• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    南海北部湾盆地协调‒非协调供源样式与沉积交互作用耦合响应:以涠西南凹陷C洼为例

    周子强 朱红涛 刘强虎 刘圣

    周子强, 朱红涛, 刘强虎, 刘圣, 2022. 南海北部湾盆地协调‒非协调供源样式与沉积交互作用耦合响应:以涠西南凹陷C洼为例. 地球科学, 47(7): 2521-2535. doi: 10.3799/dqkx.2022.106
    引用本文: 周子强, 朱红涛, 刘强虎, 刘圣, 2022. 南海北部湾盆地协调‒非协调供源样式与沉积交互作用耦合响应:以涠西南凹陷C洼为例. 地球科学, 47(7): 2521-2535. doi: 10.3799/dqkx.2022.106
    Zhou Ziqiang, Zhu Hongtao, Liu Qianghu, Liu Sheng, 2022. Coupled Response of Concordant-Discordant Input Systems and Depositional Interactions within Beibuwan Basin, South China Sea: A Case Study from C Sag, Weixinan Depression. Earth Science, 47(7): 2521-2535. doi: 10.3799/dqkx.2022.106
    Citation: Zhou Ziqiang, Zhu Hongtao, Liu Qianghu, Liu Sheng, 2022. Coupled Response of Concordant-Discordant Input Systems and Depositional Interactions within Beibuwan Basin, South China Sea: A Case Study from C Sag, Weixinan Depression. Earth Science, 47(7): 2521-2535. doi: 10.3799/dqkx.2022.106

    南海北部湾盆地协调‒非协调供源样式与沉积交互作用耦合响应:以涠西南凹陷C洼为例

    doi: 10.3799/dqkx.2022.106
    基金项目: 

    国家自然科学基金项目 42172127

    国家自然科学基金项目 41872149

    详细信息
      作者简介:

      周子强(1997-),男,硕士研究生,从事层序地层学和沉积学研究. ORCID:0000-0002-0875-4355. E-mail:zidianzhou@cug.edu.cn

      通讯作者:

      朱红涛,E-mail: htzhu@cug.edu.cn

    • 中图分类号: P618.13

    Coupled Response of Concordant-Discordant Input Systems and Depositional Interactions within Beibuwan Basin, South China Sea: A Case Study from C Sag, Weixinan Depression

    • 摘要: 断陷湖盆具有多物源注入和地貌复杂的特征,开展从源到汇的分析有利于深化对有利砂体展布的认识. 以涠西南凹陷C洼及邻近凸起为例,基于测井和地震资料刻画了源‒汇系统的要素特征,区分出协调和非协调两类供源样式,明确了多物源汇聚下沉积体系的时空展布规律. 研究表明,涠西南凹陷C洼流三段接受北部、南部短轴体系和西部长轴体系的联合供源,南部体系可进一步划分为S-Ⅰ、S-Ⅱ、S-Ⅲ三个次级体系. 其中,长轴体系具有低缓的源区和宽缓的沟谷,表现为常年稳定和牵引流主导的协调型供源样式,在沉积区发育粒度和含砂率相关变化的辫状河体系;短轴体系具有相对高陡的源区、深切的沟谷,如S-Ⅱ单元,代表着脉冲式和重力流主导的非协调供源样式,在沉积区发育厚层泥岩夹薄层砾岩的盆底扇和扇三角洲体系. 在流三下亚段沉积时期,在南部短轴非协调体系的强烈供源下,长轴协调体系主体被推离C洼南部而分布在中北部;在流三上亚段沉积时期,湖平面上升后短轴源区面积减小使得非协调体系供源减弱,长轴协调体系则保持稳定的供源强度并向南部偏转以填充余出的可容空间. 通过对涠西南C洼及邻近凸起开展源‒汇系统分析,强调供源样式和沉积交互作用耦合控制了有利砂体的时空展布,对涠西南凹陷C洼及相似断陷湖盆的油气勘探具有一定指导意义.

