2O3 28.7 29.0 29.2 29.4 29.6 29.5 29.5 29.4 29.4 30.7 31.4 31.2 31.0 31.2 31.4 31.1 30.8 30.3 29.9 30.1
      FeO 0.42 0.23 0.13 0.12 0.10 0.06 0.04 0.06 0.07 0.09 0.10 0.09 0.08 0.10 0.12 0.12 0.11 0.13 0.15 0.14
      CaO 11.7 12.1 12.3 12.5 12.6 12.6 12.6 12.4 12.2 13.9 14.8 14.6 14.4 14.9 15.4 14.6 13.8 13.3 12.9 13.1
      Na2O 4.65 4.56 4.51 4.49 4.46 4.33 4.25 4.38 4.47 3.50 3.01 3.18 3.29 3.07 2.84 3.22 3.60 3.88 4.06 3.97
      K2O 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.03 0.03 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03
      Total 99.1 99.4 99.6 99.6 99.7 99.7 99.6 99.4 99.2 99.3 99.3 99.4 99.5 99.3 99.2 99.4 99.5 99.5 99.5 99.5
      An 58.0 59.3 60.0 60.4 60.8 61.5 62.0 60.8 60.0 68.6 73.0 71.6 70.7 72.8 74.8 71.3 67.8 65.3 63.6 64.4
      Ab 41.7 40.4 39.8 39.4 39.0 38.3 37.8 38.9 39.8 31.2 26.9 28.3 29.2 27.1 25.0 28.5 32.0 34.5 36.2 35.4
      Kf 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2
      HSX样号 1-1 1-2 1-3 1-4 1-5 1-6 1-7 1-8 1-9 1-10 1-11 1-12 1-13 1-14 1-15 1-16 1-17 1-18 1-19 1-20
      SiO2 54.2 53.9 53.8 53.7 49.1 49.3 49.5 49.3 49.1 49.3 48.8 55.2 55.3 55.2 55.1 56.0 55.9 55.8 56.6 57.0
      Al2O3 28.2 28.9 28.4 28.5 32.0 31.9 31.6 31.7 31.8 31.7 32.3 28.3 28.1 28.3 28.4 27.5 27.5 27.5 27.3 26.4
      FeO 0.57 0.22 0.44 0.46 0.18 0.17 0.37 0.28 0.19 0.28 0.18 0.13 0.15 0.17 0.13 0.24 0.16 0.16 0.19 0.16
      CaO 11.2 11.9 11.5 11.6 15.6 15.8 15.2 15.4 15.5 15.4 15.5 10.7 10.7 10.8 11.0 10.2 10.2 10.3 9.90 9.20
      Na2O 4.78 4.60 4.54 4.52 2.48 2.54 2.63 2.59 2.55 2.59 2.37 5.24 5.19 5.20 5.06 5.52 5.69 5.59 5.81 6.17
      K2O 0.15 0.21 0.20 0.20 0.08 0.10 0.34 0.24 0.13 0.24 0.39 0.25 0.23 0.17 0.17 0.07 0.10 0.11 0.14 0.17
      Total 99.1 99.7 98.9 99.0 99.4 99.8 99.6 99.5 99.3 99.5 99.5 99.8 99.7 99.8 99.9 99.5 99.6 99.5 99.9 99.1
      An 55.9 58.1 57.6 57.9 77.3 77.0 74.6 75.6 76.5 75.6 76.5 52.2 52.5 52.9 54.0 50.3 49.5 50.1 48.1 44.7
      Ab 43.2 40.7 41.2 40.9 22.2 22.4 23.4 23.1 22.8 23.1 21.2 46.3 46.1 46.1 45.0 49.3 49.9 49.2 51.1 54.3
      Kf 0.9 1.2 1.2 1.2 0.5 0.6 2.0 1.4 0.8 1.4 2.3 1.5 1.3 1.0 1.0 0.4 0.6 0.6 0.8 1.0
      HSX样号 2-1 2-2 2-3 2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11 2-12 2-13 2-14 2-15 2-16 2-17 2-18 2-19 2-20
      SiO2 54.7 49.5 49.0 49.0 48.9 49.4 49.0 49.1 49.0 49.1 49.2 48.9 49.3 55.4 54.3 54.7 55.0 56.1 56.6 57.1
      Al2O3 28.3 32.0 32.2 32.2 32.2 32.0 31.8 31.9 31.8 31.9 32.3 32.3 31.8 27.3 28.1 28.1 28.0 27.4 27.0 26.6
      FeO 0.24 0.23 0.32 0.31 0.30 0.33 0.33 0.24 0.29 0.20 0.18 0.22 0.26 0.78 0.42 0.42 0.42 0.28 0.26 0.24
      CaO 11.5 15.5 15.5 15.6 15.7 15.5 15.5 15.7 15.6 15.8 15.9 15.8 15.7 10.6 11.1 11.1 11.0 10.2 9.80 9.40
      Na2O 5.02 2.62 2.59 2.52 2.45 2.59 2.50 2.49 2.50 2.49 2.46 2.46 2.56 5.06 4.95 5.04 5.12 5.51 5.76 6.00
      K2O 0.11 0.10 0.12 0.12 0.11 0.05 0.09 0.08 0.08 0.07 0.06 0.08 0.08 0.19 0.17 0.17 0.16 0.24 0.26 0.28
      Total 99.9 100.0 99.7 99.7 997 99.9 99.2 99.5 99.3 99.6 100.1 99.8 99.7 99.3 99.0 99.4 99.7 99.7 99.7 99.6
