• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    基准面旋回控制的河流相储层差异构型模式: 以山西大同侏罗系露头为例

    李伟 岳大力 李健 刘瑞璟 郭长春 王文枫 张海娜

    李伟, 岳大力, 李健, 刘瑞璟, 郭长春, 王文枫, 张海娜, 2022. 基准面旋回控制的河流相储层差异构型模式: 以山西大同侏罗系露头为例. 地球科学, 47(11): 3977-3988. doi: 10.3799/dqkx.2022.132
    引用本文: 李伟, 岳大力, 李健, 刘瑞璟, 郭长春, 王文枫, 张海娜, 2022. 基准面旋回控制的河流相储层差异构型模式: 以山西大同侏罗系露头为例. 地球科学, 47(11): 3977-3988. doi: 10.3799/dqkx.2022.132
    Li Wei, Yue Dali, Li Jian, Liu Ruijing, Guo Changchun, Wang Wenfeng, Zhang Haina, 2022. Variable Architecture Models of Fluvial Reservoir Controlled by Base-Level Cycle: A Case Study of Jurassic Outcrop in Datong Basin. Earth Science, 47(11): 3977-3988. doi: 10.3799/dqkx.2022.132
    Citation: Li Wei, Yue Dali, Li Jian, Liu Ruijing, Guo Changchun, Wang Wenfeng, Zhang Haina, 2022. Variable Architecture Models of Fluvial Reservoir Controlled by Base-Level Cycle: A Case Study of Jurassic Outcrop in Datong Basin. Earth Science, 47(11): 3977-3988. doi: 10.3799/dqkx.2022.132

    基准面旋回控制的河流相储层差异构型模式: 以山西大同侏罗系露头为例

    doi: 10.3799/dqkx.2022.132
    基金项目: 

    国家自然科学基金项目 42202109

    国家自然科学基金项目 42272186

    中国博士后基金项目 BX20220351

    中国博士后基金项目 2022M713458

    详细信息
      作者简介:

      李伟(1990-),男,博士后,博士,从事油气田开发地质、地震综合解释、沉积学与动力学等相关研究. ORCID:0000-0002-2979-5738. E-mail:wei_li@cup.edu.cnwei_li@cup.edu.cn

      通讯作者:

      李伟, ORCID:0000-0002-2979-5738. E-mail:wei_li_geologist@qq.com

    • 中图分类号: P587

    Variable Architecture Models of Fluvial Reservoir Controlled by Base-Level Cycle: A Case Study of Jurassic Outcrop in Datong Basin

    • 摘要: 我国河流相储层大多已进入开发后期,急需表征内部复杂构型分布,但目前河流相差异构型模式及控制因素研究还很薄弱,油田区构型表征模式指导不够.因此,以山西大同露头为研究对象,采用露头精细描述与测量、GR测定、粒度分析等方法建立了河流相储层差异构型模式.研究认为:基于砂地比、古水深将露头区划分为9个短期、2个中期基准面旋回,中期基准面旋回不同位置河型差异明显;随着基准面升高与河型的转化,由狭长状心滩坝转变为正常的心滩坝,再过渡窄带状心滩坝或点坝的组合样式,最后演变为马蹄状点坝;3种河型砂坝(心滩坝或点坝)厚度与宽度、砂坝宽度与河道宽度均具有较好的正相关关系.研究成果可为相似露头构型分析提供借鉴,亦可为相似油田区构型精细表征提供模式指导.

