• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    歧口凹陷歧北斜坡带沙二段致密砂岩储层流体识别与评价

    刘一茗 叶加仁 张飞 林学春 祁爱平 李玮龙 赵军

    刘一茗, 叶加仁, 张飞, 林学春, 祁爱平, 李玮龙, 赵军, 2022. 歧口凹陷歧北斜坡带沙二段致密砂岩储层流体识别与评价. 地球科学, 47(5): 1762-1776. doi: 10.3799/dqkx.2022.101
    引用本文: 刘一茗, 叶加仁, 张飞, 林学春, 祁爱平, 李玮龙, 赵军, 2022. 歧口凹陷歧北斜坡带沙二段致密砂岩储层流体识别与评价. 地球科学, 47(5): 1762-1776. doi: 10.3799/dqkx.2022.101
    Liu Yiming, Ye Jiaren, Zhang Fei, Lin Xuechun, Qi Aiping, Li Weilong, Zhao Jun, 2022. Fluid Identification and Evaluation of Tight Sandstone Reservoir in Es2 of Qibei Slope Belt in Qikou Sag. Earth Science, 47(5): 1762-1776. doi: 10.3799/dqkx.2022.101
    Citation: Liu Yiming, Ye Jiaren, Zhang Fei, Lin Xuechun, Qi Aiping, Li Weilong, Zhao Jun, 2022. Fluid Identification and Evaluation of Tight Sandstone Reservoir in Es2 of Qibei Slope Belt in Qikou Sag. Earth Science, 47(5): 1762-1776. doi: 10.3799/dqkx.2022.101

    歧口凹陷歧北斜坡带沙二段致密砂岩储层流体识别与评价

    doi: 10.3799/dqkx.2022.101
    基金项目: 

    大港油田横向协作项目 DGYT-2020-JS-37

    构造与油气资源教育部重点实验室开放课题项目 TPR-2020-11

    中央高校基本科研业务费专项资金资助项目 G1323521043

    详细信息
      作者简介:

      刘一茗(1989—),男,讲师,博士,主要从事油气藏测井地质综合研究. ORCID:0000-0002-8424-7718. E-mail:liuyiming12@cug.edu.cn

      通讯作者:

      叶加仁, ORCID: 0000-0001-5699-8074. E-mail: jrye@cug.edu.cn

    • 中图分类号: P618

    Fluid Identification and Evaluation of Tight Sandstone Reservoir in Es2 of Qibei Slope Belt in Qikou Sag

    • 摘要: 为了解决歧口凹陷歧北斜坡带古近系沙二段致密砂岩储层流体识别效果差、精度低等问题,在储层“四性”关系分析,测井系列优选,测井曲线标准化,岩电和核磁共振实验的基础上,建立储层参数及流体饱和度测井解释模型,采用定性‒半定量‒定量的方法对储层流体进行识别与评价.沙二段致密砂岩储层“四性”关系复杂,测井解释模型相关系数高,在0.75~0.95;重叠图法可以定性区分高阻油层与水层,Iwa-ΦIa-Iwa交会图版可以有效区分油层、油水层及水层,公式法可以定量划分油层、油水层、水层,计算出三者的含水饱和度区间分别为35.5%~91.4%、60.5%~96.5%、77.2%~90.9%,束缚水饱和度区间分别为30.3%~89.9%、58.2%~90.1%、62.1%~64.4%.本次流体识别及评价精度比原方法提高了25%,为研究区油气勘探开发提供了可靠的技术支持.

       

    • 图  1  歧口凹陷歧北斜坡带构造位置、构造单元划分及沉积充填

      Zhang et al.(2014)修改. ①为海河‒新港断层;②为滨海断层;③为歧中断层;④为港东断层;⑤为歧东断层;⑥为南大港断层

      Fig.  1.  The structure location, structure units and stratigraphy of Qibei slope belt in Qikou sag

      图  2  歧北斜坡带沙二段储层孔隙度‒深度(a)、渗透率‒深度(b)及压汞曲线(c)分布图

      Fig.  2.  Porosity-depth (a), permeability-depth (b), mercury injection curve (c) of Es2 reservoirs in Qibei slope belt