      An 55.5 76.1 76.2 76.9 77.5 76.6 77.0 77.3 77.2 77.5 77.9 77.7 76.9 53.0 54.8 54.3 53.8 49.9 47.7 45.6
      Ab 43.9 23.3 23.1 22.5 21.9 23.1 22.5 22.2 22.3 22.1 21.8 21.9 22.7 45.8 44.2 44.8 45.3 48.7 50.7 52.7
      Kf 0.6 0.6 0.7 0.7 0.6 0.3 0.5 0.4 0.5 0.4 0.3 0.5 0.5 1.1 1.0 1.0 0.9 1.4 1.5 1.6
      HSX样号 3-1 3-2 3-3 3-4 3-5 3-6 3-7 3-8 3-9 3-10 3-11 3-12 3-13 3-14 3-15 3-16 3-17 3-18 3-19 3-20
      SiO2 56.1 56.2 55.9 54.7 48.8 48.6 48.3 51.8 55.3 55.3 54.8 55.0 55.1 54.7 54.7 54.4 54.5 55.5 55.9 56.3
      Al2O3 27.1 26.9 27.3 28.3 32.2 32.4 32.1 30.1 28.0 28.0 27.7 27.9 28.1 28.4 28.3 28.5 28.5 27.9 27.8 27.6
      FeO 0.29 0.40 0.17 0.16 0.19 0.20 0.18 0.27 0.35 0.36 0.41 0.33 0.25 0.24 0.21 0.20 0.14 0.17 0.20 0.22
      CaO 10.0 9.70 10.3 11.0 15.8 16.2 16.1 13.4 10.7 10.7 10.8 11.0 11.1 11.5 11.4 11.3 11.4 10.9 10.6 10.2
      Na2O 5.56 5.71 5.40 5.09 2.45 2.30 2.32 3.81 5.29 5.12 5.17 5.11 5.05 5.04 5.07 5.03 4.91 5.17 5.36 5.54
      K2O 0.25 0.23 0.26 0.23 0.07 0.07 0.07 0.13 0.19 0.17 0.21 0.23 0.24 0.18 0.23 0.22 0.20 0.23 0.24 0.25
      Total 99.2 99.1 99.3 99.5 99.5 99.8 99.1 99.5 99.8 99.7 99.1 99.5 99.8 100.1 99.9 99.7 99.7 99.9 100.0 100.1
      An 49.2 47.8 50.5 53.7 77.8 79.2 79.0 65.6 52.2 53.1 52.9 53.5 54.1 55.2 54.7 54.7 55.5 53.1 51.4 49.7
      Ab 49.4 50.9 47.9 45.0 21.8 20.4 20.6 33.7 46.7 45.9 45.8 45.2 44.5 43.8 44.0 44.0 43.3 45.6 47.2 48.8
      Kf 1.4 1.3 1.5 1.3 0.4 0.4 0.4 0.8 1.1 1.0 1.2 1.3 1.4 1.0 1.3 1.3 1.2 1.3 1.4 1.5
      下载: 导出CSV
    • [1] Brügmann, G. E., Naldrett, A. J., Asif, M., et al., 1993. Siderophile and Chalcophile Metals as Tracers of the Evolution of the Siberian Trap in the Noril'sk Region, Russia. Geochimica et Cosmochimica Acta, 57(9): 2001-2018. https://doi.org/10.1016/0016-7037(93)90089-F
      [2] Chai, F. M., Zhang, Z. C., Mao, J. W., et al., 2008. Geology, Petrology and Geochemistry of the Baishiquan Ni-Cu-Bearing Mafic-Ultramafic Intrusions in Xinjiang, NW China: Implications for Tectonics and Genesis of Ores. Journal of Asian Earth Sciences, 32(2-4): 218-235. https://doi.org/10.1016/j.jseaes.2007.10.014
      [3] Deng, Y. F., Song, X. Y., Chen, L. M., et al., 2014. Geochemistry of the Huangshandong Ni-Cu Deposit in Northwestern China: Implications for the Formation of Magmatic Sulfide Mineralization in Orogenic Belts. Ore Geology Reviews, 56: 181-198. https://doi.org/10.1016/j.oregeorev.2013.08.012
      [4] Deng, Y. F., Song, X. Y., Hollings, P., et al., 2017. Lithological and Geochemical Constraints on the Magma Conduit Systems of the Huangshan Ni-Cu Sulfide Deposit, NW China. Mineralium Deposita, 52(6): 845-862. https://doi.org/10.1007/s00126-016-0703-7
      [5] Deng, Y. F., Song, X. Y., Zhou, T. F., et al., 2012. Correlations between Fo Number and Ni Content of Olivine of the Huangshandong Intrusion, Eastern Tianshan, Xinjiang, and the Genetic Significances. Acta Petrologica Sinica, 28(7): 2224-2234 (in Chinese with English abstract).
