Response of Uranium Mineralization in Kuqa Depression Driven by Basin⁃Mountain Coupling Mechanism
-
摘要: 库车坳陷周缘的铀矿化非常活跃,蕴藏于上新统库车组下段的砂岩型铀矿的控矿要素、成矿机理、成矿规律,特别是远景选区是近年来铀矿地质学家关注的重点.笔者充分依据区域地质资料、野外地质调查和勘查钻孔资料,通过综合分析,试图在构造‒沉积‒地形地貌的盆山耦合机制中,遵循砂岩型铀矿的普遍成矿机理、按照由源到汇的研究思路,剖析砂岩型铀矿形成发育的关键控矿要素、时空配置关系,从铀成矿系统分析的角度揭示库车组关键控矿要素的协同控矿机理,以期为铀矿勘查提供战略服务.主要认识有:新生代南天山造山带的大规模陆内逆冲推覆作用既控制了库车组含铀岩系的充填演化过程,也制约了库车组下段铀成矿的基本格局和成矿作用过程,盆山耦合机制是驱动砂岩型铀矿形成发育的原始驱动力.南天山造山带岩浆岩分布规模虽然有限,但在托木尔峰一带存在富铀花岗岩.充分发育的地表水流域系统,一方面能够携带造山带的碎屑物堆积于库车坳陷,从而分阶段形成系列的大型物源‒沉积朵体,造就了潜在的含铀岩系和优质的铀储层.另一方面,穿越造山带富铀花岗岩的流域系统,不仅通过物理搬运为铀储层提供了原始微量铀的积累,而且通过衍生的地下含矿流体系统促进了区域层间氧化带的发育以及成矿所需的溶解铀质.在库车坳陷,近东西向展布的构造行迹限定了含矿流场和层间氧化带的发育空间(拜城凹陷),铀矿化集中发育于区域层间氧化带前锋线附近(特别是南部“阻水面”一侧).在拜城凹陷南部边缘,随着具有同沉积生长性质的秋里塔格构造带的不断隆升,区域的含矿流场和层间氧化带被迫向北迁移并发生“左旋”,从而造就了包括日达里克铀矿床在内的“新”“老”两个铀成矿系统.Abstract: Uranium mineralization around Kuqa depression is very active. The ore-controlling factors, metallogenic mechanism and metallogenic law, especially the prospective selection, of sandstone⁃type uranium deposits in the lower member of Pliocene Kuqa Formation have become the focus of uranium geologists in recent years. Based on the regional geological data, field geological survey and exploration drilling data, through comprehensive analysis, the author attempts to analyze the key ore-controlling factors and spatial and temporal collocation relationship of the formation and development of sandstone⁃type uranium deposits in the context of basin⁃mountain coupling mechanism (tectonics & sediments & geomorphology), following the general metallogenic mechanism of sandstone⁃type uranium deposits and the research idea from source to sink. From the perspective of uranium metallogenic system analysis, the cooperative ore control mechanism of key ore⁃controlling elements of Kuqa Formation is revealed in order to provide strategic services for uranium exploration. It is found that large-scale intracontinental thrust nappe of the Cenozoic South Tianshan orogenic belt not only controls the filling evolution process of the uranium bearing rock series of the Kuqa Formation, but also restricts the basic pattern and metallogenic process of uranium mineralization in the lower member of the Kuqa Formation. The basin⁃mountain coupling mechanism is the original force driving the formation and development of sandstone⁃type uranium deposits. Although the distribution scale of magmatic rocks in the South Tianshan orogen is limited, U-rich granites exist in the Tomur peak area. The fully developed surface water drainage system, on the one hand, can carry the debris of the orogenic belt to accumulate in the Kuqa depression, thus forming a series of large provenance-sedimentary lobes in stages, creating potential uranium bearing rock series and high-quality uranium reservoir. On the other hand, the drainage system crossing the U-rich granites in the orogenic belt not only provides the accumulation of original trace uranium for the uranium reservoir through physical transportation, but also promotes the development of regional interlayer oxidation zone and dissolved uranium required for mineralization through the derived underground ore-bearing fluid system. In Kuqa depression, the near East-West structure limits the ore-bearing flow field and the development space of interlayer oxidation zone (Baicheng sag). Uranium mineralization is concentrated near the front line of regional interlayer oxidation zone (especially the "water blocking surface" side in the South).At the southern edge of Baicheng sag, with the continuous uplift of Qiulitage structural belt with synsedimentary growth property, the regional ore-bearing flow field and interlayer oxidation zone were forced to migrate northward and caused "left-lateral" movement, thus creating "new" and "old" uranium metallogenic systems including Ridarik uranium deposit.
