Genesis and Tectonic Significance of Ore Bearing Rock Mass in Kulabiye Cu⁃Ni Deposit, East Junggar, Xinjiang: Evidence from Chronology, Geochemistry and Sr⁃Nd⁃Hf Isotopes
-
摘要: 新疆北部是中亚造山带的重要组成部分,具有众多含铜‒镍硫化物的镁铁质‒超镁铁质侵入体,是中国第二大铜镍成矿区.库拉比也铜镍矿床位于新疆阿勒泰富蕴县,是继新疆北部最大的铜镍矿(喀拉通克)发现以来,在东准噶尔北缘铜镍矿找矿的新突破.尽管前人对该矿床的地质、地球物理特征进行了总结,提出了矿床成因及找矿标志,但含矿岩体的成因及构造意义等一些关键问题尚未解决.本文对库拉比也含矿岩体进行了岩石学、年代学、岩石地球化学和Sr-Nd-Hf同位素研究.结果表明,库拉比也铜镍矿床含矿岩体主要为辉长岩,表现出轻稀土富集、重稀土亏损的右倾模式,富集大离子亲石元素Ba、U、K,亏损高场强元素Nb、Ta、Ti、Lu.辉长岩的(87Sr/86Sr)i为0.703 948~0.704 109,εNd(t)在5.28~5.74之间,其锆石的176Hf/177Hf和εHf(t)变化较大,分别为0.282 851~0.283 034和+8.6~+15.1,εHf(t)平均值为12.9.主微量元素及Sr-Nd-Hf同位素特征显示源区有壳源物质的加入.库拉比也含矿岩体的形成年龄(约278 Ma)与区域性铜镍矿床的矿化年龄一致(约300~270 Ma),很可能形成于后碰撞伸展环境,其初始岩浆可能与软流圈岩浆上涌并导致被交代的地幔楔的部分熔融与岩浆混合有关.库拉比也成岩成矿时代揭示了早二叠世与铜镍成矿相关的岩浆活动在东准噶尔地区广泛发生,东准噶尔北缘具有很好的铜镍找矿潜力.Abstract: Northern Xinjiang is the second largest Cu-Ni metallogenic area in China as an important part of the Central Asian Orogenic Belt with many mafic-ultramafic intrusions containing Cu-Ni sulfide. Kulabiye Cu-Ni deposit located in Fuyun County, Xinjiang is a new breakthrough in Cu-Ni prospecting in the northern margin of East Junggar after the largest Cu-Ni deposit (Kalatongke) in northern Xinjiang. Although the geological and geophysical characteristics of the deposit have been summarized and the genesis and prospecting criteria of deposit have been put forward in the previous studies, some key problems such as the genesis and tectonic significance of the ore bearing rock mass have not been solved. In this paper, the petrology, geochronology, chemistry and Sr-Nd-Hf isotope of Kulabiye ore bearing rock mass are studied. The ore bearing rock mass of Kulabiye Cu-Ni deposit are mainly gabbro. They show the right dipping pattern of LREE enrichment and HREE loss, enriched in LILE Ba, U and K, and depleted in HFSE Nb, Ta, Ti and Lu. The (87Sr/86Sr)i of gabbro is 0.703 948-0.704 109, εNd(t) is between 5.28 and 5.74, 176Hf/177Hf and εHf(t) varies greatly, ranging from 0.282 851 to 0.283 034 and +8.6-+15.1. The average value of εHf(t) is 12.9. Trace elements and Sr-Nd-Hf isotopes also show the addition of shell source materials in the source area. The formation age of the Kulabiye complex (about 278 Ma) is consistent with the mineralization age of the regional Cu-Ni deposit (about 300-270 Ma). The Kulabiye complex has probably been formed in a post collisional extensional environment, which is related to the upwelling of asthenosphere magma and the partial melting and magma mixing of the metasomatic mantle wedge. The diagenetic and metallogenic age of Kulabiye also reveals that magmatic activities related to Cu-Ni mineralization in the Early Permian occurred widely in the eastern Junggar area, and the northern margin of the eastern Junggar has superior Cu-Ni prospecting potential.
-
Key words:
- Cu⁃Ni sulfide /
- Sr⁃Nd⁃Hf isotope /
- zircon U⁃Pb geochronology /
- post collisional extension /
- East Junggar /
- geochemistry
-
图 1 东准噶尔大地构造位置图(a)及库拉比也地区地质简图(b)
图a据冯京和张招崇(2009);图b据新疆维吾尔自治区地质局,1971,1:20万恰库尔特图幅区域地质矿产报告
Fig. 1. Tectonic map of East Junggar (a) and regional geological map of Kulabiye area (b)
图 7 库拉比也含矿辉长岩稀土元素配分曲线及微量元素蛛网图
图据Sun and McDonough(1989)
Fig. 7. Chondrite-normalized REE distribution patterns and continental primitive mantle-normalized multi-element distribution patterns of Kulabiye gabbro
图 8 库拉比也辉长岩εNd(t)‒(87Sr/86Sr)i图解(a)及εNd(t)‒t图解(b)
东准噶尔数据引自Liu and Liu(2014);喀拉通克岩体数据引自冯延清(2018);EM I、EM II.富集地幔;MORB.洋中脊玄武岩;HIMU.高U/Pb比值的地幔;东准噶尔数据引自Zhang et al.(2009);阿尔泰数据引自Wang et al.(2009);中元古代地壳、北疆地区古生代洋壳数据引自韩宝福等(2006)和Hu et al.(2000)
Fig. 8. εNd(t)‒(87Sr/86Sr)i (a) and εNd(t)‒t (b) diagrams of Kulabiye gabbro
表 1 库拉比也含矿辉长岩LA⁃ICP⁃MS锆石U⁃Pb分析结果
Table 1. LA⁃ICP⁃MS zircon U⁃Pb isotopic data of Kulabiye gabbro