      [6] Feng, H. Y., Xu, Y. X., Qin, K. Z., et al., 2014. Geochemistry and Zircon U-Pb Geochronology of Getashankou Mafic-Ultramafic Intrusions, Eastern Tianshan, and Its Implication for Ni-Cu Mineralization. Acta Petrologica Sinica, 30(6): 1558-1574 (in Chinese with English abstract).
      [7] Feng, Y. Q., Qian, Z. Z., Duan, J., et al., 2017. Genesis and Ore-Forming Potential of Mafic-Ultramafic Intrusions in the Western Part of East Tianshan Cu-Ni Metallogenic Belt, Xinjiang. Acta Geologica Sinica, 91(4): 792-811 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2017.04.007
      [8] Fram, M. S., Longhi, J., 1992. Phase Equilibria of Dikes Associated with Proterozoic Anorthosite Complexes. American Mineralogist, 77: 605-616. https://doi.org/10.1007/BF00206799
      [9] Fu, P. E., Hu, P. Q., Zhang, M. J., et al., 2009. Metallogenic Magmatism of Huangshan Cu-Ni Sulfide Deposit in Xinjiang. Geochimica, 38(5): 432-448 (in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.2009.05.003
      [10] Gao, J. F., Zhou, M. F., Lightfoot, P. C., et al., 2013. Sulfide Saturation and Magma Emplacement in the Formation of the Permian Huangshandong Ni-Cu Sulfide Deposit, Xinjiang, Northwestern China. Economic Geology, 108(8): 1833-1848. https://doi.org/10.2113/econgeo.108.8.1833
      [11] Han, B. F., Ji, J. Q., Song, B., et al., 2004. SHRIMP Zircon U-Pb Ages of Kalatongke No. 1 and Huangshandong Cu-Ni-Bearing Mafic-Ultramafic Complexes, North Xinjiang, and Geological Implications. Chinese Science Bulletin, 49(22): 2424-2429. https://doi.org/10.1007/BF03183432
      [12] Han, C. M., Xiao, W. J., Zhao, G. C., et al., 2013. SIMS U-Pb Zircon Dating and Re-Os Isotopic Analysis of the Hulu Cu-Ni Deposit, Eastern Tianshan, Central Asian Orogenic Belt, and Its Geological Significance. Journal of Geosciences, 58(3): 251-270. https://doi.org/10.3190/jgeosci.146
      [13] Hu, P. Q., Ren, L. Y., Fu, P. E., 2010. Petrogenetic and Ore-Forming Processes of Huangshandong Cu-Ni Sulfide Deposit in Hami, Xinjiang. Mineral Deposits, 29(1): 158-168 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2010.01.014
      [14] Irvine, T. N., 1975. Crystallization Sequences in the Muskox Intrusion and other Layered Intrusions—II. Origin of Chromitite Layers and Similar Deposits of other Magmatic Ores. Geochimica et Cosmochimica Acta, 39(6-7): 991-1020. https://doi.org/10.1016/0016-7037(75)90043-5
      [15] Jahn, B. M., 2004. The Central Asian Orogenic Belt and Growth of the Continental Crust in the Phanerozoic. Geological Society, London, Special Publications, 226(1): 73-100. https://doi.org/10.1144/gsl.sp.2004.226.01.05
      [16] Li, C., Naldrett, A. J., 1993. Sulfide Capacity of Magma; A Quantitative Model and Its Application to the Formation of Sulfide Ores at Sudbury, Ontario. Economic Geology, 88(5): 1253-1260. https://doi.org/10.2113/gsecongeo.88.5.1253
      [17] Lü, X. Q., Mao, Q. G., Guo, N. X., et al., 2020. Re-Os Isotopic Dating of Pyrrhotite from Yueyawan Cu-Ni Sulfide Deposit in Kalatage Area of East Tianshan Mountain and Its Geological Significance. Earth Science, 45(9): 3475-3486 (in Chinese with English abstract).