-
图 1 库车坳陷中西部库车组下段扇三角洲沉积体系基本特征
a.韵律结构清晰,喀拉玉尔衮剖面;b.三角洲前缘的倒粒序,阿特博依纳克剖面;c.具丰富动物潜穴和波痕(变形)的远端河口坝沉积,日达里克铀矿床露头剖面;d.具有泥灰岩和泥岩互层的滨浅湖泊沉积,ZKY3033;e.三角洲前缘的水下泥石流沉积(青白色块状结构),ZKY1519;f.扇三角洲中砾岩,ZKY804;g.扇三角洲中铀储层砂体,ZKY3033
Fig. 1. Basic characteristics of fan delta sedimentary system in the lower member of Kuqa Formation in the central and western part of Kuqa depression
图 4 白垩纪以来南天山差异隆升及其对库车坳陷物源供给的改变模式(据李双建等,2007)
a.白垩纪‒古近纪的隆升模式;b.新近纪以来的隆升模式
Fig. 4. Differential uplifting of South Tianshan since Cretaceous and its change model on provenance supply in Kuqa depression (after Li et al., 2007)
图 7 库车坳陷西部构造演化及其对铀成矿流体系统的调整与控制(据余一欣和王鹏万,2009修改)
a.库车组沉积末期构造‒地层结构及其“老的”铀成矿流体系统;b.现今的构造‒地层结构及其“新的”铀成矿流体系统;平衡剖面位置见图 6a
Fig. 7. Tectonic evolution in the west of Kuqa depression and its adjustment and control over uranium metallogenic fluid system (modified by Yu and Wang, 2009)
表 1 南天山造山带花岗岩类和火山岩的微量Th、U含量统计结果
Table 1. Statistical table of trace Th and U contents of granitoids and volcanic rocks in South Tianshan orogenic belt
岩体 岩性 样品号 U (10‒6) Th (10‒6) Th/U 资料来演 琼台兰岩体 二长花岗岩 77-3 6 12 2.0 中国科学院登山科学考察队,1985 钾长花岗岩 77-27 6 19 3.2 平均 6 15.5 2.6 英买来岩体 碱长花岗岩 MS-2 6 23 3.8 MS-3 10 21 2.1 77-13 12 34 2.8 黑云二长花岗岩 Q01 3.42 22.40 6.5 马乐天等,2010;黄河等,2011 Q03 3.91 25.90 6.6 Q04 2.84 29.90 10.5 Q05 2.04 29.90 14.7 Q06 5.49 67.50 12.3 Q07 10.00 53.10 5.3 Q08 2.22 34.30 15.5 Q09 7.46 23.70 3.2 平均 5.90 33.20 7.6 铁列克岩体 黑云二长花岗岩 TLK-1 1.96 15.40 7.9 黄河等,2011 TLK-2 2.26 15.98 7.1 平均 2.11 15.69 7.5 欧西达坂岩体 石英闪长岩 05KC142 0.78 4.95 6.35 王超等,2009 05KC143 0.58 3.98 6.86 05KC146 0.55 2.94 5.35 二长花岗岩 05KC148 0.92 4.78 5.20 05KC149 0.85 3.40 4.00 05KC150 2.28 9.11 4.00 黑云二长花岗岩 05KC154 1.87 24.74 13.23 英云闪长岩 KC006 1.11 8.44 7.60 王世伟,2020 KC007 1.31 15.7 11.98 KC009 1.38 5.71 4.14 KC010 0.64 3.13 4.89 花岗闪长岩 KC012 2.57 21.0 8.17 辉长闪长岩 KC013 0.72 3.48 4.83 石英闪长岩 K1105-A 1.376 9.578 6.96 张斌,2016 K1105-B 1.078 11.720 10.87 K1105-C 1.502 4.973 3.31 K1105-D 1.249 13.620 10.90 K1105-E 1.270 5.613 4.42 平均 1.22 8.71 6.84 欧西达坂岩体南缘火山岩 流纹岩 TS11-46-2 4.40 21.6 4.91 王盟等,2014 TS11-46-3 3.50 22.40 6.40 TS11-46-4 3.90 21.40 5.49 TS11-46-5 3.20 19.10 5.97 TS11-47-1 4.60 19.00 4.13 TS11-47-2 3.50 20.50 5.86 TS11-47-3 3.40 18.20 5.35 平均 3.79 20.31 5.44 南天山花岗岩类 闪长岩 1 3.45 31.88 9.24 姜常义等,1999 似斑状花岗岩 2 4.39 29.24 6.66 3 4.67 39.28 8.41 4 2.12 23.53 11.10 5 3.73 33.18 8.90 二云母花岗岩 6 1.81 13.02 7.19 7 3.15 20.5 6.51 碱长花岗岩 8 8.99 62.52 6.95 9 5.62 61.18 10.89 10 1.67 18.43 11.04 11 10.61 62.5 5.89 12 8.13 50.25 6.18 平均 4.86 37.13 8.25 表 2 库车坳陷库车组大型物源‒沉积朵体基本参数和相关信息
Table 2. basic parameters and related information of large provenance-sedimentary lobes of Kuqa Formation in Kuqa depression
层位 物源‒朵体 流域系统 优势古水流方向 纵深规模(km) 宽度规模(km) 分布面积(km2) 上段 木扎尔特物源‒朵体 台兰河 351°→171° 45.1 88.4 3 648.5 老虎台物源‒朵体 木扎尔特河、喀普斯浪河、喀拉苏河 336°→156° 99.6 219.7 15 324.8 大龙池物源‒朵体 库车河 345°→165° 56 157.3 6 811.0 中段 木扎尔特物源‒朵体 台兰河 349°→169° 35.1 83.1 2 675.8 老虎台物源‒朵体 老虎台物源‒朵体 木扎尔特河、喀普斯浪河、 342°→162° 61.2 172.9 7 784.0 喀拉阔坦物源‒朵体 克孜勒河、库车河 340°→160° 39.7 105.7 4 865.0 下段 木扎尔特物源‒朵体 台兰河 351°→171° 62.6 97.8 5 108.3 老虎台物源‒朵体 木扎尔特河、喀普斯浪河、喀拉苏河 332°→152° 102 204.7 17 027.5 大龙池物源‒朵体 库车河 342°→162° 19.7 119.2 2 189.3 -