      图  3  歧北斜坡带沙二段储层含油性特征

      Fig.  3.  Oilness of Es2 reservoirs in Qibei slope belt

      图  4  歧北斜坡带沙二段储层岩性‒物性(a)、岩性‒电性(b)及岩性‒物性‒含油性关系(c)分析图

      Qo/m为产厚比,Qo/m=0为干层,0 < Qo/m < 1为水层,1 < Qo/m < 10为油水层,10 < Qo/m为油层

      Fig.  4.  Lithology-physical properties (a), lithology-electricity (b) and lithology-physical properties-oilness (c) analysis diagrams of Es2 reservoirs in Qibei slope belt

      图  5  歧北斜坡带沙二段储层GR-Vsh交会图

      Fig.  5.  GR-Vsh cross-plot of Es2 reservoirs in Qibei slope belt

      图  6  歧北斜坡带沙二段地层因素与孔隙度(a)、电阻率增大率与含水饱和度(b)关系图

      Fig.  6.  The relationship of formation factor and porosity (a), resistivity index and water saturation (b) of Es2 reservoirs in Qibei slope belt

      图  7  滨14-84井束缚水饱和度与孔隙结构指数关系

      Fig.  7.  Relationship between irreducible water saturation and pore structure of well Bin14-84

      图  8  滨深6-滨深8井区测井曲线重叠特征

      a为滨14-84井;b为滨深6井;c为滨39井

      Fig.  8.  Overlapping characteristics of logging curves in Binshen 6-Binshen 8 well zones

      图  9  滨深6-滨深8井区沙二段储层自然伽马与电阻率交会图

      Fig.  9.  Cross-plot of GR-RT in Binshen 6-Binshen 8 well zones

      图  10  滨深6-滨深8井区沙二段储层电阻率测井流体识别交会图

      a.RT-Φ交会;b.Ia-Φ交会;c.Iwa-Φ交会;d.Ia-Iwa交会

      Fig.  10.  Fluid identification cross-plot of resistivity logging of Es2 reservoirs in Binshen 6-Binshen 8 well zones

      图  11  滨深18井沙二段储层测井流体识别成果图

      Fig.  11.  Logging fluid identification results of Es2 reservoirs in Binshen 18 well

      表  1  歧北斜坡带沙二段储层原油物性统计表

      Table  1.   Statistics of physical properties of crude oil of Es2 reservoirs in Qibei slope belt

      原油物性参数 最小值 最大值 平均值 样本数
      密度(20℃)
      粘度(50℃)
      凝固点(℃)
      含蜡(%)
      含硫(%)
      含胶量(%)
      0.81
      2.4
      16
      7.78
      0.04
      2.73
      0.89
      21
      39
      21.3
      0.43
      29.7
      0.85
      9.8
      26.7
      14.7
      0.14
      16.3
      16
      16
      16
      16
      16
      16
      下载: 导出CSV

      表  2  歧北斜坡带沙二段储层不同流体电性响应特征

      Table  2.   Electrical response characteristics of different fluids of Es2 reservoirs in Qibei slope belt

      试油结论 GR(API) AC(μs/m) RT(Ω•m) 层数
      最小值 最大值 平均值 最小值 最大值 平均值 最小值 最大值 平均值
      油层
      油水层
      水层
      57.38
      67.29
      58.04
      102.97
      103.68
      105.26
      73.94
      84.63
      81.12
      199.45
      214.21
      227.27
      325.26
      300.61
      333.21
      243.58
      239.65
      274.38
      2.53
      4.92
      2.35
      43.69
      11.33
      7.16
      13.02
      8.14
      3.83
      52
      16
      27
      下载: 导出CSV

      表  3  歧北斜坡带滨深6-滨深8井区沙二段储层参数模型及流体饱和度模型

      Table  3.   Reservoir parameter model and fluid saturation model of Es2 reservoirs of Binshen 6 and Binshen 8 well zones in Qibei slope belt

      参数 模型 R 样本数
      泥质含量(Vsh Vsh=0.67·4GR‒0.33 0.88 64
      孔隙度(Φ Φ= 0.307 5·AC‒61.907 0.88 57
      Φ= 0.896 5·CN‒1.492 3 0.63 57
      Φ= -50.466·DEN+135.64 0.70 57
      Φ= 0.094·AC+1.338·CN‒18.457·DEN+18.359 0.95 57
      渗透率(K K=0.002 7·e0.370 3Φ 0.79 64
      地层水电阻率(Rw Rw= (3×105p-0.952 4+1)/(1.8T+39) 0.75 13
      含水饱和度(Sw Sw=[(5.33Rw)/(Φ1.3·RT)] 1/1.857 0.95 23
      束缚水饱和度(Swi Swi=84.745e(-5.37√(K/Φ)) 0.92 10
      下载: 导出CSV