      [18] Mao, J. W., Pirajno, F., Zhang, Z. H., et al., 2008. A Review of the Cu-Ni Sulphide Deposits in the Chinese Tianshan and Altay Orogens (Xinjiang Autonomous Region, NW China): Principal Characteristics and Ore-Forming Processes. Journal of Asian Earth Sciences, 32(2-4): 184-203. https://doi.org/10.1016/j.jseaes.2007.10.006
      [19] Mao, J. W., Yang, J. M., Qu, W. J., et al., 2003. re-Os Age of Cu-Ni Ores from the Huangshandong Cu-Ni Sulfide Deposit in the East Tianshan Mountains and Its Implication for Geodynamic Processes. Acta Geologica Sinica-English Edition, 77(2): 220-226. https://doi.org/10.1111/j.1755-6724.2003.tb00565.x
      [20] Mao, Q. G., Lü, X. Q., Yu, M. J., 2018. Early Permian Mantle Derived Magma and the Cu-Ni Mineralizationpotentiality of the Mafic Complex in Eastern Tianshan, Xinjiang. Mineral Exploration, 9(12): 2270-2281 (in Chinese with English abstract).
      [21] Mao, Q. G., Xiao, W. J., Han, C. M., et al., 2006. Zircon U-Pb Age and the Geochemistry of the Baishiquan Mafic-Ultramafic Complex in the Eastern Tianshan, Xinjiang Province: Constraints on the Closure of the Paleo-Asian Ocean. Acta Petrologica Sinica, 22(1): 153-162 (in Chinese with English abstract).
      [22] Mao, Y. J., Qin, K. Z., Li, C. S., et al., 2015. A Modified Genetic Model for the Huangshandong Magmatic Sulfide Deposit in the Central Asian Orogenic Belt, Xinjiang, Western China. Mineralium Deposita, 50(1): 65-82. https://doi.org/10.1007/s00126-014-0524-5
      [23] Mao, Y. J., Qin, K. Z., Tang, D. M., et al., 2014. Multiple Stages of Magma Emplacement and Mineralization of Eastern Tianshan, Xinjiang: Examplified by the Huangshan Ni-Cu Deposit. Acta Petrologica Sinica, 30(6): 1575-1594 (in Chinese with English abstract).
      [24] Mao, Y. J., Qin, K. Z., Tang, D. M., et al., 2016. Crustal Contamination and Sulfide Immiscibility History of the Permian Huangshannan Magmatic Ni-Cu Sulfide Deposit, East Tianshan, NW China. Journal of Asian Earth Sciences, 129: 22-37. https://doi.org/10.1016/j.jseaes.2016.07.028
      [25] Pang, K. N., Li, C. S., Zhou, M. F., et al., 2009. Mineral Compositional Constraints on Petrogenesis and Oxide Ore Genesis of the Late Permian Panzhihua Layered Gabbroic Intrusion, SW China. Lithos, 110(1-4): 199-214. https://doi.org/10.1016/j.lithos.2009.01.007
      [26] Panjasawatwong, Y., Danyushevsky, L. V., Crawford, A. J., et al., 1995. An Experimental Study of the Effects of Melt Composition on Plagioclase-Melt Equilibria at 5 and 10 kbar: Implications for the Origin of Magmatic High-an Plagioclase. Contributions to Mineralogy and Petrology, 118(4): 420-432. https://doi.org/10.1007/s004100050024
      [27] Qian, Z. Z., Sun, T., Tang, Z. L., et al., 2009. Platinum-Group Elements Geochemistry and Its Significances of the Huangshandong Ni-Cu Sulfide Deposit, East Tianshan, China. Geological Review, 55(6): 873-884 (in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2009.06.011
      [28] Qin, K. Z., Su, B. X., Sakyi, P. A., et al., 2011. SIMS Zircon U-Pb Geochronology and Sr-Nd Isotopes of Ni-Cu-Bearing Mafic-Ultramafic Intrusions in Eastern Tianshan and Beishan in Correlation with Flood Basalts in Tarim Basin (NW China): Constraints on a Ca. 280 Ma Mantle Plume. American Journal of Science, 311(3): 237-260. https://doi.org/10.2475/03.2011.03
      [29] San, J. Z., Qin, K. Z., Tang, Z. L., et al., 2010. Precise Zircon U-Pb Age Dating of Two Mafic-Ultramafic Complexes at Tulargen Large Cu-Ni District and Its Geological Implications. Acta Petrologica Sinica, 26(10): 3027-3035 (in Chinese with English abstract).