       

    • 图  1  河流相露头区地理位置及地貌特征

      a. 大同市地理位置;b. 露头区位置及地层出露状况;c. 吴官屯露头剖面 H;d. 晋华宫铁路桥剖面 A~C、铁路桥下‒公路北侧剖面 D~F、铁路桥 下‒公路南侧剖面 G

      Fig.  1.  Location of the fluvial outcrops and geomorphology of the outcrop area

      图  2  研究区露头剖面基准面旋回划分及特征

      Fig.  2.  Characteristics of base-level cycle of the outcrops in study area

      图  3  吴官屯露头剖面精细构型解释(H段)

      a. 露头拼接照片;b. 露头剖面垂向分期;c. 构型界面划分与岩性剖面;d. 构型单元分布解释

      Fig.  3.  Architecture interpretation of Wuguantun outcrop section (section H)

      图  4  吴官屯剖面河道满岸深度与单一沙丘厚度

      Fig.  4.  Bankfull channel depth and thickness of related dunes in Wuguantun outcrop

      图  5  铁路桥剖面B段精细构型解释

      a. 露头拼接照片;b. 构型界面划分与岩性剖面;c. 构型单元精细解释与分布特征

      Fig.  5.  Architecture interpretation of section B in Tieluqiao outcrop

      图  6  吴官屯剖面H段稳定型心滩坝与非对称辫状河道

      Fig.  6.  Classic braided bar and asymmetric channels of H section in Wuguantun outcrop

      图  7  铁路桥下‒公路北露头剖面精细构型解释(剖面F段)

      a. 露头拼接照片;b. 构型划分与分布特征;c. 构型单元精细解释与分布特征

      Fig.  7.  Architecture interpretation of section F in Tieluqiao-north side of road outcrop

      图  8  基准面旋回不同位置河流类型及内部构型模式

      Fig.  8.  Types of fluvial systems and their inner architecture models at different base-level locations

      图  9  基准面不同位置砂坝(辫状河心滩坝、曲流河点坝)厚度与宽度相关关系

      Fig.  9.  The relationship between bar thickness and bar width at different base-level locations

      图  10  基准面不同位置砂坝(辫状河心滩坝、曲流河点坝)宽度与河道宽度相关关系

      Fig.  10.  The relationship between bar width and channel width at different base-level locations