      表  4  滨14-84井岩心核磁共振实验结果

      Table  4.   Core NMR experimental results of well Bin14-84

      岩样编号 深度(m) 直径(cm) 长度(cm) 孔隙度(%) 渗透率(10-3μm2 T2截止值(ms) 束缚水饱和度(%)
      1
      2
      3
      4
      5
      6
      7
      8
      9
      10
      3 813.37
      3 813.38
      3 821.15
      3 821.16
      3 824.36
      3 838.67
      3 838.68
      3 842.02
      3 846.11
      3 846.12
      2.53
      2.53
      2.53
      2.53
      2.53
      2.53
      2.53
      2.53
      2.53
      2.53
      4.08
      5.63
      4.13
      5.73
      5.63
      5.91
      3.96
      6.06
      4.05
      6.42
      12.59
      12.63
      11.22
      12.58
      13.12
      14.39
      12.68
      12.75
      13.95
      14.06
      0.24
      0.26
      0.07
      0.07
      0.09
      0.94
      0.31
      0.35
      0.53
      0.74
      84.5
      82.4
      93.1
      90.6
      91.4
      92.3
      93.4
      87.3
      86.9
      85.7
      81.01
      80.57
      82.64
      82.57
      80.14
      62.03
      74.67
      73.89
      64.41
      62.13
      下载: 导出CSV

      表  5  滨深6-滨深8井区沙二段致密砂岩储层测井流体饱和度验证表

      Table  5.   Verification of logging fluid saturation of tight sandstone reservoir in Binshen 6-Binshen 8 well zones

      试油结论 含水饱和度(%) 含油饱和度(%) 束缚水饱和度(%) 可动流体饱和度(%) 样本数
      油层 35.5~91.4(65.5) 8.6~64.5(34.5) 30.3~89.9(61.5) 10.1~69.7(38.5) 42
      油水层 60.5~96.5(81.3) 3.5~39.5(18.7) 58.2~90.1(70.9) 9.9~41.8(29.1) 13
      水层 77.2~90.9(85.4) 9.1~22.8(14.6) 62.1~64.4(63.2) 35.6~37.9(36.8) 3
      注:最小值‒最大值(平均值).
      下载: 导出CSV

      表  6  滨深18井孔隙度、渗透率及饱和度测井计算结果与实测数据对比

      Table  6.   Comparison between calculated results of porosity, permeability and saturation model and measured data of Binshen 18 well