Spot Pb(10‒6) Th(10‒6) U(10‒6) Th/U 比值 年龄(Ma) 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ KL1-01 14 176 253 0.69 0.052 0 0.001 2 0.314 4 0.006 9 0.044 1 0.000 5 277.6 5.4 277.9 3.2 KL1-02 10 77 203 0.38 0.052 9 0.001 1 0.312 0 0.006 7 0.042 8 0.000 4 275.7 5.2 270.0 2.5 KL1-03 14 145 266 0.54 0.053 1 0.001 1 0.320 1 0.006 8 0.043 7 0.000 4 282.0 5.3 275.9 2.6 KL1-04 23 262 410 0.64 0.052 7 0.000 9 0.324 8 0.005 8 0.044 7 0.000 5 285.6 4.4 282.0 2.9 KL1-06 23 241 413 0.58 0.053 1 0.000 7 0.329 7 0.005 3 0.045 0 0.000 4 289.3 4.0 283.6 2.6 KL1-07 2 13 37 0.35 0.055 3 0.003 5 0.334 9 0.019 0 0.045 0 0.000 8 293.3 14.5 283.9 4.8 KL1-08 7 64 126 0.51 0.051 0 0.001 5 0.307 6 0.008 8 0.044 0 0.000 4 272.3 6.8 277.5 2.7 KL1-09 19 208 349 0.60 0.051 7 0.000 9 0.315 1 0.006 0 0.044 2 0.000 5 278.1 4.6 279.0 2.8 KL1-10 12 114 229 0.50 0.052 7 0.001 3 0.320 0 0.007 6 0.044 1 0.000 4 281.9 5.8 278.3 2.5 KL1-11 4 30 72 0.41 0.055 0 0.002 5 0.336 6 0.015 8 0.044 5 0.000 7 294.6 12.0 280.7 4.0 KL1-12 11 88 214 0.41 0.052 3 0.001 1 0.326 4 0.007 8 0.045 2 0.000 4 286.8 6.0 285.0 2.8 KL1-15 5 42 99 0.43 0.049 5 0.001 9 0.305 2 0.011 2 0.045 0 0.000 5 270.5 8.7 284.0 3.1 KL1-16 12 187 211 0.88 0.058 1 0.001 3 0.347 8 0.007 8 0.043 5 0.000 4 303.0 5.9 274.2 2.4 KL1-17 14 167 251 0.67 0.053 6 0.001 3 0.329 4 0.008 1 0.044 6 0.000 5 289.1 6.2 281.5 2.8 KL1-18 12 136 233 0.58 0.049 0 0.001 0 0.293 5 0.006 1 0.043 5 0.000 4 261.3 4.8 274.7 2.7 KL1-19 8 100 154 0.65 0.050 6 0.001 5 0.300 7 0.008 7 0.043 1 0.000 5 267.0 6.8 272.2 2.9 KL1-22 12 103 232 0.44 0.051 6 0.001 2 0.313 7 0.007 5 0.044 1 0.000 5 277.0 5.8 278.2 2.8 KL1-23 9 92 171 0.54 0.055 4 0.001 6 0.329 0 0.010 0 0.043 1 0.000 4 288.8 7.6 272.0 2.7 KL1-24 10 115 170 0.68 0.065 1 0.001 7 0.386 9 0.010 2 0.043 1 0.0005 332.1 7.5 272.1 2.9 KL1-25 16 211 274 0.77 0.054 3 0.001 1 0.334 4 0.006 7 0.044 8 0.000 5 292.9 5.1 282.3 3.0 表 2 库拉比也含矿辉长岩主量及微量元素组成
Table 2. Chemical composition of major and trace elements of Kulabiye gabbro
样品编号 K1-2 KL-7 K1-8 ZK4002-14-3 ZK4003-14-1 ZK4003-14-7 ZK4003-15-2 岩性 辉长岩 SiO2 49.71 50.96 48.11 47.59 46.21 47.61 46.93 Al2O3 15.22 15.13 14.87 14.36 15.28 14.51 14.24 CaO 4.89 4.69 2.69 6.96 7.04 7.23 6.91 TFe2O3 10.82 10.59 15.19 17.99 19.45 16.05 19.72 K2O 1.92 1.55 1.96 0.76 0.76 0.74 0.72 MgO 4.48 4.38 3.88 3.76 3.28 3.77 3.75 MnO 0.19 0.18 0.18 0.17 0.16 0.17 0.17 Na2O 4.51 4.77 4.68 3.05 3.53 3.36 3.00 P2O5 0.77 0.76 0.87 0.66 0.57 0.63 0.65 TiO2 2.24 2.22 2.46 1.90 1.79 1.93 1.92 LOI 5.22 4.08 4.27 1.39 0.53 2.56 0.56 Total 99.97 99.31 99.16 98.59 98.59 98.57 98.57 A/NK 1.60 1.59 1.51 2.46 2.31 2.29 2.49 A/CNK 0.83 0.84 1.01 0.78 0.79 0.74 0.78 Mg# 42 42 31 27 23 30 25 Sc 21.5 21.5 23.4 21.1 17.9 20.9 21.2 V 195 192 221 229 206 240 239 Co 29.4 30.0 103 114 117 86.6 132 Ni 53.4 42.8 1 740 1 974 2 125 1 403 2 438 Cu 281 174 2 380 4 253 4 968 3 193 5 046 Zn 136 135 162 136 132 155 144 Ga 22.1 21.7 21.4 18.1 18.7 19.5 18.6 Rb 27.2 22.1 25.9 12.4 10.7 10.6 11.3 Sr 786 759 621 617 640 695 607 Y 44.1 44.6 48.9 35.1 33.1 35.9 35.1 Zr 482 470 443 219 248 258 216 Nb 17.1 17.4 16.8 15.8 14.7 17.8 15.1 Cs 0.71 0.41 0.49 0.93 0.95 1.10 0.93 Ba 1 172 768 727 363 389 456 365 La 40.3 39.6 34.3 29.5 28.2 30.2 29.9 Ce 90.1 89.5 84.5 62.5 60.5 63.4 63.3 Pr 12.30 12.10 11.40 8.47 7.82 8.58 8.66 Nd 56.7 59.5 55.2 34.4 31.8 34.9 35.0 Sm 10.70 10.40 11.10 7.86 7.00 7.78 7.81 Eu 2.87 2.75 3.01 2.22 2.04 2.30 2.31 Gd 11.10 10.70 11.70 7.94 7.19 7.99 7.97 Tb 1.74 1.71 1.86 1.14 1.03 1.12 1.12 Dy 10.2 9.96 10.8 6.25 5.76 6.63 6.53 Ho 2.04 2.03 2.14 1.23 1.13 1.23 1.20 Er 5.36 5.29 5.68 3.18 3.06 3.35 3.24 Tm 0.81 0.80 0.83 0.45 0.45 0.48 0.46 Yb 4.84 4.81 4.91 2.81 2.76 3.05 2.89 Lu 0.78 0.76 0.77 0.43 0.43 0.48 0.44 Hf 9.91 9.53 8.93 4.76 5.56 5.60 4.89 Ta 1.10 1.08 1.05 0.63 0.60 0.73 0.62 Pb 4.53 6.57 3.08 46.20 40.50 34.70 53.50 Th 2.60 2.61 2.06 1.44 1.39 1.35 1.49 U 1.85 2.92 3.16 0.52 0.50 0.48 0.54 ∑REE 250 250 238 168 159 171 171 (La/Yb)N 5.97 5.91 5.01 7.52 7.32 7.10 7.42 δEu 0.80 0.79 0.80 0.85 0.87 0.88 0.89 表 3 库拉比也含矿岩辉长岩Sr⁃Nd同位素组成
Table 3. Sr⁃Nd isotopic compositions of Kulabiye gabbro