    • [1] Bai, H., 2011. Mesozoic Prototype Basin Restoration in Datong Basin (Dissertation). China University of Petroleum, Beijing (in Chinese with English abstract).
      [2] Best, J. L., Ashworth, P. J., Bristow, C. S., et al., 2003. Three-Dimensional Sedimentary Architecture of a Large, Mid-Channel Sand Braid Bar, Jamuna River, Bangladesh. Journal of Sedimentary Research, 73(4): 516-530. https://doi.org/10.1306/010603730516
      [3] Bradley, R. W., Venditti, J. G., 2017. Revaluating Dune Scaling Relations. Earth-Science Reviews, 165: 356-376. https://doi.org/10.1016/j.earscirev.2016.11.004
      [4] Bridge, J. S., Lunt, I. A., 2006. Depositional Models of Braided Rivers. In: Smith, G. H. S., Best, J. L., Bristow, C. S., et al., eds., Braided Rivers: Process, Deposits, Ecology and Management (1st Edition). Blackwell Publishing, Oxford, 11-50. https://doi.org/10.1002/9781444304374.ch2
      [5] Chen, B. T., Yu, X. H., Wang, T. Q., et al., 2015. Lithofacies and Architectural Characteristics of Sandy Braided River Deposits: A Case from Outcrops of the Middle Jurassic Yungang Formation in the Datong Basin, Shanxi Province. Oil & Gas Geology, 36(1): 111-117 (in Chinese with English abstract).
      [6] Chen, Y. K., Wu, S. H., Mao, P., et al., 2012. Characterization of Sandy Braided River Reservoir Configuration-An Example from Guantao Formation in Yangsanmu Oilfield, Dagang Oil Region. Xinjiang Petroleum Geology, 33(5): 523-526 (in Chinese with English abstract).
      [7] Chen, Y. K., Wu, S. H., Wang, Y. J., et al., 2015. Distribution Patterns of the Fall-Siltseams in the Channel Bar of the Perennial Sandy Braided River: An Approach. Sedimentary Geology and Tethyan Geology, 35(1): 96-101, 112 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-3850.2015.01.012
      [8] Chen, Y. X., Dai, D. L., 1962. Sedimentary Facies of Jurassic in Datong Area, Shanxi Province. Acta Geologica Sinica, 42(3): 321-336, 354 (in Chinese with English abstract).
      [9] Colombera, L., Mountney, N. P., 2020. Accommodation and Sediment-Supply Controls on Clastic Parasequences: A Meta-Analysis. Sedimentology, 67: 1667-1709. https://doi.org/10.1111/set.12728
      [10] Crosato, A., Mosselman, E., 2009. Simple Physics-Based Predictor for the Number of River Bars and the Transition between Meandering and Braiding. Water Resources Research, 45(3): 1-14. https://doi.org/10.1029/2008WRoo7242
      [11] Cross, T. A., 1988. Controls on Coal Distribution in Transgressive-Regressive Cycles, Upper Cretaceous, Western Interior, U. S. A. . In: Wilgaus, C. K., Hastings, B. S., Posamentier, H., et al., eds., Sea-Level Changes: An Integrated Approach. SEPM Special Publication, 42: 371-380. https://doi.org/10.2110/pec.88.01.0371
      [12] Cross, T. A., 2000. Stratigraphic Controls on Reservoir Attributes in Continental Strata. Earth Science Frontiers, 7(4): 322-350.
      [13] Deng, H. W., Wang, H. L., Li, X. M., et al., 1997. Application of Base Level Principle in Prediction of Lacustrine Reservoirs. Oil & Gas Geology, 18(2): 90-95, 114 (in Chinese with English abstract).
      [14] Dou, L. R., Cheng, D. S., Li, M. W., et al., 2008. Unusual High Acidity Oils from the Great Palogue Field, Melut Basin, Sudan. Organic Geochemistry, 39(2): 210-231. https://doi.org/10.1016/j.orggeochem.2007.09.001
      [15] Ghazi, S., Mountney, N. P., 2009. Facies and Architectural Element Analysis of a Meandering Fluvial Succession: The Permian Warchha Sandstone, Salt Range, Pakistan. Sedimentary Geology, 221: 99-126. https://doi.org/10.1016/j.sedgeo.2009.08.002
      [16] Ghinassi, M., Ielpi, A., Aldinucci, M., et al., 2016. Downstream-Migrating Fluvial Point Bars in the Rock Record. Sedimentary Geology, 334: 66-96. https://doi.org/10.1016/j.sedgeo.2016.01.005