      层号 井段(m) 层厚(m) 孔隙度(%) 渗透率(10-3μm2 含水饱和度(%) 试油数据(t/d)
      绝对误差 相对误差 绝对误差 相对误差
      4 038.5~4 043.0 4.5 +0.18 +2.74% +0.18 +9.13% 52.3 9.16
      4 071.2~4 073.1 1.9 +0.53 +5.45% ‒0.06 ‒5.28% 44.2 10.54
      4 078.8~4 088.9 10.1 +0.11 +1.19% ‒0.07 ‒4.37% 64.9 9.61
      4 188.2~4 189.5 1.3 ‒0.24 ‒3.91% +0.04 +2.34% 85.4 1.74
      4 193.7~4 197.3 3.6 +0.42 +6.29% +0.02 +2.19% 84.6 0.94
      4 198.0~4 201.5 3.5 ‒0.32 ‒5.03% +0.03 +3.67% 91.3 1.78
      4 203.7~4 205.5 1.8 +0.58 +7.72% ‒0.06 ‒3.49% 73.9 1.62
      下载: 导出CSV
    • [1] Amiri, M., Yunan, M. H., Zahedi, G., et al., 2012. Introducing New Method to Improve Log Derived Saturation Estimation in Tight Shaly Sandstones—A Case Study from Mesaverde Tight Gas Reservoir. Journal of Petroleum Science and Engineering, 92/93: 132-142. https://doi.org/10.1016/j.petrol.2012.06.014
      [2] Archie, G.E., 1942. The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics. Transactions of the Aime, 146(1): 54-62. doi: 10.2118/942054-G
      [3] Bai, S.T., Wan, J.B., Yang, R.X., et al., 2017. Summary on Formation Water Resistivity Evaluation Methods. Progress in Geophysics, 32(2): 566-578 (in Chinese with English abstract).
      [4] Cheng, J.J., Wang, W.W., Hou, Z.X., et al., 2017. Application of Conventional Log Data to Productivity Evaluation of Tight Sandstone Gas Reservoirs. Well Logging Technology, 41(3): 325-330 (in Chinese with English abstract).
      [5] Chu, G.Z., Wang, H.Z., Zhou, Z.L., et al., 2017. The Method of Logging Evaluation and Identification for Deep & Low Permeability Oil and Gas Reservoir in Binhai Slope of Qikou Sag. Chinese Journal of Engineering Geophysics, 14(6): 640-647 (in Chinese with English abstract).
      [6] Cui, J.W., Yuan, X.J., Wu, S.T., et al., 2021. Rock Types and Reservoir Characteristics of Shahejie Formation Marl in Shulu Sag, Jizhong Depression, Bohai Bay Basin. Journal of Earth Science, 32(4): 986-997. https://doi.org/10.1007/s12583-020-1092-5
      [7] Ding, Y.J., Li, J.N., Li, J.G., et al., 2019. Log Evaluation Technology of Permian Clastic Reservoirs in Dagang Exploration Area. Well Logging Technology, 43(4): 416-422 (in Chinese with English abstract).
      [8] Feng, C., Dai, L.M., Liu, X.J., et al., 2020. Logging Classification and Recognition of Lacustrine Mixed Sedimentary Reservoirs in First and Second Members of Shahejie Formation in Bohai Sea. Earth Science, 45(10): 3677-3692 (in Chinese with English abstract).
      [9] Gao, C.Y., Zhou, L.F., Lu, P., 2020. Review of the Development of Well Log Normalization. Progress in Geophysics, 35(5): 1777-1783 (in Chinese with English abstract).
      [10] Han, G.M., Zhou, S.Y., Tang, L.L., et al., 2014. Geological Conditions for Lower Es1 Tight Sandstone Oil in Qibei Slope of Qikou Depression. China Petroleum Exploration, 19(6): 89-96 (in Chinese with English abstract).
      [11] Hou, Z.S., Zhou, L.H., Jin, F.M., et al., 2021. Hydrothermal Fluid Activity and Its Reformation on Reservoirs in Qikou Depression. Earth Science, 46(1): 200-214 (in Chinese with English abstract).
      [12] Hu, R.B., Hang, G.M., Shi, Q.R., et al., 2010. Logging and Geological Comprehensive Study for Low Resistivity Layer in the Shahejie Formation of Coastal Step Area in Qikou Sag. Natural Gas Geoscience, 21(4): 589-593 (in Chinese with English abstract).