[1] A, Z. M., Luo, X. G., Zhang, G. H., et al., 2008. Discussion on the Metallogeny of the Ridalike Uranium Deposit in South of the Kuche⁃Baicheng Depression in Tarim Basin. Academic Seminar on the Geology and Mineral Resources of the Tianshan Orogeny, Urumqi (in Chinese). [2] Bureau of Geology and Mineral Resources of Xingjiang Uygur Autonomous Region, 1993. Regional Geology of Xinjiang Uygur Autonomous Region. Geological Publishing House, Beijing (in Chinese). [3] Chen, J., Liu, Y. F., Li, C., et al., 2017. Continental Hydrocarbon Migration and Accumulation with Palaeo⁃Fluid Potential Field in the South Slope of Kuqa Depression, Tarim Basin. Oil Geophysical Prospecting, 52(4): 841-850 (in Chinese with English abstract). [4] Chen, Z. L., Lu, K. G., Wang, G., et al., 2009. Characteristics of the Cenozoic Deformation in Basin/Range Coupling Regions on both Sides of Tianshan Mountains and Its Geodynamics. Earth Science Frontiers, 16(3): 149-159 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2009.03.011 [5] Han, B. F., He, G. Q., Wu, T. R., et al., 2004. Zircon U⁃Pb Dating and Geochemical Features of Early Paleozoic Granites from Tianshan, Xinjiang: Implications for Tectonic Evolution. Xinjiang Geology, 22(1): 4-11 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8845.2004.01.002 [6] He, D. F., Zhou, X. Y., Yang, H. J., et al., 2009. Geological Structure and Its Controls on Giant Oil and Gas Fields in Kuqa Depression, Tarim Basin: A Clue from New Shot Seismic Data. Geotectonica et Metallogenia, 33(1): 19-32 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2009.01.003 [7] Huang, H., Zhang, Z. C., Zhang, D. Y., et al., 2011. Petrogenesis of Late Carboniferous to Early Permian Granitoid Plutons in the Chinese South Tianshan: Implications for Crustal Accretion. Acta Geologica Sinica, 85(8): 1305-1333 (in Chinese with English abstract). [8] Hubert⁃Ferrari, A., Suppe, J., Gonzalez⁃Mieres, R., et al., 2007. Mechanisms of Active Folding of the Landscape (Southern Tian Shan, China). Journal of Geophysical Research: Solid Earth, 112(B3): B03S09. https://doi.org/10.1029/2006JB004362 [9] Jiang, C. Y., Mu, Y. M., Bai, K. Y., et al., 1999. Chronology, Petrology, Geochemistry and Tectonic Environment of Granitoids in the Southern Tianshan Mountain, Western China. Acta Petrologica Sinica, 15(2): 298-308 (in Chinese with English abstract). [10] Jiao, Y. Q., Lu, Z. S., Zhuang, X. G., et al., 1997. Dynamical Process and Genesis of Late Triassic Sediment Filling in Ordos Basin. Journal of Earth Science, 8(1): 45-48. [11] Jiao, Y. Q., Wu, L. Q., Peng, Y. B., et al., 2015. Sedimentary⁃Tectonic Setting of the Deposition⁃Type Uranium Deposits Forming in the Paleo⁃Asian Tectonic Domain, North China. Earth Science Frontiers, 22(1): 189-205 (in Chinese with English abstract). [12] Jiao, Y. Q., Wu, L. Q., Rong, H., et al., 2018a. Geological