       

    • 图  1  涠西南凹陷构造位置(改自杨希冰等,2019

      Fig.  1.  Structure location of Weixinan Depression (modified from Yang et al., 2019)

      图  2  涠西南凹陷流沙港组地层综合柱状图(改自胡德胜等,2020

      Fig.  2.  Integrated stratigraphic column of the Liushagang Formation in the Weixinan Depression (modified from Hu et al., 2020)

      图  3  南海北部湾盆地涠西南低凸起源‒渠单元划分

      a.三维地貌;b.沟道特征

      Fig.  3.  The subdivision of source-to-sink systems within the Weixinan Low Uplift, Beibuwan Basin, South China Sea

      图  4  南海北部湾盆地涠西南凹陷C洼流三段沉积体系类型

      Fig.  4.  Types of depositional systems of the third member of Liushagang Formation in the C Sag, Weixinan Depression, South China Sea

      图  5  顺长轴辫状河三角洲物源方向的低角度前积剖面(见图 1中BB’剖面)

      Fig.  5.  Seismic profile along axial braided delta showing low-angle progradational reflection characteristics

      图  6  顺涠西南低凸起S-Ⅱ号流域单元高角度前积剖面(见图 1中CC’剖面)

      Fig.  6.  Seismic profile along the catchment Ⅱ showing high-angle progradational reflection characteristics

      图  7  顺涠西南低凸起S-Ⅲ号流域单元低角度前积剖面(见图 1中DD’剖面)

      Fig.  7.  Seismic profile along the catchment Ⅲ showing low-angleprogradational reflection characteristics

      图  8  协调‒非协调型源‒汇系统模式(改自Sømme and Jackson, 2013)

      Fig.  8.  Conceptual model of concordant-discordant source-to-sink systems (modified from Sømme and Jackson, 2013)

      图  9  顺长轴方向剖面显示W-3井的快速相变(见图 1中EE’剖面)

      Fig.  9.  Seismic profile along axial braided delta showing abrupt facies evolution in Well W-3

      图  10  古地貌与沉积体系叠合模式

      a.流三下亚段;b.流三上亚段

      Fig.  10.  The coupled paleo-geomorphology-depositional system model

      图  11  长短轴沉积体系交互模式图(改自Cullen et al., 2020)

      Fig.  11.  A conceptual model for interactions between transverse and axial depositional systems (modified from Cullen et al., 2020)