样品编号 ZK4002-14-3 ZK4003-14-1 ZK4003-14-7 ZK4003-15-2 t(Ma) 278 278 278 278 Rb 12.4 10.7 10.6 11.3 Sr 617 640 695 607 87Rb/86Sr 0.0863 0.070 9 0.132 8 0.081 0 87Sr/86Sr 0.704 292 0.704 234 0.704 638 0.704 306 2σ 0.000 004 0.000 004 0.000 005 0.000 004 (87Sr/86Sr)i 0.703 948 0.703 952 0.704 109 0.703 983 Sm 7.86 7 7.78 7.81 Nd 34.4 31.8 34.9 35 147Sm/144Nd 0.133 1 0.133 3 0.126 6 0.138 3 143Nd/144Nd 0.512 815 0.512 816 0.512 78 0.512 816 2σ 0.000 008 0.000 007 0.000 009 0.000 007 (143Nd/144Nd)i 0.512 571 0.512 572 0.512 548 0.512 563 εNd(t) 5.73 5.74 5.28 5.56 TDM(Ma) 637 637 651 679 表 4 库拉比也含矿岩辉长岩锆石Lu⁃Hf同位素分析结果
Table 4. Lu⁃Hf isotopic composition of zircons from Kulabiye gabbro
样品点号 t(Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ εHf(0) εHf(t) 2σ TDM1 fLu/Hf KL1-01 278 0.057 1 0.002 1 0.283 018 0.000 027 8.7 14.4 1.0 341 ‒0.94 KL1-02 270 0.045 3 0.001 6 0.282 939 0.000 020 5.9 11.6 0.7 450 ‒0.95 KL1-03 276 0.058 8 0.002 1 0.282 959 0.000 025 6.6 12.3 0.9 428 ‒0.94 KL1-04 282 0.047 0 0.001 6 0.282 948 0.000 020 6.2 12.1 0.7 438 ‒0.95 KL1-06 284 0.059 4 0.002 0 0.282 970 0.000 023 7.0 12.9 0.8 411 ‒0.94 KL1-07 284 0.029 7 0.001 0 0.282 919 0.000 022 5.2 11.3 0.8 472 ‒0.97 KL1-08 277 0.039 1 0.001 4 0.282 851 0.000 023 2.8 8.6 0.8 574 ‒0.96 KL1-09 279 0.059 7 0.002 1 0.282 952 0.000 028 6.4 12.1 1.0 437 ‒0.94 KL1-10 278 0.043 7 0.001 6 0.283 001 0.000 030 8.1 13.9 1.0 361 ‒0.95 KL1-11 281 0.029 2 0.001 0 0.283 015 0.000 022 8.6 14.6 0.8 336 ‒0.97 KL1-12 285 0.071 5 0.002 5 0.282 940 0.000 027 5.9 11.7 1.0 460 ‒0.93 KL1-15 284 0.022 1 0.000 8 0.283 027 0.000 025 9.0 15.1 0.9 318 ‒0.97 KL1-16 274 0.029 4 0.001 0 0.283 020 0.000 022 8.8 14.6 0.8 329 ‒0.97 KL1-17 281 0.103 0 0.003 5 0.283 010 0.000 030 8.4 14.0 1.1 367 ‒0.89 KL1-18 275 0.057 5 0.002 0 0.283 034 0.000 026 9.3 14.9 0.9 317 ‒0.94 KL1-19 272 0.044 4 0.001 5 0.282 957 0.000 026 6.6 12.3 0.9 423 ‒0.95 KL1-22 278 0.032 6 0.001 2 0.282 990 0.000 024 7.7 13.6 0.8 374 ‒0.96 KL1-23 272 0.042 8 0.001 7 0.282 985 0.000 027 7.5 13.2 1.0 386 ‒0.95 KL1-24 272 0.041 7 0.001 5 0.282 961 0.000 021 6.7 12.4 0.8 418 ‒0.95 KL1-25 282 0.062 7 0.002 2 0.282 956 0.000 022 6.5 12.3 0.8 433 ‒0.93 表 5 新疆北部主要铜镍矿床年代学统计
Table 5. Chronological statistics of main Cu-Ni deposits in northern Xinjiang
地区 矿床名称 定年对象 定年方法 年龄(Ma) 资料来源 东准噶尔 喀拉通克铜镍矿 Y1岩体辉长岩 LA-ICP-MS锆石U-Pb 274~287 韩宝福等,2004 Y3岩体苏长岩 SHRIMP锆石U-Pb 283.3±1.3 焦建刚等,2014 Y5岩体辉长岩 SHRIMP锆石U-Pb 320.5±2.5 冯延清,2018 G21岩体辉长岩 SHRIMP锆石U-Pb 281.1±1.5 冯延清,2018 Y1岩体矿石 Re-Os 290.2±6.9 张作衡等,2005 Y2岩体矿石 Re-Os 282.5±4.8 张作衡等,2005 Y1岩体东部矿石 Re-Os 305±15 Han et al., 2007 科克别克提铜镍矿床 辉长岩 LA-ICP-MS锆石U-Pb 290~291 张永和徐兴旺,2019 辉长岩 LA-ICP-MS锆石U-Pb 330.3±0.7 单立华等,2018 闪长岩 LA-ICP-MS锆石U-Pb 328.9±0.6 裴圣良等,2020 库拉比也铜镍矿床 辉长岩 LA-ICP-MS锆石U-Pb 278±2.2 本文 东天山 黄山铜镍矿 辉橄岩 SHRIMP锆石U-Pb 283.8±3.4 秦克章等,2002 黄山东铜镍矿 矿石 Re-Os 282±20 毛景文等,2002 辉长岩 SHRIMP锆石U-Pb 274±3 韩宝福等,2004 香山铜镍矿 辉长岩 SHRIMP锆石U-Pb 285±1.2 秦克章等,2002 白石泉铜镍矿 辉橄岩 LA-ICP-MS锆石U-Pb 281.2±0.9 毛启贵等,2006 天宇铜镍矿 辉橄岩 LA-ICP-MS锆石U-Pb 290.2±3.4 唐冬梅等,2009 黄山南铜镍矿 辉长岩 SIMS锆石U-Pb 278~282 Mao et al., 2016 香山西矿床 辉长岩 SIMS锆石U-Pb 278.6~279.6 Shi et al., 2019 路北铜镍矿 辉长岩 LA-ICP-MS锆石U-Pb 277.8~287.9 赵冰冰等,2018 月牙湾铜镍矿 辉长岩 LA-ICP-MS锆石U-Pb 281~282 Sun et al., 2019 -
[1] Anderson, D. L., 1994. Komatiites and Picrites: Evidence that the 'Plume' Source is Depleted. Earth and Planetary Science Letters, 128(3-4): 303-311. https://doi.org/10.1016/0012⁃821X(94)90152⁃X [2] Chen, B., Jahn, B. M., 2002. Geochemical and Isotopic Studies of the Sedimentary and Granitic Rocks of the Altai Orogen of Northwest China and Their Tectonic Implications. Geological Magazine, 139(1): 1-13. https://doi.org/10.1017/s0016756801006100 [3] Ding, R. F., Wei, X. F., Pan, D., et al., 2014. Geological Characteristics and Prospecting of AKETASI Gold Deposit in Fuyun County, Xinjiang. Mineral Deposits, 33(S1): 923-924 (in Chinese). [4] Dong, Y. G., Zhu, S. H., Rui, X. J., et al., 1994. The Ore⁃Forming Geochemistry and Genesis of Salbulak