Modeling of Uranium Reservoir: The Geological Foundation of Revealing the Metallogenic Mechanism and Solving "Remaining Uranium". Earth Science, 43(10): 3568-3583 (in Chinese with English abstract). [13] Jiao, Y. Q., Wu, L. Q., Rong, H., et al., 2018b. Model of Inner and Outer Reductive Media within Uranium Reservoir Sandstone of Sandstone⁃Type Uranium Deposits and Its Ore⁃Controlling Mechanism: Case Studies in Daying and Qianjiadian Uranium Deposits. Earth Science, 43(2): 459-474 (in Chinese with English abstract). [14] Jiao, Y. Q., Wu, L. Q., Rong, H., et al., 2021a. Review of Basin Uranium Resources in China. Earth Science, 46(8): 2675-2696. [15] Jiao, Y. Q., Wu, L. Q., Rong, H., et al., 2021b. Geological Modeling for Uranium Reservoir Heterogeneity: A Sedimentology Basis for Revealing Metallogenic Mechanism and Enhancing Recovery of Sandstone⁃Type Uranium Deposits in Zhiluo Formation in Ordos Basin. China University of Geosciences Press, Wuhan (in Chinese). [16] Jiao, Y. Q., Wu, L. Q., Yang, S. K., et al., 2006. Sedimentology of Uranium Reservior: The Foundation of Sandstone Type Uranium Deposit Exploration and Development. Geological Publishing House, Beijing (in Chinese). [17] Li, S. H., 2021. Geochemical and Petrological Characteristics of Lower Member of Kuche Formation in Ridalike Area, Northern Margin of Tarim Basin. Xinjiang Geology, 39(1): 124-128 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8845.2021.01.017 [18] Li, S. J., Shi, Y. H., Wang, Q. C., et al., 2007. Changes of Detrital Heavy Minerals' Composition in the Kuqa Depression From Cretaceous. Chinese Journal of Geology, 42(4): 709-721 (in Chinese with English abstract). doi: 10.3321/j.issn:0563-5020.2007.04.007 [19] Li, S. Q., Tang, P. C., Rao, G., 2013. Cenozoic Deformation Characteristics and Controlling Factors of Kalayuergun Structural Belt, Kuqa Fold and Thrust Belt, Southern Tianshan. Earth Science, 38(4): 859-869 (in Chinese with English abstract). [20] Li, X., Zhong, D. K., Li, Y., et al., 2013. Sedimentary Characteristics and Model of the Alluvial Fan in Kuche Formation of Neogene in Kuqa Depression. Geoscience, 27(3): 669-680 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2013.03.019 [21] Li, Y. J., Song, W. J., Mai, G. R., et al., 2001. Characteristics of Kuqa and Northern Tarim Foreland Basins and Their Coupling Relation to South Tianshan Orogen. Xinjiang Petroleum Geology, 22(5): 376-381 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-3873.2001.05.004 [22] Liu, G., Wang, G. R., A, Z. M., 2010. Relations between the Structural Evolution in Cenozoic and Uranium Metallogeny in the North of Talimu Basin. Xinjiang Geology, 28(1): 95-98 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8845.2010.01.018 [23] Lu, K. G., Wang, G. R., Sun, X., 2019. Interlayered oxidation⁃Zone Styles in Fault⁃Fold Belts of the Northern Tarim Basin and Its Controlling to the Formation of Sandstone⁃Type Uranium Deposits. Journal of Geomechanics, 25(1): 115-124 (in Chinese with English abstract). [24] Ma, L. T., Zhang, Z. C., Dong, S. Y., et al., 2010. Geology and Geochemistry of the Yingmailai Granitic Intrusion in the Southern Tianshan and Its Implications. Earth Science, 35(6): 908-919 (in Chinese with English abstract). [25] Miao, J. J., Jia, C. Z., Wang, Z. M., et al., 2005. Stratigraphic Configuration Control on Tectonic Deformation along the Qiultag Anticline Belt of Kuqa Area, Northern Tarim Basin. Chinese Journal of Geology, 40(4): 558-569 (in Chinese with English abstract). doi: 10.3321/j.issn:0563-5020.2005.04.011 [26] Peng, S. T., Li, Z., Xu, C. W., 2009. Provenance of Early Cretaceous Deposites in Kuqa Subbasin, the Southern Margin of Tianshan: Implication from Detrital Zircon LA⁃ICP⁃MS Age Data. Acta Sedimentologica Sinica, 27(5): 956-966 (in Chinese with English abstract). [27] Qi, J. F., Li, Y., Wu, C., et al., 2013. The Interpretation Models and Discussion on the Contractive Structure Deformation of Kuqa Depression, Tarim Basin. Geology in China, 40(1): 106-120 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2013.01.007 [28] Scientific Expedition Team on Mountaineering of the Chinese Academy of Sciences, 1985. Geology and Paleontology of Tuomeur Peak Region, Tianshan. Xijiang People's Publishing House, Urumqi (in Chinese). [29] Sun, J. M., Li, Y., Zhang, Z. Q., et al., 2009. Magnetostratigraphic Data on Neogene Growth Folding in the Foreland Basin of the Southern Tianshan Mountains. Geology, 37(11): 1051-1054. https://doi.org/10.1130/g30278a.1 [30] Tang, L. J., Qiu, H. J., Yun, L., et al., 2012. Analysis of Basin⁃Mountain Coupling and Transition of the Northern Tarim Basin⁃Southern Tianshan Orogenic Belt. Earth Science Frontiers, 19(5): 195-204 (in Chinese with English abstract). [31] Tang, P. C., Rao, G., Li, S. Q., et al., 2018. The Effect of Salt Thickness on Fold Lateral Linkage: A Case Study of the Anticlines in the Leading Edge of the Western Kuqa Fold and Thrust Belt, South Tianshan. Acta Geologica Sinica, 92(3): 437-448 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2018.03.002 [32] Tao, Z. L., Yin, J. Y., Chen, W., et al., 2019. Sr⁃Nd⁃Hf Isotopic Characteristics of Early Permian I⁃Type Granites in Southern Tianshan: Petrogenesis and Implications for Continental Crustal Growth. Earth Science, 44(10): 3565-3582 (in Chinese with English abstract). [33] Wang, C., Luo, J. H., Che, Z. C., et al., 2009. Geochemical Characteristics and U⁃Pb LA⁃ICP⁃MS Zircon Dating of the Oxidaban Pluton from Xinjiang, China: Implications for a Paleozoic Oceanic Subduction Process in Southwestern Tianshan. Acta Geologica Sinica, 83(2): 272-283 (in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2009.02.012 [34] Wang, G. R., Lu, K. G., Liu, G., et al., 2012. Some Problems of Sandstone Type Uranium Deposit Prospecting in Tarim Basin. The National Symposium on the Construction of Large Uranium Mining Bases, Haikou (in Chinese). [35] Wang, M., Zhang, J. J., Qi, G. W., et al., 2014. Geochemistry