    • [1] Allen, P. A., Allen, J. R., 2013. Basin Analysis: Principles and Application to Petroleum Play Assessment. Willey-Blackwell, Oxford.
      [2] Allen, P. A., Hovius, N., 1998. Sediment Supply from Landslide-Dominated Catchments: Implications for Basin-Margin Fans. Basin Research, 10(1): 19-35. https://doi.org/10.1046/j.1365-2117.1998.00060.x
      [3] Connell, S. D., Kim, W., Paola, C., et al., 2012. Fluvial Morphology and Sediment-Flux Steering of Axial-Transverse Boundaries in an Experimental Basin. Journal of Sedimentary Research, 82(5): 310-325. https://doi.org/10.2110/jsr.2012.27
      [4] Chen, J., Liu, C. H., Tan, M. Y., et al., 2016. Depositional Model of Prograding Delta Confluences: A Case from Es3m Members in the Paleogene Dongying Sag. Acta Sedimentologica Sinica, 34(6): 1187-1197 (in Chinese with English abstract).
      [5] Chiarella, D., Capella, W., Longhitano, S. G., et al., 2021. Fault-Controlled Base-of-Scarp Deposits. Basin Research, 33(2): 1056-1075. https://doi.org/10.1111/bre.12505
      [6] Cullen, T. M., Collier, R. E. L., Gawthorpe, R. L., et al., 2020. Axial and Transverse Deep-Water Sediment Supply to Syn-Rift Fault Terraces: Insights from the West Xylokastro Fault Block, Gulf of Corinth, Greece. Basin Research, 32(5): 1105-1139. https://doi.org/10.1111/bre.12416
      [7] Dong, G. Y., He, Y. B., 2016. Mechanism of Sand Body Prediction in a Continental Rift Basin by Coupling Paleogeomorphic Elements under the Control of Base Level. Petroleum Exploration and Development, 43(4): 529-539 (in Chinese with English abstract).
      [8] Elliott, G. M., Wilson, P., Jackson, C. A. L., et al., 2012. The Linkage between Fault Throw and Footwall Scarp Erosion Patterns: An Example from the Bremstein Fault Complex, Offshore Mid-Norway. Basin Research, 24(2): 180-197. https://doi.org/10.1111/j.1365-2117.2011.00524.x
      [9] Feng, W. J., Lu, F. M., Wu, S. H., et al., 2018. Reservoir Architecture Analysis of Braided Delta Front Developed in the Long-Axis Gentle Slope of Faulted Basin: A Case Study of the Fifth Zaoyuan Formation, Zaonan Fault Block, Zaoyuan Oilfield, Dagang. Journal of China University of Mining & Technology, 47(2): 367-379 (in Chinese with English abstract).
      [10] Gawthorpe, R. L., Leeder, M. R., 2000. Tectono-Sedimentary Evolution of Active Extensional Basins. Basin Research, 12(3-4): 195-218. https://doi.org/10.1111/j.1365-2117.2000.00121.x
      [11] Ge, J. W., Zhu, X. M., Lei, Y. C., et al., 2021. Tectono-Sedimentary Development of Multiphase Rift Basins: An Example of the Lufeng Depression. Earth Science Frontiers, 28(1): 77-89 (in Chinese with English abstract).
      [12] Ge, J. W., Zhu, X. M., Wu, C., et al., 2019. Sedimentary Characteristics and Genetic Difference of Braided Delta: A Case Study of Enping Formation in Lufeng Sag, Pearl River Mouth Basin. Acta Petrolei Sinica, 40(S1): 139-152 (in Chinese with English abstract).
      [13] Ge, J. W., Zhu, X. M., Zhang, X. T., et al., 2018. Tectono-Sedimentation Model of the Eocene Wenchang Formation in the Lufeng Depression, Pearl River Mouth Basin. Journal of China University of Mining & Technology, 47(2): 308-322 (in Chinese with English abstract).
      [14] Henstra, G. A., Grundvåg, S. A., Johannessen, E. P., et al., 2016. Depositional Processes and Stratigraphic Architecture within a Coarse-Grained Rift-Margin Turbidite System: The Wollaston Forland Group, East Greenland. Marine and Petroleum Geology, 76: 187-209. https://doi.org/10.1016/j.marpetgeo.2016.05.018