Gold Deposit, Xinjiang. Volcanology & Mineral Resources, 15(4): 21-34 (in Chinese with English abstract). [5] Feng, J., Zhang, Z. C., 2009. Geochemistry of the Intermediate⁃Acid Porphyries on Southern Margin of the Altay Mountains and Its Implications for Petrogenesis. Geological Review, 55(1): 58-72 (in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2009.01.007 [6] Feng, Y. Q., 2018. Copper Nickel Mineralization and Geodynamic Setting of Late Paleozoic Mafic Pluton in Karatonk, Xinjiang (Dissertation). Chang'an University, Xi'an (in Chinese with English abstract). [7] Griffin, W. L., Pearson, N. J., Belousova, E., et al., 2000. The Hf Isotope Composition of Cratonic Mantle: LAM⁃MC⁃ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147. https://doi.org/10.1016/S0016⁃7037(99)00343⁃9 [8] Han, B. F., Ji, J. Q., Song, B., et al., 2004. SHRIMP Zircon U⁃Pb Ages of Kalatongke No. 1 and Huangshandong Cu⁃Ni⁃Bearing Mafic⁃Ultramafic Complexes, North Xinjiang, and Geological Implications. Chinese Science Bulletin, 49(22): 2324-2328 (in Chinese with English abstract). doi: 10.1360/csb2004-49-22-2324 [9] Han, B. F., Ji, J. Q., Song, B., et al., 2006. Late Paleozoic Vertical Growth of Continental Crust around the Junggar Basin, Xinjiang, China (PartⅠ): Timing of Post⁃Collisionai Plutonism. Acta Petrologica Sinica, 22(5): 1077-1086 (in Chinese with English abstract). [10] Han, B. F., Wang, S. G., Jahn, B. M., et al., 1997. Depleted⁃Mantle Source for the Ulungur River A⁃Type Granites from North Xinjiang, China: Geochemistry and Nd⁃Sr Isotopic Evidence, and Implications for Phanerozoic Crustal Growth. Chemical Geology, 138(3-4): 135-159. https://doi.org/10.1016/S0009⁃2541(97)00003⁃X [11] Han, C. M., Xiao, W. J., Cui, B., et al., 2006. Major Types and Characteristics of Late Paleozoic Copper Deposits in North Xinjiang, Northwest China. Acta Geologica Sinica, 80(1): 74-89 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2006.01.009 [12] Han, C. M., Xiao, W. J., Zhao, G. C., et al., 2006. Major Types, Characteristics and Geodynamic Mechanism of Upper Paleozoic Copper Deposits in Northern Xinjiang, Northwestern China. Ore Geology Reviews, 28(3): 308-328. https://doi.org/10.1016/j.oregeorev.2005.04.002 [13] Han, C. M., Xiao, W. J., Zhao, G. C., et al., 2007. Re⁃Os Dating of the Kalatongke Cu⁃Ni Deposit, Altay Shan, NW China, and Resulting Geodynamic Implications. Ore Geology Reviews, 32(1-2): 452-468. https://doi.org/10.1016/j.oregeorev.2006.11.004 [14] Hawkesworth, C. J., Gallagher, K., Hergt, J. M., et al., 1993. Trace Element Fractionation Processes in the Generation of Island Arc Basalts. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 342(1663): 179-193. https://doi.org/10.1098/rsta.1993.0013 [15] Hou, K. J., Li, Y. H., Zou, T. R., et al., 2007. Laser Ablation⁃MC⁃ICP⁃MS Technique for Hf Isotope Microanalysis of Zircon and Its Geological Applications. Acta Petrologica Sinica, 23(10): 2595-2604 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.10.025 [16] Hu, A. Q., Jahn, B. M., Zhang, G. X., et al., 2000. Crustal Evolution and Phanerozoic Crustal Growth in Northern Xinjiang: Nd Isotopic Evidence. Part I. Isotopic Characterization of Basement Rocks. Tectonophysics, 328(1-2): 15-51. https://doi.org/10.1016/S0040⁃1951(00)00176⁃1 [17] Jiao, J. G., Wang, Y., Qian, Z. Z., et al., 2014. Tentative Discussion on Rock⁃Forming and Ore⁃Forming Mechanism of Kalatongke Cu⁃Ni Sulfide Deposit and Chronology of Kalatongke Y9 Intrusion. Mineral Deposits, 33(4): 675-688 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2014.04.001 [18] Li, D., He, D. F., Santosh, M., et al., 2014. Petrogenesis of Late Paleozoic Volcanics from the Zhaheba Depression, East Junggar: Insights into Collisional Event in an Accretionary Orogen of Central Asia. Lithos, 184-187: 167-193. https://doi.org/10.1016/j.lithos.2013.10.003 [19] Li, J. Y., 2004. Late Neoproterozoic and Paleozoic Tectonic Framework and