      [13] Huang, W., Zhang, X.L., Zhao, J.Y., 2015. Fluild Identification of Tight Reservoir in Chang 9 Formation, Ordos Basin. Journal of Northwest University (Natural Science Edition), 45(5): 811-818 (in Chinese with English abstract).
      [14] Jia, C.Z., Zou, C.N., Li, J.Z., et al., 2012. Assessment Criteria, Main Types, Basic Features and Resource Prospects of the Tight Oil in China. Acta Petrolei Sinica, 33(3): 333-350 (in Chinese with English abstract).
      [15] Li, H., Liu, S.L., Chai, G.Q., et al., 2016. Logging Geologic Analysis Method Based on Core Calibration. Progress in Geophysics, 31(1): 225-231 (in Chinese with English abstract).
      [16] Li, J.G., Wu, S.Q., Su, P.Q., et al., 2012. Distribution Law of Low-Resistivity Oil and Gas Layers in Qikou Sag. Mud Logging Engineering, 23(4): 69-73, 84 (in Chinese with English abstract).
      [17] Liu, H.P., Luo, Y., Zhao, Y.C., et al., 2017. Effects of Diagenetic Facies on Rock Electrical Properties in Tight Gas Sandstones. Earth Science, 42(4): 652-660 (in Chinese with English abstract).
      [18] Liu, J.K., Sun, Y.L., Jiao, X., et al., 2016. The Genesis of Low Permeability of High-Quality Reservoirs in Deep-Buried Clastic Rock Reservoirs and Its Development Mechanism: A Case Study of Es2 Formation in the Slope Area of Qikou Sag. Natural Gas Geoscience, 27(5): 799-808 (in Chinese with English abstract).
      [19] Mao, K.Y., 2016. Logs Fluid Typing Methods and Adaptive Analysis of Tight Sandstone Reservoir of Yingcheng Formation in Lishu Fault. Advances in Earth Science, 31(10): 1056-1066 (in Chinese with English abstract).
      [20] Pu, X.G., Zhao, X.Z., Wang, J.H., et al., 2020. Reservoirs Properties of Slump-Type Sub-Lacustrine Fans and Their Main Control Factors in First Member of Paleogene Shahejie Formation in Binhai Area, Bohai Bay Basin, China. Petroleum Exploration and Development, 47(5): 977-989. doi: 10.1016/S1876-3804(20)60110-0
      [21] Quartero, E.M., Bechtel, D., Leier A.L., et al., 2014. Gamma-Ray Normalization of Shallow Well-Log Data with Applications to the Paleocene Paskapoo Formation, Alberta. Canadian Journal of Earth Sciences, 51(5): 452-465. doi: 10.1139/cjes-2013-0148
      [22] Ran, Y., Wang, G.W., Lai, J., et al., 2016. Quantitative Characterization of Diagenetic Facies of Tight Sandstone Oil Reservoir by Using Logging Crossplot: A Case Study on Chang 7 Tight Sandstone Oil Reservoir in Huachi Area, Ordos Basin. Acta Sedimentologica Sinica, 34(4): 694-706 (in Chinese with English abstract).
      [23] Sima, L.Q., Yin, R., Wang, L., et al., 2019. Determining Methods of the Irreducible Water Saturation of Low- Resistivity Oil Layers in Toutunhe Formation, Junggar Basin. Well Logging Technology, 43(2): 122-128 (in Chinese with English abstract).
      [24] Wang, H., Chen, S., Huang, C. Y., et al., 2017. Architecture of Sandstone Bodies of Paleogene Shahejie Formation in Northern Qikou Sag, Northeast China. Journal of Earth Science, 28(6): 1078-1085. https://doi.org/10.1007/s12583-016-0937-4
      [25] Wang, X. J., Wang, Z. L., Feng, C., et al., 2019. Predicting Oil Saturation of Tight Conglomerate Reservoirs via Well Logs Based on Reconstructing Nuclear Magnetic Resonance T2 Spectrum under Completely Watered Conditions. Journal of Geophysics and Engineering, 17(2): 328-338.