      [15] Helland-Hansen, W., Sømme, T. O., Martinsen, O. J., et al., 2016. Deciphering Earth's Natural Hourglasses: Perspectives on Source-to-Sink Analysis. Journal of Sedimentary Research, 86(9): 1008-1033. https://doi.org/10.2110/jsr.2016.56
      [16] Hu, D. S., Fan, C. W., Zhu, H. T., et al., 2020. Sedimentary Characteristics and Exploration Significance of Sub-Lacustrine Fan of Highstand System Tract in the First Member of Liushagang Formation in the Weixinan Sag. China Petroleum Exploration, 25(5): 23-31 (in Chinese with English abstract).
      [17] Jiang, P., Qin, C. Y., Yang, X. B., et al., 2020. Sedimentary Architecture, Distribution Features and Genesis of Steep Slope Fan in Upper Liushagang Formation, Weixi'nan Sag. Earth Science, 45(2): 534-546 (in Chinese with English abstract).
      [18] Leeder, M. R., Mack, G. H., 2001. Lateral Erosion ('Toe-Cutting') of Alluvial Fans by Axial Rivers: Implications for Basin Analysis and Architecture. Journal of the Geological Society, 158(6): 885-893. https://doi.org/10.1144/0016-760000-198
      [19] Li, C., Fan, C. W., Hu, L., et al., 2021. Tectonic Evolution Characteristics and Genesis of Weixi'nan Low Uplift in Beibu Gulf Basin. Marine Origin Petroleum Geology, 26(4): 319-325 (in Chinese with English abstract).
      [20] Li, S. L., Zhu, X. M., Li, H. Y., et al., 2017a. Quantitative Characterization of Elements and Coupling Mode in Source-to-Sink System: A Case Study of the Shahejie Formation between the Shaleitian Uplift and Shanan Sag, Bohai Sea. China Offshore Oil and Gas, 29(4): 39-50 (in Chinese with English abstract).
      [21] Li, S. L., Zhu, X. M., Liu, Q. H., et al., 2017b. Evaluation and Prediction of Favorable Reservoirs in Source-to-Sink Systems of the Palaeogene, Shaleitian Uplift. Earth Science, 42(11): 1994-2009 (in Chinese with English abstract).
      [22] Lin, C. S., Pan, Y. L., Xiao, J. X., et al., 2000. Structural Slope-Break Zone: Key Concept for Stratigraphic Sequence Analysis and Petroleum Forecasting in Fault Subsidence Basins. Earth Science, 25(3): 260-266 (in Chinese with English abstract).
      [23] Liu, Q. H., Zhu, H. T., Zhu, X. M., et al., 2019. Proportional Relationship between the Flux of Catchment-Fluvial Segment and Their Sedimentary Response to Diverse Bedrock Types in Subtropical Lacustrine Rift Basins. Marine and Petroleum Geology, 107: 351-364. https://doi.org/10.1016/j.marpetgeo.2019.05.031
      [24] Liu, Y. M., Wu, Z. P., Yan, S. Y., et al., 2021. Identification of Eocene Tectonic Transition and Its Geological Significance of Rift Basins Offshore China: A Case Study in Weixi'nan Sag, Beibu Bay Basin. Earth Science, 46(6): 2145-2156 (in Chinese with English abstract).
      [25] Lu, W. Y., Zhu, H. T., Xu, C. G., et al., 2020. Methods and Applications of Level Subdivision of Source-to-Sink System. Earth Science, 45(4): 1327-1336 (in Chinese with English abstract).
      [26] Postma, G., 1990. An Analysis of the Variation in Delta Architecture. Terra Nova, 2(2): 124-130. https://doi.org/10.1111/j.1365-3121.1990.tb00052.x
      [27] Qin, C. Y., 2020. The Paleogene Evolution of Double-Layer Structure and the Response of Sedimentation of Weixi'nan Sag, Beibuwan Basin (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract).
      [28] Qin, C. Y., Wang, H., Jiang, P., et al., 2020. Boundary Fault Evolution of Weixinan Sag and Its Effect on Strata Filling. Journal of China University of Mining & Technology, 49(2): 318-327 (in Chinese with English abstract).