      [30] Shellnutt, J. G., Pang, K. N., 2012. Petrogenetic Implications of Mineral Chemical Data for the Permian Baima Igneous Complex, SW China. Mineralogy and Petrology, 106(1-2): 75-88. https://doi.org/10.1007/s00710-012-0217-7
      [31] Shi, Y., Wang, Y. W., Wang, J. B., 2017a. Relationship between Amphibole-Porphyric Gabbroic Rocks and Fe-Ti Oxide Ore Deposits of the East Tianshan. Earth Science Frontiers, 24(6): 80-97 (in Chinese with English abstract).
      [32] Shi, Y., Wang, Y. W., Wang, J. B., et al., 2017b. Olivine Composition of Erhongwa Complex, East Tianshan, and Its Implications to CuNi-VTiFe Composite Mineralizaion. Earth Science, 42(3): 325-338 (in Chinese with English abstract).
      [33] Shi, Y., Wang, Y. W., Wang, J. B., et al., 2018a. Petrogenesis and Metallogenesis of the Niumaoquan Gabbroic Intrusion Associated with Fe-Ti Oxide Ores in the Eastern Tianshan, NW China. Acta Geologica Sinica-English Edition, 92(5): 1862-1878. https://doi.org/10.1111/1755-6724.13681
      [34] Shi, Y., Wang, Y. W., Wang, J. B., et al., 2018b. Physicochemical Control of the Early Permian Xiangshan Fe-Ti Oxide Deposit in Eastern Tianshan (Xinjiang), NW China. Journal of Earth Science, 29(3): 520-536. https://doi.org/10.1007/s12583-017-0969-4
      [35] Shi, Y., Wang, Y. W., Wang, J. B., et al., 2018c. Zircon SIMS U-Pb Age of the Shaxinan Melagabbro, Eastern Tianshan and Constraints on Fe-Ti-V Oxide Mineralization. Acta Geologica Sinica-English Edition, 92(5): 2039-2040. https://doi.org/10.1111/1755-6724.13699
      [36] Shi, Y., Wang, Y. W., Wang, J. B., et al., 2019. Petrogenesis and Metallogenesis of the Yaxi Gabbroic Intrusion Associated with Fe-Ti-V-P Ores in Eastern Tianshan, NW China. Ore Geology Reviews, 111: 103000. https://doi.org/10.1016/j.oregeorev.2019.103000
      [37] Shi, Y., Wang, Y. W., Wang, J. B., et al., 2021. Formation of the Weiya Magmatic Fe-Ti Oxide Deposit and Its Ore-Hosting Layered Gabbro Intrusion, Eastern Tianshan (Xinjiang, NW China). Ore Geology Reviews, 132: 104003. https://doi.org/10.1016/j.oregeorev.2021.104003
      [38] Song, X. Y., Chen, L. M., Deng, Y. F., et al., 2013. Syncollisional Tholeiitic Magmatism Induced by Asthenosphere Upwelling Owing to Slab Detachment at the Southern Margin of the Central Asian Orogenic Belt. Journal of the Geological Society, 170(6): 941-950. https://doi.org/10.1144/jgs2012-130
      [39] Song, Z., Li, H. M., Li, L. X., et al., 2021. Iron Isotopes and Trace Element Compositions of Magnetite from the Submarine Volcanic-Hosted Iron Deposits in East Tianshan, NW China: New Insights into the Mineralization Processes. Journal of Earth Science, 32(1): 219-234. https://doi.org/10.1007/s12583-020-1060-0
      [40] Sun, T., Qian, Z. Z., Deng, Y. F., et al., 2013. PGE and Isotope (Hf-Sr-Nd-Pb) Constraints on the Origin of the Huangshandong Magmatic Ni-Cu Sulfide Deposit in the Central Asian Orogenic Belt, Northwestern China. Economic Geology, 108(8): 1849-1864. https://doi.org/10.2113/econgeo.108.8.1849
      [41] Tang, D. M., Qin, K. Z., Li, C. S., et al., 2011. Zircon Dating, Hf-Sr-Nd-Os Isotopes and PGE Geochemistry of the Tianyu Sulfide-Bearing Mafic-Ultramafic Intrusion in the Central Asian Orogenic Belt, NW China. Lithos, 126(1-2): 84-98. https://doi.org/10.1016/j.lithos.2011.06.007
      [42] Tang, D. M., Qin, K. Z., Su, B. X., et al., 2013. Magma Source and Tectonics of the Xiangshanzhong Mafic-Ultramafic Intrusion in the Central Asian Orogenic Belt, NW China, Traced from Geochemical and Isotopic Signatures. Lithos, 170-171: 144-163. https://doi.org/10.1016/j.lithos.2013.02.013
      [43] Wang, B., Faure, M., Shu, L. S., et al., 2010. Structural and Geochronological Study of High-Pressure Metamorphic Rocks in the Kekesu Section (Northwestern China): Implications for the Late Paleozoic Tectonics of the Southern Tianshan. The Journal of Geology, 118(1): 59-77. https://doi.org/10.1086/648531
      [44] Wang, J. B., Wang, Y. W., He, Z. J., 2006. Ore Deposits as a Guide to the Tectonic Evolution in the East Tianshan Mountains, NW China. Geology in China, 33(3): 461-469 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2006.03.002
      [45] Wang, J. B., Wang, Y. W., Zhou, T. F., 2008. Metanogenic Spectrum Related to Post-Collisional Mantle-Derived Magma in North Xinjiang. Acta Petrologica Sinica, 24(4): 743-752 (in Chinese with English abstract).