and Geochronology of Early Permian Acid Volcanic Rocks along Kuqa River and Its Tectonic Implication in the Southern Margin of South Tianshan Orogen, Xinjiang. Chinese Journal of Geology, 49(1): 242-258 (in Chinese with English abstract). [36] Wang, Q. C., Li, Z., 2003. Basin⁃Orogen Coupling and Origin of Sedimentary Basins. Acta Sedimentologica Sinica, 21(1): 24-30 (in Chinese with English abstract). [37] Wang, S. W., 2020. Geochemical Characteristics and Geological Significance of the Oxidaban Complex Rock Mass, South Tianshan, Xinjiang (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [38] Wang, Y. Y., Wang, Q. Q., Wang, G. R., 2021. Prospecting Direction of Sandstone Type Uranium Deposits of Kuqa Formation, Kuqa Depression. Uranium Geology, 37(3): 369-376 (in Chinese with English abstract). [39] Wu, G. H., Luo, C. S., Hu, T. P., et al., 2007. Fold⁃Related Faulting: An Example from the Cenozoic Salt⁃Overlying Beds in the Kuqa Depression. Chinese Journal of Geology, 42(3): 496-505 (in Chinese with English abstract). [40] Wu, L. Q., Jiao, Y. Q., Roger, M., et al., 2009. Sedimentological Setting of Sandstone⁃Type Uranium Deposits in Coal Measures on the Southwest Margin of the Turpan⁃Hami Basin, China. Journal of Asian Earth Sciences, 36(2-3): 223-237. https://doi.org/10.1016/j.jseaes.2009.06.003 [41] Xia, B., Zhang, L. F., 2021. High T/P Metamorphic Rocks in Southern Yili Plate: Representative for Precambrian Crystalline Basement or Active Continental Margin? Earth Science, 46(6): 1960-1972 (in Chinese with English abstract). [42] Yu, H. B., Qi, J. F., Shi, J., et al., 2015. Paleo⁃Uplift Formation and Evolution in the Xiqiu Structural Belt of the Kuqa Depression, Tarim Basin. Chinese Journal of Geology, 50(2): 524-535 (in Chinese with English abstract). [43] Yu, Y. X., Wang, P. W., 2009. Balanced Cross⁃Sections of Salt Structures in Kuqa Foreland Thrust Belt in Northern Part of Tarim Basin. Marine Origin Petroleum Geology, 14(1): 57-60 (in Chinese with English abstract). [44] Zhang, B., Chen, W., Sun, J. B., et al., 2016. The Thermal History and Uplift Process of the Ouxidaban Pluton in the South Tianshan Orogen: Evidence from Ar⁃Ar and (U⁃Th)/He. Science in China (Series D), 46(3): 392-405 (in Chinese). [45] Zhang, T., 2014. Cenozoic High Resolution Magnetostratigraphy in the Kuqa Depression and Tectonic Evolution of the South Tianshan Mountains (Dissertation). Luanzhou University, Lanzhou (in Chinese with English abstract). [46] Zhang, Y. Q., Qian, X. L., 2001. Concept and Mechanism of Basin Mountain Coupling. Chinese Geology, 28(3): 47 (in Chinese with English abstract). [47] Zhang, Z. C., Dong, S. Y., Huang, H., et al., 2009. Geology and Geochemistry of the Permian Intermediate⁃Acid Intrusions in the Southwestern Tianshan, Xinjiang, China: Implications for Petrogenesis and Tectonics. Geological Bulletin of China, 28(12): 1827-1839 (in Chinese with English abstract). [48] Zhou, T. X., Chen, J. F., Xie, Z., et al., 2000. Isotopic Geochemistry of Granitic Rocks from Tuomuer Peak Region, Tianshan, China. Acta Petrologica Sinica, 16(2): 153-160 (in Chinese with English abstract). [49] Zhu, Z. X., Li, J. Y., Dong, L. H., et al., 2008. Age Determination and Geological Significance of Devonian Granitic Intrusions in Seriyakeyilake Region, Northern Margin of Tarim Basin, Xinjiang. Acta Petrologica Sinica, 24(5): 971-976 (in Chinese with English abstract). [50] 阿种明, 罗星刚, 张广辉, 等, 2008. 