      [17] Harbor, D. J., Schumm, S. A., Harvey, M. D., 1994. Tectonic Control of the Indus River in Sindh, Pakistan. In: Schumm, S. S., Winkley, B. R., et al., eds., The Variability of Large Alluvial Rivers (2st Edition). American Association of Civil Engineers Press, New York, 161-176.
      [18] Ji, Z. Q., Ge, C. D., Zhou, M. Y., et al., 2020. Quartz-Hosted Fluid Inclusions Characteristics and Their Implications for Fluvial Deposits along the Changjiang River. Journal of Earth Science, 31(3): 571-581. https://doi.org/10.1007/s12583-020-1275-0
      [19] Leclair, S. F., Bridge, J. S., 2001. Quantitative Interpretation of Sedimentary Structures Formed by River Dunes. Journal of Sedimentary Research, 71(5): 713-716. https://doi.org/10.1306/2DC40962-0E47-11D7-8643000102C1865D
      [20] Li, S. L., Ma, S. P., Zhou, L. W., et al., 2022. Main Influencing Factors of Braided-Meander Transition and Coexistence Characteristics and Implications of Ancient Fluvial Sedimentary Environment Reconstruction. Earth Science, in Press (in Chinese with English abstract).
      [21] Li, S. L., Yu, X. H., Chen, B. T., et al., 2015. Quantitative Characterization of Architecture Elements and Their Response to Base-Level Change in a Sandy Braided Fluvial System at a Mountain Front. Journal of Sedimentary Research, 85: 1258-1274. https://doi.org/10.2110/jsr.2015.82
      [22] Li, W., Yue, D. L., Colombera, L., et al., 2020. A Novel Method for Estimating Sandbody Compaction in Fluvial Succcessions. Sedimentary Geology, 404: 105675. https://doi.org/10.1016/j.sedgeo.2020.105675
      [23] Liang, H. W., Wu, S. H., Mu, L. X., et al., 2013. Base Level Cyclic Controls on the Fluvial Reservoir Physical Properties and Sonic Logging Response. Earth Science, 38(5): 1135-1142 (in Chinese with English abstract).
      [24] Meng, Y. J., Zhao, Y. C., Xiong, S., et al., 2021. Study on Reservoir Architecture and Reservoir Units of Fluvial Deposits of Dongying Formation in Yuke Oilfield. Earth Science, 46(7): 2481-2493 (in Chinese with English abstract).
      [25] Miall, A. D., 1985. Architectural-Element Analysis: A New Method of Facies Analysis Applied to Fluvial Deposits. Earth-Science Reviews, 22: 261-308. https://doi.org/10.1016/0012-8252(85)90001-7
      [26] Miall, A. D., 1988. Reservoir Heterogeneities in Fluvial Sandstones: Lesson from Outcrop Studies. AAPG Bulletin, 72(6): 682-697. https://doi.org/10.1306/703C8F01-1707-11D7-8645000102C1865D
      [27] Miall, A. D., 2002. Architecture and Sequence Stratigraphy of Pleistocene Fluvial Systems in the Malay Basin, Based on Seismic Time-Slice Analysis. AAPG Bulletin, 86(7): 1201-1216.
      [28] Mueller, E. R., Pitlick, J., Pratt, M. J., 2014. Sediment Supply and Channel Morphology in Mountain River Systems: Single Thread to Braided Transitions. Journal of Geophysical Research: Earth Surface, 119: 1-26. https://doi.org/10.1002/2013JF003045
      [29] Naseer, M. T., Asim, S., 2017. Detection of Cretaceous Incised-Valley Shale for Resource Play, Miano Gas Field, SW Pakistan: Spectral Decomposition Using Continuous Wavelet Transform. Journal of Asian Earth Sciences, 147: 358-377. https://doi.org/10.1016/j.jseaes.2017.07.031
      [30] Qiu, Y. N., 1992. Developments in Reservoir Sedimentology of Continental Clastic Rocks in China. Acta Sedimentologica Sinica, 10(3): 16-24 (in Chinese with English abstract).
      [31] Sullivan, K. B., Mcbridge, E. F., Elfenbein, C., 1991. Diagenesis of Sandstones at Shale Contacts and Diagenetic Heterogeneity, Frio Formation, Texas. American Association of Petroleum Geologists Bulletin, 75(1): 121-138.