      [46] Wang, X., Cao, J., Zhang, G., 2021. Origin of Ore-Forming Magmas Associated with Ni-Cu Sulfide Deposits in Orogenic Belts: Case Study of Permian Huangshannan Magmatic Ni-Cu Sulfide Deposit, East Tianshan, NW China. Earth Science, 46(11): 3829-3849 (in Chinese with English abstract).
      [47] Wang, Y. L., Zhang, Z. W., Chen, S. B., et al., 2017. Petrogenesis and Metallogenic Potential Analysis of Mafic Intrusion in the Hongshigangbei Ni-Cu-Sulfide Mineralization in East Tianshan, Xinjiang. Acta Geologica Sinica, 91(4): 776-791 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2017.04.006
      [48] Wang, Y. L., Zhang, Z. W., Yin, X. W., et al., 2016. Chronological and Geochemical Characteristics of Sangong Cu-Ni Mineralization Intrusion in Eastern Tianshan of Xinjiang and Their Implications for Cu-Ni Mineralization. Acta Geoscientica Sinica, 37(6): 699-710 (in Chinese with English abstract).
      [49] Wang, Y. W., Wang, J. B., Li, D. D., et al., 2013. Types, Temporal-Spatial Distribution and Metallogenic Lineage of Ore Deposits Related to Mantle-Derived Magma in Northern Xinjiang. Mineral Deposits, 32(2): 223-243 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2013.02.001
      [50] Wang, Y. W., Wang, J. B., Wang, L. J., 2006. Comparison of Host Rocks between Two Vanadic Titianomagnetite Deposit Types from the Eastern Tianshan Mountains. Acta Petrologica Sinica, 22(5): 1425-1436 (in Chinese with English abstract).
      [51] Wang, Y. W., Wang, J. B., Wang, L. J., et al., 2005. Weiya Vanadium-Bearing Titanomagnetite Deposit in Xinjiang: A Polygenetic Magmatic Differentiation-Magmatic Injection-Magmatic Hydrothermal Deposit. Mineral Deposits, 24(4): 349-360 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2005.04.001
      [52] Wang, Y. W., Wang, J. B., Wang, L. J., et al., 2008. Metallogenic Series Related to Permian Mafic Complex in North Xinjiang: Post-Collisional Stage or Mantle Plume Result? Acta Geologica Sinica-English Edition, 82(4): 788-795. https://doi.org/10.1111/j.1755-6724.2008.tb00632.x
      [53] Wang, Y. W., Wang, J. B., Wang, L. J., et al., 2008. Zircon U-Pb Age, Sr-Nd Isotope Geochemistry and Geological Significances of the Weiya Mafic-Ultramafic Complex, Xinjiang. Acta Petrologica Sinica, 24(4): 781-792 (in Chinese with English abstract).
      [54] Wang, Y. W., Wang, J. B., Wang, L. J., et al., 2010. Petrographical and Lithogeochemical Characteristics of the Mafic-Ultramafic Complex Related to CuNi-VTiFe Composite Mineralization: Taking the North Xinjiang as an Example. Acta Petrologica Sinica, 26(2): 401-412 (in Chinese with English abstract).
      [55] Xia, M. Z., Jiang, C. Y., Qian, Z. Z., et al., 2010. Geochemistry and Petrogenesis of Huangshandong Intrusion, East Tianshan, Xinjiang. Acta Petrologica Sinica, 26(8): 2413-2430 (in Chinese with English abstract).