塔里木盆地库车坳陷南部日达里克铀矿床成因探讨. 乌鲁木齐: 天山地质矿产资源学术讨论会. [51] 新疆维吾自治区地质矿产局, 1993. 新疆维吾尔自治区区域地质志. 北京: 地质出版社. [52] 陈军, 刘永福, 李闯, 等, 2017. 库车坳陷南斜坡古流体势场对陆相油气运聚的控制. 石油地球物理勘探, 52(4): 841-850. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201704022.htm [53] 陈正乐, 鲁克改, 王果, 等, 2009. 天山两侧山前新生代构造变形特征及其成因刍议. 地学前缘, 16(3): 149-159. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200903017.htm [54] 韩宝福, 何国琦, 吴泰然, 等, 2004. 天山早古生代花岗岩锆石U⁃Pb定年、岩石地球化学特征及其大地构造意义. 新疆地质, 22(1): 4-11. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI200401001.htm [55] 何登发, 周新源, 杨海军, 等, 2009. 库车坳陷的地质结构及其对大油气田的控制作用. 大地构造与成矿学, 33(1): 19-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200901004.htm [56] 黄河, 张招崇, 张东阳, 等, 2011. 中国南天山晚石炭世‒早二叠世花岗质侵入岩的岩石成因与地壳增生. 地质学报, 85(8): 1305-1333. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201108007.htm [57] 姜常义, 穆艳梅, 白开寅, 等, 1999. 南天山花岗岩类的年代学、岩石学、地球化学及其构造环境. 岩石学报, 15(2): 298-308. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB902.017.htm [58] 焦养泉, 吴立群, 彭云彪, 等, 2015. 中国北方古亚洲构造域中沉积型铀矿形成发育的沉积‒构造背景综合分析. 地学前缘, 22(1): 189-205. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501018.htm [59] 焦养泉, 吴立群, 荣辉, 等, 2018a. 铀储层地质建模: 揭示成矿机理和应对"剩余铀"的地质基础. 地球科学, 43(10): 3568-3583. doi: 10.3799/dqkx.2018.229 [60] 焦养泉, 吴立群, 荣辉, 等, 2018b. 砂岩型铀矿的双重还原介质模型及其联合控矿机理: 兼论大营和钱家店铀矿床. 地球科学, 43(2): 459-474. doi: 10.3799/dqkx.2017.512 [61] 焦养泉, 吴立群, 荣辉, 等, 2021a. 中国盆地铀资源概述. 地球科学, 46(8): 2675-2696. doi: 10.3799/dqkx.2020.304 [62] 焦养泉, 吴立群, 荣辉, 等, 2021b. 铀储层非均质性地质建模——揭示鄂尔多斯盆地直罗组铀成矿机理和提高采收率的沉积学基础. 武汉: 中国地质大学出版社. [63] 焦养泉, 吴立群, 杨生科, 等, 2006. 铀储层沉积学——砂岩型铀矿勘查与开发的基础. 北京: 地质出版社. [64] 李书海, 2021. 塔里木盆地北缘日达里克地区库车组下段砂岩岩石学及地球化学特征. 新疆地质, 39(1): 124-128. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI202101021.htm [65] 李双建, 石永红, 王清晨, 等, 2007. 白垩纪以来库车坳陷碎屑重矿物组成变化. 地质科学, 42(4): 709-721. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200704008.htm [66] 李世琴, 唐鹏程, 饶刚, 2013. 南天山库车褶皱‒冲断带喀拉玉尔滚构造带新生代变形特征及其控制因素. 地球科学, 38(4): 859-869. doi: 10.3799/dqkx.2013.084 [67] 李鑫, 钟大康, 李勇, 等, 2013. 库车坳陷新近系库车组冲积扇沉积特征及相模式. 现代地质, 27(3): 669-680. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201303019.htm [68] 李曰俊, 宋文杰, 买光荣, 等, 2001. 库车和北塔里木前陆盆地与南天山造山带的耦合关系. 新疆石油地质, 22(5): 376-381. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD200105003.htm [69] 刘刚, 王国荣, 阿种明, 2010. 塔里木盆地北部新生代构造演化与铀成矿作用. 新疆地质, 28(1): 95-98. https://www.cnki.com.cn/Article/CJFDTOTAL-XJDI201001024.htm [70] 鲁克改, 王国荣, 孙潇, 2019. 塔里木盆地北缘断褶带层间氧化带发育样式及砂岩铀矿找矿潜力. 地质力学学报, 25(1): 115-124. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLX201901049.htm [71] 马乐天, 张招崇, 董书云, 等, 2010. 