      [26] Wang, Y., Qian, M.L., Yu, C., et al., 2012. Study and Discussion on Reservoir Prediction Technology for Binhai Area of Qikou Depression. Special Oil & Gas Reservoirs, 19(6): 35-39, 142 (in Chinese with English abstract).
      [27] Xue, Z.A., Zhao, Y.H., Wu, Y.P., et al., 2015. Characteristics and Forming Mechanisms of Reservoirs in the Shahejie Formation of Qibei Slope, Bohai Bay Basin. Oil & Gas Geology, 36(2): 280-287 (in Chinese with English abstract).
      [28] Yan, C.A., Wang, X.M., Guo, Q.S., et al., 2019. Well Logging Evaluation of Favorable Reservoirs of Middle and Deep Clastic Rocks in Qibei Slope Area. Mud Logging Engineering, 30(3): 99-105, 188 (in Chinese with English abstract).
      [29] Yang, K.B., Cao, C.C., 2020. Development and Application of Resistivity Ratio Method for Evaluating Oil-Water Layers. Complex Hydrocarbon Reservoirs, 13(3): 6-11 (in Chinese with English abstract).
      [30] Yong, S.H., Zhang, C.M., 2007. Logging Data Processing and Comprehensive Interpretation. China University of Petroleum Press, Dongying, 203-213 (in Chinese).
      [31] Zhang, D. D., Liu, C. Y., Huang, Y. J., et al., 2014. Cenozoic Fault Distribution Characteristics and Evolution in Qikou Sag of Bohai Basin, China. Journal of Earth Science, 25(4): 701-712. https://doi.org/10.1007/s12583-014-0458-y
      [32] Zhang, Z.S., 2020. Theoretical Roots of Archie Formulas. Progress in Geophysics, 35(4): 1514-1522 (in Chinese with English abstract).
      [33] Zhao, J.L., Liu, J.J., Zhang, Q.H., et al., 2017. Overview of Geophysical Exploration Methods and Technical of Tight Sandstone Gas Reservoirs. Progress in Geophysics, 32(2): 840-848 (in Chinese with English abstract).
      [34] Zhao, X.M., Wu, S.H., Yue, D.L., et al., 2010. The Pre-Processing and Reconstruction Technique for Shallow Layer Acoustic Curve in Old Oil-Field. Oil Geophysical Prospecting, 45(4): 559-564, 624, 469 (in Chinese with English abstract).
      [35] Zhao, X.Z., Zhou, L.H., Xiao, D.Q., et al., 2016. Hydrocarbon Accumulation and Exploration Practice of Slope Area in Qikou Sag. Acta Petrolei Sinica, 37(S2): 1-9 (in Chinese with English abstract).
      [36] Zhao, Y.C., Chen, S.H., Guo, Z.H., 2006. Application of Nuclear Magnetic Resonance Technology to Pore Structure in Tight Sandstone: A Case from Third Member of Shihezi Formation Upper Paleozoic in Daniudi Gas Field, Ordos Basin. Geological Science and Technology Information, 25(1): 109-112 (in Chinese with English abstract).
      [37] Zhu, L.Q., Zhang, C., Shi, W.R., et al., 2016. Study on the Method of Prediction of Irreducible Water Saturation by Combining Mercury Intrusion and NMR Logging Data. Science Technology and Engineering, 16(15): 22-29 (in Chinese with English abstract).
      [38] 白松涛, 万金彬, 杨锐祥, 等, 2017. 地层水电阻率评价方法综述. 地球物理学进展, 32(2): 566-578. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201702016.htm
      [39] 成家杰, 王文文, 侯振学, 等, 2017. 常规测井资料在致密砂岩储层产能评价中的应用. 测井技术, 41(3): 325-330. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201703017.htm
      [40] 初广震, 王怀忠, 周宗良, 等, 2017. 歧口凹陷滨海斜坡深层低渗油气层测井评价与识别方法. 工程地球物理学报, 14(6): 640-647. doi: 10.3969/j.issn.1672-7940.2017.06.003
      [41] 丁娱娇, 李嘉宁, 李俊国, 等, 2019. 大港探区二叠系碎屑岩储层测井评价技术. 测井技术, 43(4): 416-422. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201904019.htm
      [42] 冯冲, 代黎明, 刘晓健, 等, 2020. 渤海海域沙一二段湖相混积岩储层测井分类与识别. 地球科学, 45(10): 3677-3692. doi: 10.3799/dqkx.2020.129