      [29] Sømme, T. O., Helland-Hansen, W., Martinsen, O. J., et al., 2009a. Relationships between Morphological and Sedimentological Parameters in Source-to-Sink Systems: A Basis for Predicting Semi-Quantitative Characteristics in Subsurface Systems. Basin Research, 21(4): 361-387. https://doi.org/10.1111/j.1365-2117.2009.00397.x
      [30] Sømme, T. O., Martinsen, O. J., Thurmond, J. B., 2009b. Reconstructing Morphological and Depositional Characteristics in Subsurface Sedimentary Systems: An Example from the Maastrichtian-Danian Ormen Lange System, Møre Basin, Norwegian Sea. AAPG Bulletin, 93(10): 1347-1377. https://doi.org/10.1306/06010909038
      [31] Sømme, T. O., Jackson, C. A. L., 2013. Source-to-Sink Analysis of Ancient Sedimentary Systems Using a Subsurface Case Study from the Møre-Trøndelag Area of Southern Norway: Part 2—Sediment Dispersal and Forcing Mechanisms. Basin Research, 25(5): 512-531. https://doi.org/10.1111/bre.12014
      [32] Stevenson, C. J., Jackson, C. A. L., Hodgson, D. M., et al., 2015. Deep-Water Sediment Bypass. Journal of Sedimentary Research, 85(9): 1058-1081. https://doi.org/10.2110/jsr.2015.63
      [33] Sun, W. H., Wang, R. L., Liu, M. Q., et al., 2010. The Analysis of Well WZ10-8-1 after Drilling in Liushagang Formation, Weixinan Depression, Beibuwan Basin. Inner Mongolia Petrochemical Industry, 36(24): 213-216 (in Chinese with English abstract).
      [34] Sun, Z. H., Zhu, H. T., Xu, C. G., et al., 2020. Reconstructing Provenance Interaction of Multiple Sediment Sources in Continental Down-Warped Lacustrine Basins: An Example from the Bodong Area, Bohai Bay Basin, China. Marine and Petroleum Geology, 113: 104142. https://doi.org/10.1016/j.marpetgeo.2019.104142
      [35] Wang, X. X., Zhu, X. M., Song, S., et al., 2016. "Source-to-Sink" System of the Lower Member 3 of Paleogene Shahejie Formation in Steep Slope Zone of Western Chezhen Sub-Sag, Bohai Bay Basin. Journal of Palaeogeography (Chinese Edition), 18(1): 65-79 (in Chinese with English abstract).
      [36] Wu, S. H., Xiong, Q. H., Gong, Y. J., et al., 1994. Steep and Gentle Slope-Pattern Fan Deltas and Their Potential as Hydrocarbon Reservoir. Acta Petrolei Sinica, 15(S1): 52-59 (in Chinese with English abstract).
      [37] Xu, C. G., 2013. Controlling Sand Principle of Source-Sink Coupling in Time and Space in Continental Rift Basins: Basic Idea, Conceptual Systems and Controlling Sand Models. China Offshore Oil and Gas, 25(4): 1-11, 21, 88 (in Chinese with English abstract).
      [38] Yang, X. B., Zhao, Y. P., Lu, J., et al., 2019. Sedimentary Characteristics and Controlling Factors of Sublacustrine Fans in Sag C, Weixinan Depression, Beibuwan Basin. Geological Science and Technology Information, 38(1): 18-28 (in Chinese with English abstract).
      [39] Zhang, W. X., Zeng, H. L., Zhang, H. F., 1989. Models of Seismic Facies for Continental Mono-Faulted Basins in Eastern China. Petroleum Geology & Expeximent, 11(2): 125-135 (in Chinese with English abstract).
      [40] Zhang, Z. W., Liu, Z. F., Zhang, G. C., et al., 2013. The Chasmic Stage and Structural Evolution Features of Beibuwan Basin. Journal of Oil and Gas Technology, 35(1): 6-10 (in Chinese with English abstract).
      [41] Zhu, H. T., Xu, C. G., Zhu, X. M., et al., 2017. Advances of the Source-to-Sink Units and Coupling Model Research in Continental Basin. Earth Science, 42(11): 1851-1870 (in Chinese with English abstract).
      [42] Zhu, X., Zhu, H. T., Zeng, H. L., et al., 2017. Subdivision, Characteristics, and Varieties of the Source-to-Sink Systems of the Modern Lake Erhai Basin, Yunnan Province. Earth Science, 42(11): 2010-2024 (in Chinese with English abstract).