      [32] Wang, S. J., 2001. Fluvial Depositional Systems and River Pattern Evolution of Middle Jurassic Series, Datong Basin. Acta Sedimentologica Sinica, 19(4): 501-505 (in Chinese with English abstract).
      [33] Xu, A. N., Mu, L. X., Qiu, Y. N., 1998. Distribution Pattern of OOIP and Remaining Mobile Oil in Different Types of Sedimentary Reservoir of China. Petroleum Exploration and Development, 25(5): 41-44 (in Chinese with English abstract).
      [34] Yao, G. Q., Jiang, P., 2021. Method and Application of Reservoir "Source-Route-Sink-Rock"System Analysis. Earth Science, 46(8): 2934-2943 (in Chinese with English abstract).
      [35] Yao, Z. Q., Yu, X. H., Shan, X., et al., 2018. Braided-Meandering System Evolution in the Rock Record: Implications for Climate Control on the Middle-Upper Jurassic in the Southern Junggar Basin, North-West China. Geological Journal, 53(6): 1-22.
      [36] Yu, X. H., Ma, X. X., Mu, L. X., et al, 2004. Geological Model and Hierarchical Bounding Surface Analysis of Braided River Reservoir. Petroleum Industry Press, Beijing, 64-66 (in Chinese).
      [37] Yue, D. L., Wu, S. H., Cheng, H. M., et al., 2008. Numerical Reservoir Simulation and Remaining Oil Distribution Patterns Based on 3D Reservoir Architecture Model. Journal of China University of Petroleum (Edition of Natural Science), 32(2): 21-27 (in Chinese with English abstract).
      [38] Yue, D. L., Wu, S. H., Liu, J. M., 2007. An Accurate Method for Anatomizing Architecture of Subsurface Reservoir in Point Bar of Meandering River. Acta Petrolei Sinica, 28(4): 99-103 (in Chinese with English abstract).
      [39] 白桦, 2011. 大同盆地中生代原型盆地恢复(硕士学位论文). 北京: 中国石油大学.
      [40] 陈彬滔, 于兴河, 王天奇, 等, 2015. 砂质辫状河岩相与构型特征: 以山西大同盆地中侏罗统云冈组露头为例. 石油与天然气地质, 36(1): 111-117. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201501015.htm
      [41] 陈玉琨, 吴胜和, 毛平, 等, 2012. 砂质辫状河储集层构型表征: 以大港油区羊三木油田馆陶组为例. 新疆石油地质, 33(5): 523-526. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201205005.htm
      [42] 陈玉琨, 吴胜和, 王延杰, 等, 2015. 常年流水型砂质辫状河心滩坝内部落淤层展布样式探讨. 沉积与特提斯地质, 35(1): 96-101, 112. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201501012.htm
      [43] 陈庸勋, 戴东林, 1962. 山西省大同地区侏罗系的沉积相. 地质学报, 36(3): 321-336, 354. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE196203005.htm
      [44] 邓宏文, 王洪亮, 李小孟, 1997. 高分辨率层序地层对比在河流相中的应用. 石油与天然气地质, 18(2): 90-95, 114. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT702.001.htm
      [45] 李胜利, 马水平, 周练武, 等, 2022. 辫曲转换与共存的主要影响因素及对古代河流沉积环境恢复的启示. 地球科学, 待刊.
      [46] 梁宏伟, 吴胜和, 穆龙新, 等, 2013. 基准面旋回对河流相储层物性差异及声波测井影响. 地球科学, 38(5): 1135-1142. doi: 10.3799/dqkx.2013.113
      [47] 孟玉净, 赵彦超, 熊山, 等, 2021. 榆科油田东营组河流相储层构型与油藏单元研究. 地球科学, 46(7): 2481-2493. doi: 10.3799/dqkx.2020.226
      [48] 裘亦楠, 1992. 中国陆相碎屑岩储层沉积学的进展. 沉积学报, 10(3): 16-24. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199203003.htm
      [49] 王随继, 2001. 大同盆地中侏罗世河流沉积体系及古河型演化. 沉积学报, 19(4): 501-505. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200104004.htm
      [50] 徐安娜, 穆龙新, 裘怿楠, 1998. 我国不同沉积类型储集层中的储量和可动剩余油分布规律. 石油勘探与开发, 25(5): 41-44. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK805.011.htm
      [51] 姚光庆, 姜平, 2021. 储层"源‒径‒汇‒岩"系统分析的思路方法与应用. 地球科学, 46(8): 2934-2943. doi: 10.3799/dqkx.2020.327
      [52] 于兴河, 马兴祥, 穆龙新, 等, 2004. 辫状河储层地质模式及层次界面分析. 北京: 石油工业出版社, 64-66.
      [53] 岳大力, 吴胜和, 程会明, 等, 2008. 基于三维储层构型模型的油藏数值模拟及剩余油分布模式. 中国石油大学学报(自然科学版), 32(2): 21-27. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX200802004.htm
      [54] 岳大力, 吴胜和, 刘建民, 2007. 曲流河点坝地下储层构型精细解剖方法. 石油学报, 28(4): 99-103. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200704019.htm
    • 加载中
    图(10)
    计量
    • 文章访问数:  198
    • HTML全文浏览量:  98
    • PDF下载量:  42
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-03-22
    • 网络出版日期:  2022-12-07
    • 刊出日期:  2022-11-25

    目录

      /

      返回文章
      返回