      [43] 高春云, 周立发, 路萍, 2020. 测井曲线标准化研究进展综述. 地球物理学进展, 35(5): 1777-1783. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202005018.htm
      [44] 韩国猛, 周素彦, 唐鹿鹿, 等, 2014. 歧口凹陷歧北斜坡沙一下亚段致密砂岩油形成条件. 中国石油勘探, 19(6): 89-96. doi: 10.3969/j.issn.1672-7703.2014.06.0011
      [45] 侯中帅, 周立宏, 金凤鸣, 等, 2021. 歧口凹陷热液流体活动及其对储集层的改造. 地球科学, 46(1): 200-214. doi: 10.3799/dqkx.2019.282
      [46] 胡瑞波, 韩国猛, 石倩茹, 等, 2010. 歧口凹陷滨海台阶带沙河街组低阻油层测井地质综合研究. 天然气地球科学, 21(4): 589-593. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201004012.htm
      [47] 黄薇, 张小莉, 赵进义, 2015. 鄂尔多斯盆地志丹地区长9致密储层流体识别. 西北大学学报(自然科学版), 45(5): 811-818. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ201505027.htm
      [48] 贾承造, 邹才能, 李建忠, 等, 2012. 中国致密油评价标准、主要类型、基本特征及资源前景. 石油学报, 33(3): 343-350. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201203000.htm
      [49] 李浩, 刘双莲, 柴公权, 等, 2016. 基于岩心刻度的测井地质分析方法. 地球物理学进展, 31(1): 225-231. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201601026.htm
      [50] 李俊国, 吴淑琴, 苏沛强, 等, 2012. 歧口凹陷低电阻率油气层分布规律研究. 录井工程, 23(4): 69-73, 84. doi: 10.3969/j.issn.1672-9803.2012.04.016
      [51] 刘洪平, 骆杨, 赵彦超, 等, 2017. 致密砂岩气层中成岩相对岩电特征的影响. 地球科学, 42(4): 652-660. doi: 10.3799/dqkx.2017.053
      [52] 刘金库, 孙永亮, 焦旭, 等, 2016. 碎屑岩储层低渗成因及优质储层发育机理——以歧口凹陷歧北斜坡沙二段储层为例. 天然气地球科学, 27(5): 799-808. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201605006.htm
      [53] 毛克宇, 2016. 梨树断陷营城组致密砂岩测井流体识别方法及其适应性分析. 地球科学进展, 31(10): 1056-1066. doi: 10.11867/j.issn.1001-8166.2016.10.1056
      [54] 冉冶, 王贵文, 赖锦, 等, 2016. 利用测井交会图法定量表征致密油储层成岩相——以鄂尔多斯盆地华池地区长7致密油储层为例. 沉积学报, 34(4): 694-706. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201604010.htm
      [55] 司马立强, 殷榕, 王亮, 等, 2019. 准噶尔盆地头屯河组低电阻率油层束缚水饱和度确定方法. 测井技术, 43(2): 122-128. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS201902004.htm
      [56] 王瑀, 钱茂路, 于超, 等, 2012. 歧口凹陷滨海地区储层预测技术研究与探讨. 特种油气藏, 19(6): 35-39, 142. doi: 10.3969/j.issn.1006-6535.2012.06.008
      [57] 薛宗安, 赵玉宏, 吴义平, 等, 2015. 渤海湾盆地歧北斜坡沙河街组储层特征及形成机理. 石油与天然气地质, 36(2): 280-287. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201502014.htm
      [58] 颜崇安, 汪晓敏, 郭青松, 等, 2019. 歧北斜坡区中深层碎屑岩有利储集层测井评价. 录井工程, 30(3): 99-105, 188. doi: 10.3969/j.issn.1672-9803.2019.03.018
      [59] 杨克兵, 曹程程, 2020. 电阻率比值法评价油水层的发展及应用. 复杂油气藏, 13(3): 6-11. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ202003003.htm
      [60] 雍世和, 张超谟, 2007. 测井数据处理与综合解释. 东营: 中国石油大学出版社, 203-213.
      [61] 张志松, 2020. 阿尔奇公式的理论本原. 地球物理学进展, 35(4): 1514-1522. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202004036.htm
      [62] 赵军龙, 刘建建, 张庆辉, 等, 2017. 致密砂岩气藏地球物理勘探方法技术综述. 地球物理学进展, 32(2): 840-848. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201702053.htm
      [63] 赵晓明, 吴胜和, 岳大力, 等, 2010. 老油田浅层声波曲线的预处理与重构技术. 石油地球物理勘探, 45(4): 559-564, 624, 469. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201004017.htm
      [64] 赵贤正, 周立宏, 肖敦清, 等, 2016. 歧口凹陷斜坡区油气成藏与勘探实践. 石油学报, 37(S2): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB2016S2001.htm
      [65] 赵彦超, 陈淑慧, 郭振华, 2006. 核磁共振方法在致密砂岩储层孔隙结构中的应用——以鄂尔多斯大牛地气田上古生界石盒子组3段为例. 地质科技情报, 25(1): 109-112. doi: 10.3969/j.issn.1000-7849.2006.01.020
      [66] 朱林奇, 张冲, 石文睿, 等, 2016. 结合压汞实验与核磁共振测井预测束缚水饱和度方法研究. 科学技术与工程, 16(15): 22-29. doi: 10.3969/j.issn.1671-1815.2016.15.004
    • 加载中
    图(11) / 表(6)
    计量
    • 文章访问数:  266
    • HTML全文浏览量:  71
    • PDF下载量:  36
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-03-21
    • 刊出日期:  2022-05-25

    目录

      /

      返回文章
      返回