      [43] 陈杰, 刘传虎, 谭明友, 等, 2016. 进积型三角洲交汇区沉积模式: 以东营凹陷沙三中亚段为例. 沉积学报, 34(6): 1187-1197. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201606016.htm
      [44] 董桂玉, 何幼斌, 2016. 陆相断陷盆地基准面调控下的古地貌要素耦合控砂机制. 石油勘探与开发, 43(4): 529-539. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201604005.htm
      [45] 冯文杰, 芦凤明, 吴胜和, 等, 2018. 断陷湖盆长轴缓坡辫状河三角洲前缘储层构型研究: 以大港枣园油田枣南断块孔一段枣V油组为例. 中国矿业大学学报, 47(2): 367-379. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201802017.htm
      [46] 葛家旺, 朱筱敏, 雷永昌, 等, 2021. 多幕裂陷盆地构造‒沉积响应及陆丰凹陷实例分析. 地学前缘, 28(1): 77-89. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202101008.htm
      [47] 葛家旺, 朱筱敏, 吴陈冰洁, 等, 2019. 辫状河三角洲沉积特征及成因差异: 以珠江口盆地陆丰凹陷恩平组为例. 石油学报, 40(S1): 139-152. doi: 10.7623/syxb2019S1012
      [48] 葛家旺, 朱筱敏, 张向涛, 等, 2018. 珠江口盆地陆丰凹陷文昌组构造‒沉积演化模式. 中国矿业大学学报, 47(2): 308-322. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201802012.htm
      [49] 胡德胜, 范彩伟, 朱红涛, 等, 2020. 涠西南凹陷流一段高位体系域湖底扇沉积特征及勘探意义. 中国石油勘探, 25(5): 23-31. doi: 10.3969/j.issn.1672-7703.2020.05.004
      [50] 姜平, 秦春雨, 杨希冰, 等, 2020. 涠西南凹陷一号断裂陡坡带扇体沉积展布特征及主控因素. 地球科学, 45(2): 534-546. doi: 10.3799/dqkx.2018.369
      [51] 李才, 范彩伟, 胡林, 等, 2021. 北部湾盆地涠西南低凸起构造演化特征及其成因. 海相油气地质, 26(4): 319-325. doi: 10.3969/j.issn.1672-9854.2021.04.004
      [52] 李顺利, 朱筱敏, 李慧勇, 等, 2017a. 源‒汇系统要素定量表征及耦合模式: 以沙垒田凸起与沙南凹陷沙河街组为例. 中国海上油气, 29(4): 39-50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201704005.htm
      [53] 李顺利, 朱筱敏, 刘强虎, 等, 2017b. 沙垒田凸起古近纪源‒汇系统中有利储层评价与预测. 地球科学, 42(11): 1994-2009. doi: 10.3799/dqkx.2017.127
      [54] 林畅松, 潘元林, 肖建新, 等, 2000. "构造坡折带": 断陷盆地层序分析和油气预测的重要概念. 地球科学, 25(3): 260-266. http://www.earth-science.net/article/id/936
      [55] 刘一鸣, 吴智平, 颜世永, 等, 2021. 中国近海裂陷盆地始新世构造变革的厘定及地质意义: 以北部湾盆地涠西南凹陷为例. 地球科学, 46(6): 2145-2156. doi: 10.3799/dqkx.2020.205
      [56] 陆威延, 朱红涛, 徐长贵, 等, 2020. 源‒汇系统级次划分方法及应用. 地球科学, 45(4): 1327-1336. doi: 10.3799/dqkx.2019.123
      [57] 秦春雨, 2020. 北部湾盆地涠西南凹陷古近系双层构造演化及沉积响应(博士学位论文). 武汉: 中国地质大学.
      [58] 秦春雨, 王华, 姜平, 等, 2020. 涠西南凹陷边界断层演化及其对地层充填的控制. 中国矿业大学学报, 49(2): 318-327. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202002013.htm
      [59] 孙万华, 王瑞丽, 刘明全, 等, 2010. 北部湾盆地涠西南凹陷WZ10-8-1井流沙港组三段勘探实践分析. 内蒙古石油化工, 36(24): 213-216. doi: 10.3969/j.issn.1006-7981.2010.24.099
      [60] 王星星, 朱筱敏, 宋爽, 等, 2016. 渤海湾盆地车西洼陷陡坡带古近系沙河街组沙三下段"源‒汇"系统. 古地理学报, 18(1): 65-79. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201601006.htm
      [61] 吴胜和, 熊琦华, 龚姚进, 等, 1994. 陡坡型和缓坡型扇三角洲及其油气储层意义. 石油学报, 15(S1): 52-59. doi: 10.7623/syxb1994S1007
      [62] 徐长贵, 2013. 陆相断陷盆地源‒汇时空耦合控砂原理: 基本思想、概念体系及控砂模式. 中国海上油气, 25(4): 1-11, 21, 88. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201304002.htm
      [63] 杨希冰, 赵彦璞, 陆江, 等, 2019. 北部湾盆地涠西南凹陷C洼湖底扇沉积特征及控制因素分析. 地质科技情报, 38(1): 18-28. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901003.htm
      [64] 张万选, 曾洪流, 张厚福, 1989. 中国东部陆相单断式盆地地震相模式. 石油实验地质, 11(2): 125-135. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD198902002.htm
      [65] 张智武, 刘志峰, 张功成, 等, 2013. 北部湾盆地裂陷期构造及演化特征. 石油天然气学报, 35(1): 6-10. doi: 10.3969/j.issn.1000-9752.2013.01.002
      [66] 朱红涛, 徐长贵, 朱筱敏, 等, 2017. 陆相盆地源‒汇系统要素耦合研究进展. 地球科学, 42(11): 1851-1870. doi: 10.3799/dqkx.2017.117
      [67] 朱秀, 朱红涛, 曾洪流, 等, 2017. 云南洱海现代湖盆源‒汇系统划分、特征及差异. 地球科学, 42(11): 2010-2024. doi: 10.3799/dqkx.2017.128
    • 加载中
    图(11)
    计量
    • 文章访问数:  220
    • HTML全文浏览量:  93
    • PDF下载量:  33
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-01-16
    • 刊出日期:  2022-07-25

    目录

      /

      返回文章
      返回