      [56] Xiao, W. J., Han, C. M., Yuan, C., et al., 2008. Middle Cambrian to Permian Subduction-Related Accretionary Orogenesis of Northern Xinjiang, NW China: Implications for the Tectonic Evolution of Central Asia. Journal of Asian Earth Sciences, 32(2-4): 102-117. https://doi.org/10.1016/j.jseaes.2007.10.008
      [57] Xiao, W. J., Zhang, L. C., Qin, K. Z., et al., 2004. Paleozoic Accretionary and Collisional Tectonics of the Eastern Tianshan (China): Implications for the Continental Growth of Central Asia. American Journal of Science, 304(4): 370-395. https://doi.org/10.2475/ajs.304.4.370
      [58] Zhang, M. J., Li, C. S., Fu, P. E., et al., 2011. The Permian Huangshanxi Cu-Ni Deposit in Western China: Intrusive-Extrusive Association, Ore Genesis, and Exploration Implications. Mineralium Deposita, 46(2): 153-170. https://doi.org/10.1007/s00126-010-0318-3
      [59] Zhang, X. Q., Song, X. Y., Chen, L. M., et al., 2012. Fractional Crystallization and the Formation of Thick Fe-Ti-V Oxide Layers in the Baima Layered Intrusion, SW China. Ore Geology Reviews, 49(8): 96-108. http://doi.10.1016/j.oregeorev.2012.09.003 doi: 10.1016/j.oregeorev.2012.09.003
      [60] Zhao, B. B., Deng, Y. F., Zhou, T. F., et al., 2018. Petrogenesis of the Baixintan Ni-Cu Sulfide-Bearing Mafic- Ultramafic Intrusion, East Tianshan: Evidence from Geochronology, Petrogeochemistry and Sr-Nd Isotope. Acta Petrologica Sinica, 34(9): 2733-2753 (in Chinese with English abstract).
      [61] Zhao, Y., Xue, C. J., Zhao, X. B., et al., 2015. Magmatic Cu-Ni Sulfide Mineralization of the Huangshannan Mafic-Untramafic Intrusion, Eastern Tianshan, China. Journal of Asian Earth Sciences, 105: 155-172. https://doi.org/10.1016/j.jseaes.2015.03.031
      [62] Zhou, G. C., Wang, Y. W., Shi, Y., et al., 2021. Petrogenesis and Sulfide Saturation in the Yueyawan Cu-Ni Sulfide Deposit in Eastern Tianshan, NW China. Ore Geology Reviews, 139: 104596. https://doi.org/10.1016/j.oregeorev.2021.104596
      [63] Zhou, M. F., Lesher, C. M., Yang, Z. X., et al., 2004. Geochemistry and Petrogenesis of 270 Ma Ni-Cu-(PGE) Sulfide-Bearing Mafic Intrusions in the Huangshan District, Eastern Xinjiang, Northwest China: Implications for the Tectonic Evolution of the Central Asian Orogenic Belt. Chemical Geology, 209(3-4): 233-257. https://doi.org/10.1016/j.chemgeo.2004.05.005
      [64] 邓宇峰, 宋谢炎, 周涛发, 等, 2012. 新疆东天山黄山东岩体橄榄石成因意义探讨. 岩石学报, 28(7): 2224-2234. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201207023.htm
      [65] 冯宏业, 许英霞, 秦克章, 等, 2014. 东天山圪塔山口镁铁-超镁铁质岩体地球化学、锆石U-Pb年代学及其对Ni-Cu成矿的指示. 岩石学报, 30(6): 1558-1574. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201406004.htm
      [66] 冯延清, 钱壮志, 段俊, 等, 2017. 新疆东天山铜镍成矿带西段镁铁-超镁铁质岩体成因及成矿潜力研究. 地质学报, 91(4): 792-811. doi: 10.3969/j.issn.0001-5717.2017.04.007
      [67] 傅飘儿, 胡沛青, 张铭杰, 等, 2009. 新疆黄山铜镍硫化物矿床成矿岩浆作用过程. 地球化学, 38(5): 432-448. doi: 10.3321/j.issn:0379-1726.2009.05.003
      [68] 胡沛青, 任立业, 傅飘儿, 等, 2010. 新疆哈密黄山东铜镍硫化物矿床成岩成矿作用. 矿床地质, 29(1): 158-168. doi: 10.3969/j.issn.0258-7106.2010.01.014
      [69] 吕晓强, 毛启贵, 郭娜欣, 等, 2020. 东天山卡拉塔格地区月牙湾铜镍硫化物矿床磁黄铁矿Re-Os同位素测定及其地质意义. 地球科学, 45(9): 3475-3486. doi: 10.3799/dqkx.2019.228