Evolutionof Eastern Xinjiang, NW China. Geological Review, 50(3): 304-322 (in Chinese with English abstract). doi: 10.3321/j.issn:0371-5736.2004.03.015 [20] Liang, P., Chen, H. Y., Hollings, P., et al., 2016. The Paleozoic Tectonic Evolution and Metallogenesis of the Northern Margin of East Junggar, Central Asia Orogenic Belt: Geochronological and Geochemical Constraints from Igneous Rocks of the Qiaoxiahala Fe⁃Cu Deposit. Journal of Asian Earth Sciences, 130: 23-45. https://doi.org/10.1016/j.jseaes.2016.08.001 [21] Liang, X. R., Wei, G. J., Li, X. H., et al., 2003. Precise Measurement of 143Nd/144Nd and Sm/Nd Ratios Using Multiple Collectors Inductively Coupled Plasma Mass Spectrometer (MC ICPMS). Geochimica, 32(1): 91-96 (in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.2003.01.013 [22] Liu, W., Liu, X. J., Liu, L. J., 2013. Underplating Generated A⁃ and I⁃Type Granitoids of the East Junggar from the Lower and the Upper Oceanic Crust with Mixing of Mafic Magma: Insights from Integrated Zircon U⁃Pb Ages, Petrography, Geochemistry and Nd⁃Sr⁃Hf Isotopes. Lithos, 179: 293-319. https://doi.org/10.1016/j.lithos.2013.08.009 [23] Liu, X. J., Liu, W., 2014. Source Characteristics and Tectonic Setting of the Early and Middle Devonian Volcanic Rocks in the North Junggar, Northwest China: Insights from Nd⁃Sr Isotopes and Geochemistry. Lithos, 184-187: 27-41. https://doi.org/10.1016/j.lithos.2013.10.015 [24] Long, L. L., Wang, Y. W., Du, A. D., et al., 2011. Molybdenite Re⁃Os Age of Xilekuduke Cu⁃Mo Deposit in Xinjiang and Its Geological Significance. Mineral Deposits, 30(4): 635-644 (in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2011.04.004 [25] Mao, J. W., Yang, J. M., Han, C. M., et al., 2002. Metallogenic Systems of Polymetallic Copper and Gold Deposits and Related Metallogenic Geodynamic Model in Eastern Tianshan, Xinjiang. Earth Science, 27(4): 413-424 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-2383.2002.04.010 [26] Mao, Y. J., Qin, K. Z., Tang, D. M., et al., 2016. Crustal Contamination and Sulfide Immiscibility History of the Permian Huangshannan Magmatic Ni⁃Cu Sulfide Deposit, East Tianshan, NW China. Journal of Asian Earth Sciences, 129: 22-37. https://doi.org/10.1016/j.jseaes.2016.07.028 [27] Mao, Q. G., Xiao, W. J., Han, C. M., et al., 2006. Zircon U⁃Pb Age and the Geochemistry of the Baishiquan Mafic⁃Ultramafic Complex in the Eastern Tianshan, Xinjiang Province: Constraints on the Closure of the Paleo⁃Asian Ocean. Acta Petrologica Sinica, 22(1): 153-162 (in Chinese with English abstract). [28] McClay, K. R., 1983. Structural Evolution of the Sullivan Fe⁃Pb⁃Zn⁃Ag Orebody, Kimberley, British⁃Columbia, Canada. Economic Geology, 78(7): 1398-1424. https://doi.org/10.2113/gsecongeo.78.7.1398 [29] Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth⁃Science Reviews, 37(3-4): 215-224. https://doi.org/10.1016/0012⁃8252(94)90029⁃9 [30] Pei, S. L., Ding, R. F., Shan, L. H., et al., 2020. Zircon U⁃Pb Geochronology and Geochemistry of the Kekebieketi Basic Complex in Fuyun, Xinjiang and the Geological Significance. Earth Science Frontiers, 27(4): 184-198 (in Chinese with English abstract). [31] Qin, K. Z., Fang, T. H., Wang, S. L., et al., 2002. Plate Tectonics Division, Evolution and Metallogenic Settings in Eastern Tianshan Mountains, NW⁃China. Xinjiang Geology, 20(4): 302-308 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8845.2002.04.002 [32] Ripley, E. M., Li, C. S., 2013. Sulfide Saturation in Mafic Magmas: Is External Sulfur Required for Magmatic Ni⁃Cu⁃(PGE) Ore Genesis? Economic Geology, 108(1): 45-58. https://doi.org/10.2113/econgeo.108.1.45 [33] Rollinson, H., 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific and Technical, London. [34] Scherer, E. E., Cameron, K. L., Blichert⁃Toft, J., 2000. Lu⁃Hf Garnet Geochronology: Closure Temperature Relative to the Sm⁃Nd System and the Effects of Trace Mineral Inclusions. Geochimica et Cosmochimica