南天山英买来花岗岩的地质、地球化学特征及其地质意义. 地球科学, 35(6): 908-919. doi: 10.3799/dqkx.2010.106 [72] 苗继军, 贾承造, 王招明, 等, 2005. 塔里木盆地北部库车地区秋里塔格构造带地层结构及其对构造变形的制约. 地质科学, 40(4): 558-569. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200504012.htm [73] 彭守涛, 李忠, 许承武, 2009. 库车坳陷北缘早白垩世源区特征: 来自盆地碎屑锆石U⁃Pb年龄的信息. 沉积学报, 27(5): 956-966. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200905020.htm [74] 漆家福, 李勇, 吴超, 等, 2013. 塔里木盆地库车坳陷收缩构造变形模型若干问题的讨论. 中国地质, 40(1): 106-120. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201301009.htm [75] 中国科学院登山科学考察队, 1985. 天山托木尔峰地区的地质与古生物. 乌鲁木齐: 新疆人民出版社. [76] 汤良杰, 邱海峻, 云露, 等, 2012. 塔里木盆地北缘—南天山造山带盆‒山耦合和构造转换. 地学前缘, 19(5): 195-204. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201205021.htm [77] 唐鹏程, 饶刚, 李世琴, 等, 2018. 盐层厚度对褶皱拼接样式的影响: 以库车褶皱‒冲断带西段前缘背斜带为例. 地质学报, 92(3): 437-448. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201803002.htm [78] 陶再礼, 尹继元, 陈文, 等, 2019. 南天山早二叠世I型花岗岩Sr⁃Nd⁃Hf同位素特征: 岩石成因和大陆地壳增长的意义. 地球科学, 44(10): 3565-3582. doi: 10.3799/dqkx.2019.079 [79] 王超, 罗金海, 车自成, 等, 2009. 新疆欧西达坂花岗质岩体地球化学特征和锆石LA⁃ICP⁃MS定年: 西南天山古生代洋盆俯冲作用过程的启示. 地质学报, 83(2): 272-283. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200902013.htm [80] 王国荣, 鲁克改, 刘刚, 等, 2012. 塔里木盆地砂岩型铀矿找矿工作中若干问题的探讨. 海口: 全国铀矿大基地建设学术研讨会. [81] 王盟, 张进江, 戚国伟, 等, 2014. 新疆南天山南缘库车河流域早二叠世酸性火山岩的地球化学、锆石年代学及构造意义. 地质科学, 49(1): 242-258. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201401018.htm [82] 王清晨, 李忠, 2003. 盆山耦合与沉积盆地成因. 沉积学报, 21(1): 24-30. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200301004.htm [83] 王世伟, 2020. 新疆南天山欧西达坂复式岩体的地球化学特征及地质意义(硕士学位论文). 北京: 中国地质大学. [84] 王元元, 王强强, 王国荣, 等, 2021. 库车坳陷库车组砂岩型铀矿找矿方向新解. 铀矿地质, 37(3): 369-376. https://www.cnki.com.cn/Article/CJFDTOTAL-YKDZ202103006.htm [85] 邬光辉, 罗春树, 胡太平, 等, 2007. 褶皱相关断层: 以库车坳陷新生界盐上构造层为例. 地质科学, 42(3): 496-505. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200703009.htm [86] 夏彬, 张立飞, 2021. 伊犁板块南缘高T/P变质岩系: 代表前寒武纪结晶基底还是活动大陆边缘? 地球科学, 46(6): 1960-1972. doi: 10.3799/dqkx.2020.196 [87] 余海波, 漆家福, 师骏, 等, 2015. 塔里木盆地库车坳陷西秋古隆起的形成及其演化. 地质科学, 50(2): 524-535. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX201502011.htm [88] 余一欣, 王鹏万, 2009. 库车前陆冲断带盐构造区平衡剖面研究. 海相油气地质, 14(1): 57-60. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ200901012.htm [89] 张斌, 陈文, 孙敬博, 等, 2016. 南天山欧西达坂岩体热演化历史与隆升过程分析: 来自Ar⁃Ar和(U⁃Th)/He热年代学的证据. 中国科学(D辑), 46(3): 392-405. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201603009.htm [90] 张涛, 2014. 天山南麓库车坳陷新生代高精度磁性地层与构造演化(博士学位论文). 兰州: 兰州大学. [91] 张原庆, 钱祥麟, 2001. 盆山耦合概念及机制. 中国地质, 28(3): 47. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI200103008.htm [92] 张招崇, 董书云, 黄河, 等, 2009. 西南天山二叠纪中酸性侵入岩的地质学和地球化学: 岩石成因和构造背景. 地质通报, 28(12): 1827-1839. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD200912016.htm [93] 周泰禧, 陈江峰, 谢智, 等, 2000. 天山托木尔峰花岗质岩石的同位素地球化学特征. 岩石学报, 16(2): 153-160. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200002001.htm [94] 朱志新, 李锦轶, 董连慧, 等, 2008. 新疆塔里木北缘色日牙克依拉克一带泥盆纪花岗质侵入体的确定及其地质意义. 岩石学报, 24(5): 971-976. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200805005.htm