      [70] 毛启贵, 吕晓强, 于明杰, 2018. 东天山早二叠世幔源岩浆活动及镁铁质杂岩体铜镍成矿潜力分析. 矿产勘查, 9(12): 2270-2281. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS201812003.htm
      [71] 毛启贵, 肖文交, 韩春明, 等, 2006. 新疆东天山白石泉铜镍矿床基性-超基性岩体锆石U-Pb同位素年龄、地球化学特征及其对古亚洲洋闭合时限的制约. 岩石学报, 22(1): 153-162. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200601016.htm
      [72] 毛亚晶, 秦克章, 唐冬梅, 等, 2014. 东天山岩浆铜镍硫化物矿床的多期次岩浆侵位与成矿作用: 以黄山铜镍矿床为例. 岩石学报, 30(6): 1575-1594. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201406005.htm
      [73] 钱壮志, 孙涛, 汤中立, 等, 2009. 东天山黄山东铜镍矿床铂族元素地球化学特征及其意义. 地质论评, 55(6): 873-884. doi: 10.3321/j.issn:0371-5736.2009.06.011
      [74] 三金柱, 秦克章, 汤中立, 等, 2010. 东天山图拉尔根大型铜镍矿区两个镁铁-超镁铁岩体的锆石U-Pb定年及其地质意义. 岩石学报, 26(10): 3027-3035. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201010014.htm
      [75] 石煜, 王玉往, 王京彬, 2017a. 东天山似斑状角闪辉长岩类与铁钛氧化物矿床的关系. 地学前缘, 24(6): 80-97. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201706009.htm
      [76] 石煜, 王玉往, 王京彬, 等, 2017b. 东天山二红洼岩体橄榄石成分对CuNi-VTiFe复合矿化的启示. 地球科学, 42(3): 325-338. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201703002.htm
      [77] 王京彬, 王玉往, 何志军, 2006. 东天山大地构造演化的成矿示踪. 中国地质, 33(3): 461-469. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200603001.htm
      [78] 王京彬, 王玉往, 周涛发, 2008. 新疆北部后碰撞与幔源岩浆有关的成矿谱系. 岩石学报, 24(4): 743-752. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200804014.htm
      [79] 王旋, 曹俊, 张盖之, 2021. 造山带铜镍硫化物矿床的岩浆起源: 以东天山黄山南铜镍矿床为例. 地球科学, 46(11): 3829-3849. doi: 10.3799/dqkx.2021.015
      [80] 王亚磊, 张照伟, 陈寿波, 等, 2017. 新疆东天山红石岗北铜镍矿化镁铁质岩体岩石成因及成矿潜力分析. 地质学报, 91(4): 776-791. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201704007.htm
      [81] 王亚磊, 张照伟, 尹希文, 等, 2016. 东天山三宫铜镍矿化岩体年代学、岩石地球化学特征及对Cu-Ni找矿的启示. 地球学报, 37(6): 699-710. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201606005.htm
      [82] 王玉往, 王京彬, 李德东, 等, 2013. 新疆北部幔源岩浆矿床的类型、时空分布及成矿谱系. 矿床地质, 32(2): 223-243. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201302002.htm
      [83] 王玉往, 王京彬, 王莉娟, 2006. 东天山地区两类钒钛磁铁矿型矿床含矿岩石对比. 岩石学报, 22(5): 1425-1436. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605032.htm
      [84] 王玉往, 王京彬, 王莉娟, 等, 2005. 新疆尾亚钒钛磁铁矿: 一个岩浆分异-贯入-热液型复成因矿床. 矿床地质, 24(4): 349-360. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200504000.htm
      [85] 王玉往, 王京彬, 王莉娟, 等, 2008. 新疆尾亚含矿岩体锆石U-Pb年龄、Sr-Nd同位素组成及其地质意义. 岩石学报, 24(4): 781-792. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200804018.htm
      [86] 王玉往, 王京彬, 王莉娟, 等, 2010. CuNi-VTiFe复合型矿化镁铁-超镁铁杂岩体岩相学及岩石地球化学特征: 以新疆北部为例. 岩石学报, 26(2): 401-412. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201002006.htm
      [87] 夏明哲, 姜常义, 钱壮志, 等, 2010. 新疆东天山黄山东岩体岩石地球化学特征与岩石成因. 岩石学报, 26(8): 2413-2430. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201008016.htm
      [88] 赵冰冰, 邓宇峰, 周涛发, 等, 2018. 东天山白鑫滩含铜镍矿镁铁-超镁铁岩体的岩石成因: 年代学、岩石地球化学和Sr-Nd同位素证据. 岩石学报, 34(9): 2733-2753. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201809015.htm
    • 加载中
    图(7) / 表(1)
    计量
    • 文章访问数:  208
    • HTML全文浏览量:  41
    • PDF下载量:  55
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-04-12
    • 刊出日期:  2022-09-25

    目录

      /

      返回文章
      返回