Acta, 64(19): 3413-3432. https://doi.org/10.1016/S0016⁃7037(00)00440⁃3 [35] Seat, Z., Beresford, S. W., Grguric, B. A., et al., 2009. Reevaluation of the Role of External Sulfur Addition in the Genesis of Ni⁃Cu⁃PGE Deposits: Evidence from the Nebo⁃Babel Ni⁃Cu⁃PGE Deposit, West Musgrave, Western Australia. Economic Geology, 104(4): 521-538. https://doi.org/10.2113/gsecongeo.104.4.521 [36] Shan, L. H., Ding, R. F., Wei, X. F., et al., 2018. SHRIMP Zircon U⁃Pb Dating for Rocks and Its Geological Significance in Kekebieketi District of Fuyun County, Xinjiang. Mineral Exploration, 9(5): 777-792 (in Chinese with English abstract). doi: 10.3969/j.issn.1674-7801.2018.05.002 [37] Shi, Y., Wang, Y. W., Wang, J. B., et al., 2019. Petrogenesis and Metallogenesis of the Yaxi Gabbroic Intrusion Associated with Fe⁃Ti⁃V⁃P Ores in Eastern Tianshan, NW China. Ore Geology Reviews, 111: 103000. https://doi.org/10.1016/j.oregeorev.2019.103000 [38] Si, C. Q., Liu, W., Liu, X. J., 2022. Generation Mechanism of Carboniferous Arc Magma and Cumulate Column in Middle Arc Crust, Hadanxun of Northeast Junggar. Earth Science, 47(1): 325-341 (in Chinese with English abstract). [39] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1): 313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [40] Sun, Y., Wang, J. B., Lü, X. Q., et al., 2019. Geochronology, Petrogenesis and Tectonic Implications of the Newly Discovered Cu⁃Ni Sulfide⁃Mineralized Yueyawan Gabbroic Complex, Kalatag District, Northwestern Eastern Tianshan, NW China. Ore Geology Reviews, 109: 598-614. https://doi.org/10.1016/j.oregeorev.2019.05.009 [41] Tang, D. M., Qin, K. Z., Sun, H., et al., 2009. Lithological, Chronological and Geochemical Characteristics of Tianyu Cu⁃Ni Deposit: Constraints on Source and Genesis of Mafic⁃Ultramafic Intrusions in Eastern Xinjiang. Acta Petrologica Sinica, 25(4): 817-831 (in Chinese with English abstract). [42] Tang, H. J., Meng, G. X., Wang, Z. L., et al., 2020. Zircon U⁃Pb Geochronology of the Newly Discovered Kulabiye Cu⁃Ni Sulfide⁃Mineralized Gabbroic Complex, East Junggar Basin in Xinjiang, China. China Geology (English Edition), (3): 490-492. https://doi.org/10.31035/cg2020045 [43] Tang, H. J., Meng, G. X., Wu, Z. H., et al., 2022. Petrogenesis and Tectonic Implications of A⁃Type Granites in Zhaheba in the East Junggar Region of Xinjiang, China: Evidence from Geochronology, Geochemistry and Sr⁃Nd Isotopic Compositions. Acta Geologica Sinica ⁃ English Edition, 96(3): 938-953. https://doi.org/10.1111/1755⁃6724.14802 [44] Tang, H. J., Meng, G. X., Yang, Y. Q., et al., 2018. Geological and Geochemical Features of the Permian Bimodal Volcanic Rocks in the Qiakurtu Area, Eastern Junggar Basin, Xinjiang, and Their Tectonic Significance. Geological Review, 64(6): 1393-1412 (in Chinese with English abstract). [45] Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. The Journal of Geology, 94(4): 57-72. [46] Wan, B., Xiao, W. J., Han, C. M., et al., 2014. Re⁃Os Molybdenite Age of the Cu⁃Mo Skarn Ore Deposit at Suoerkuduke in East Junggar, NW China and Its Geological Significance. Ore Geology Reviews, 56: 541-548. https://doi.org/10.1016/j.oregeorev.2013.02.011 [47] Wang, J. B., Xu, X., 2006. Post⁃Collisional Tectonic Evolution and Metallogenesis in Northern Xinjiang, China. Acta Geologica Sinica, 80(1): 23-31 (in Chinese with English abstract). [48] Wang, T., Jahn, B. M., Kovach, V. P., et al., 2009. Nd⁃Sr Isotopic Mapping of the Chinese Altai and Implications for Continental Growth in the Central Asian Orogenic Belt. Lithos, 110(1-4): 359-372. https://doi.org/10.1016/j.lithos.2009.02.001 [49] Wang, X., Cao, J., Zhang, G. Z., 2021. Origin of Ore⁃Forming Magmas Associated with Ni⁃Cu Sulfide Deposits in Orogenic Belts: Case Study of Permian Huangshannan Magmatic Ni⁃Cu Sulfide Deposit, East Tianshan, NW China. Earth Science, 46(11): 3829-3849 (in Chinese with English abstract). [50] Wei, G. J., Liang, X. R., Li, X. H., et al., 2002. Precise Measurement of Sr Isotopic Composition of Liquid and Solid Base Using (LP)MC ICPMS. Geochimica, 31(3): 295-299 (in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.2002.03.011 [51] Windley, B. F., Alexeiev, D., Xiao, W. J., et al., 2007. Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 164(1): 31-47. https://doi.org/10.1144/0016⁃76492006⁃022 [52] Wilson, B. M., 1989. Igneous Petrogenesis a Global Tectonic Approach. Springer, Dordrecht. https://doi.org/10.1007/978⁃1⁃4020⁃6788⁃4 [53] Wu, F. Y., Li, X. H., Zheng, Y. F., et al., 2007. Lu⁃Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract). [54] Xiao, W. J., Han, C. M., Yuan, C., et al., 2006. Unique Carboniferous⁃Permian Tectonic⁃Metallogenic Framework of Northern Xinjiang (NW China): Constraints for the Tectonics of the Southern Paleoasian Domain. Acta Petrologica Sinica, 22(5): 1062-1076 (in Chinese with English abstract). [55] Xiao, W. J., Windley, B. F., Badarch, G., et al., 2004. Palaeozoic Accretionary and Convergent Tectonics of the Southern Altaids: Implications for the Growth of Central Asia. Journal of the Geological Society, 161(3): 339-342. https://doi.org/10.1144/0016⁃764903⁃165 [56] Xiao, W. J., Windley, B. F., Yuan, C., et al., 2009. Paleozoic Multiple Subduction⁃Accretion Processes of the Southern Altaids. American Journal of Science, 309(3): 221-270. https://doi.org/10.2475/03.2009.02 [57] Xue, C. J., Zhao, Z. F., Wu, G. G., et al., 2010. The Multiperiodic Superimposed Porphyry Copper Mineralization in Central Asian Tectonic Region: a Case Study of Geology, Geochemistry and Chronology of Halasu Copper Deposit, Southeastern Altai, China. Earth Science Frontiers, 17(2): 53-82 (in Chinese with English abstract). [58] Yan, S. H., Teng, R. L., Wang, Y. T., et al., 2006. 40Ar/39Ar Dating of the Bu'ergen Gold⁃Bearing Shear Zone on the Southern Margin of the Altay Mountains, Xinjiang, and Its Significance. Geology in China, 33(3): 648-655 (in Chinese with English abstract). [59] Zhang, Q., Pan, G. Q., Li, C. D., et al., 2007. Does Fractional Crystallization Occur in Granitic Magma? Some Crucial Questions on Granite Study (2). Acta Petrologica Sinica, 23(6): 1239-1251 (in Chinese with English abstract). [60] Zhang, Y., Xu, X. W., 2019. The Keke Gabbro in Qinghe County of Xinjiang: Records from Partial Meltingmagma of the Oxidized Mantle Wedge. Acta Geologica Sinica, 93(5): 1037-1054 (in Chinese with English abstract). [61] Zhang, Z. C., Mao, J. W., Cai, J. H., et al., 2008. Geochemistry of Picrites and Associated Lavas of a Devonian Island Arc in the Northern Junggar Terrane, Xinjiang (NW China): Implications for Petrogenesis, Arc Mantle Sources and Tectonic Setting. Lithos, 105(3-4): 379-395. https://doi.org/10.1016/j.lithos.2008.05.013 [62] Zhang, Z. C., Zhou, G., Kusky, T. M., et al., 2009. Late Paleozoic Volcanic Record of the Eastern Junggar Terrane, Xinjiang, Northwestern China: Major and Trace Element Characteristics, Sr⁃Nd Isotopic Systematics and Implications for Tectonic Evolution. Gondwana Research, 16(2): 201-215. https://doi.org/10.1016/j.gr.2009.03.004 [63] Zhang, Z. H., Chai, F. M., Du, A. D., et al., 2005. Re⁃Os Dating and Ore⁃Forming Material Tracing of the Karatungk Cu⁃Ni Sulfide Deposit in Northern Xinjiang. Acta Petrologica et Mineralogica, 24(4): 285-293 (in Chinese with English abstract). [64] Zhao, B. B., Deng, Y. F., Zhou, T. F., et al., 2018. Petrogenesis of the Baixintan Ni⁃Cu Sulfide⁃Bearing Mafic⁃Ultramafic Intrusion, East Tianshan: Evidence from Geochronology, Petrogeochemistry and Sr⁃Nd Isotope. Acta Petrologica Sinica, 34(9): 2733-2753 (in Chinese with English abstract). [65] 丁汝福, 卫晓锋, 潘东, 等, 2014. 新疆富蕴县阿克塔斯金矿地质特征及找矿前景. 矿床地质, 33(S1): 923-924. [66] 董永观, 朱韶华, 芮行健, 等, 1994. 新疆萨尔布拉克金矿矿床地球化学及矿床成因. 火山地质与矿产, 15(4): 21-34. https://www.cnki.com.cn/Article/CJFDTOTAL-HSDZ199404002.htm [67] 冯京, 张招崇, 2009. 阿尔泰山南缘中‒酸性斑岩的地球化学特征及其岩石成因探讨. 地质论评, 55(1): 58-72. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200901009.htm [68] 冯延清, 2018. 新疆喀拉通克晚古生代镁铁质岩体铜镍成矿作用与地球动力学背景(博士学位论文). 西安: 长安大学. [69] 韩宝福, 季建清, 宋彪, 等, 2004. 新疆喀拉通克和黄山东含铜镍矿镁铁‒超镁铁杂岩体的SHRIMP锆石U⁃Pb年龄及其地质意义. 科学通报, 49(22): 2324-2328. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB20042200C.htm [70] 韩宝福, 季建清, 宋彪, 等, 2006. 新疆准噶尔晚古生代陆壳垂向生长(Ⅰ): 后碰撞深成岩浆活动的时限. 岩石学报, 22(5): 1077-1086. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605003.htm [71] 韩春明, 肖文交, 崔彬, 等, 2006. 新疆北部晚古生代铜矿床主要类型和地质特征. 地质学报, 80(1): 74-89. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200601010.htm [72] 侯可军, 李延河, 邹天人, 等, 2007. LA⁃MC⁃ICP⁃MS锆石Hf同位素的分析方法及地质应用. 岩石学报, 23(10): 2595-2604. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200710026.htm [73] 焦建刚, 王勇, 钱壮志, 等, 2014. 新疆喀拉通克铜镍硫化物矿床Y9岩体年代学与成岩成矿机制探讨. 矿床地质, 33(4): 675-688. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201404001.htm [74] 李锦轶, 2004. 新疆东部新元古代晚期和古生代构造格局及其演变. 地质论评, 50(3): 304-322. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200403015.htm [75] 梁细荣, 韦刚健, 李献华, 等, 2003. 利用MC⁃ICPMS精确测定143Nd/144Nd和Sm/Nd比值. 地球化学, 32(1): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200301012.htm [76] 龙灵利, 王玉往, 杜安道, 等, 2011. 新疆希勒库都克铜钼矿床辉钼矿Re⁃Os年龄及其地质意义. 矿床地质, 30(4): 635-644. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201104005.htm [77] 毛景文, 杨建民, 韩春明, 等, 2002. 东天山铜金多金属矿床成矿系统和成矿地球动力学模型. 地球科学, 27(4): 413-424. http://www.earth-science.net/article/id/1140 [78] 毛启贵, 肖文交, 韩春明, 等, 2006. 新疆东天山白石泉铜镍矿床基性‒超基性岩体锆石U⁃Pb同位素年龄、地球化学特征及其对古亚洲洋闭合时限的制约. 岩石学报, 22(1): 153-162. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200601016.htm [79] 裴圣良, 丁汝福, 单立华, 等, 2020. 新疆富蕴科克别克提基性杂岩体锆石U⁃Pb年代学、地球化学及其地质意义. 地学前缘, 27(4): 184-198. [80] 秦克章, 方同辉, 王书来, 等, 2002. 东天山板块构造分区、演化与成矿地质背景研究. 新疆地质, 20(4): 302-308. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200204002.htm [81] 单立华, 丁汝福, 卫晓锋, 等, 2018. 新疆富蕴县科克别克提一带岩体SHRIMP锆石U⁃Pb年龄及其地质意义. 矿产勘查, 9(5): 777-792. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS201805003.htm [82] 司翠芹, 刘伟, 刘秀金, 2022. 东北准噶尔哈旦逊石炭纪弧岩浆及堆晶柱形成机制. 地球科学, 47(1): 325-341. doi: 10.3799/dqkx.2021.044 [83] 唐冬梅, 秦克章, 孙赫, 等, 2009. 天宇铜镍矿床的岩相学、锆石U⁃Pb年代学、地球化学特征: 对东疆镁铁‒超镁铁质岩体源区和成因的制约. 岩石学报, 25(4): 817-831. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200904008.htm [84] 汤贺军, 孟贵祥, 杨岳清, 等, 2018. 新疆东准噶尔恰库尔图地区二叠纪双峰式火山岩地质地球化学特征及构造意义. 地质论评, 64(6): 1393-1412. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201806007.htm [85] 王京彬, 徐新, 2006. 新疆北部后碰撞构造演化与成矿. 地质学报, 80(1): 23-31. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200601002.htm [86] 王旋, 曹俊, 张盖之, 2021. 造山带铜镍硫化物矿床的岩浆起源: 以东天山黄山南铜镍矿床为例. 地球科学, 46(11): 3829-3849. doi: 10.3799/dqkx.2021.015 [87] 韦刚健, 梁细荣, 李献华, 等, 2002. (LP)MC⁃ICPMS方法精确测定液体和固体样品的Sr同位素组成. 地球化学, 31(3): 295-299. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200203010.htm [88] 吴福元, 李献华, 郑永飞, 等, 2007. Lu⁃Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200702002.htm [89] 肖文交, 韩春明, 袁超, 等, 2006. 新疆北部石炭纪‒二叠纪独特的构造‒成矿作用: 对古亚洲洋构造域南部大地构造演化的制约. 岩石学报, 22(5): 1062-1076. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200605002.htm [90] 薛春纪, 赵战锋, 吴淦国, 等, 2010. 中亚构造域多期叠加斑岩铜矿化: 以阿尔泰东南缘哈腊苏铜矿床地质、地球化学和成岩成矿时代研究为例. 地学前缘, 17(2): 53-82. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201002012.htm [91] 闫升好, 滕荣丽, 王义天, 等, 2006. 新疆布尔根含金剪切带的40Ar/39Ar年龄及其地质意义. 中国地质, 33(3): 648-655. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200603022.htm [92] 张旗, 潘国强, 李承东, 等, 2007. 花岗岩结晶分离作用问题: 关于花岗岩研究的思考之二. 岩石学报, 23(6): 1239-1251. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200706001.htm [93] 张永, 徐兴旺, 2019. 新疆青河县科克辉长岩体: 氧化地幔楔部分熔融岩浆的记录. 地质学报, 93(5): 1037-1054. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201905004.htm [94] 张作衡, 柴凤梅, 杜安道, 等, 2005. 新疆喀拉通克铜镍硫化物矿床Re⁃Os同位素测年及成矿物质来源示踪. 岩石矿物学杂志, 24(4): 285-293. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200504004.htm [95] 赵冰冰, 邓宇峰, 周涛发, 等, 2018. 东天山白鑫滩含铜镍矿镁铁‒超镁铁岩体的岩石成因: 年代学、岩石地球化学和Sr⁃Nd同位素证据. 岩石学报, 34(9): 2733-2753. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201809015.htm