A New 3D Visualization Method for Rock Mass Fractures and Its Application
-
摘要: 快速准确地识别岩体裂隙的三维分布特征是西南山区铁路防灾减灾的关键.本研究提出了一套岩体裂隙可视化新方法,基于测窗调查的裂隙数据,依托球坐标及极射赤平投影进行数字化处理及降维,利用K-Means++聚类算法、Fisher分布模型和蒙特卡洛模拟,完成裂隙产状数据的自动分组和模拟,最后运用Python及圆盘模型实现岩体裂隙三维可视化.本研究采用坐标变换和三角网格曲面的方式,更有利于与其他三维建模软件嵌套分析.水电站工程的先行应用研究表明产状数据服从Fisher分布,本文的模型相对于传统玫瑰花图和施密特图有着一定的优势.因此,本文建立的岩体裂隙模型具有直观快速反映区域裂隙网络三维分布特征的优点,研究成果可以直接服务于西南山区铁路施工阶段隧道掌子面及洞壁的节理裂隙三维识别以及防灾减灾研究.Abstract: Identifying the three-dimensional distribution characteristics of rock mass fractures quickly and accurately is the key to the prevention and reduction of disasters on the railway in the mountainous area of southwest China. In this study, a new method for rock mass fracture visualization is proposed. The digital processing and dimension reduction of data are completed by the spherical coordinates and polar stereographic projection. K-Means++ clustering algorithm, Fisher distribution model and Monte Carlo simulation are used for automatic fracture occurrence data classification and simulation. Finally, the 3D visualization of fracture data is realized by Python and disc model. This research adopts coordinate transformation and triangular mesh surface, which is more conducive to nested analysis with other 3D modeling software. The advance application research of Hydropower Station project shows that the occurrence data correspond to Fisher distribution, and the model in this paper has certain advantages over the traditional rose chart and Schmidt chart. Therefore, the rock mass fracture model established in this paper describes the 3D distribution characteristics of regional fracture network intuitively and quickly. The research results can be directly applied to the fracture 3D visualization of tunnel face image and future disaster prevention and reduction of the railway in the mountain area of southwest China.
-
表 1 平硐数据
Table 1. Adit data
平硐编号 方位角(°) 高程(m) 深度(m) PD1 8 968.385 79.0 PD2 122 975.735 167.8 PD03 112;158;176 972.504 542.8 PD04 10 1 080.377 69.5 PD6 115 1 300.986 94.4 PD8 112 1 200.033 94.4 PD11 146;179 972.290 41.0 PD16 116 973.941 108.5 PD24 8 967.382 152.0 PD201 112 971.405 102.0 PD202 112 971.870 101.0 PD203 112 1 083.563 145.3 PD203-204 202 1 082.493 100.8 PD204 37;112 1 079.504 125.5 表 2 平硐PD04数据
Table 2. Adit data of PD04
编号 产状 起点坐标(m) 终点坐标(m) 迹长(m) 同组间距(m) 1 305°∠22° (15.00, 1.65) (16.45, 1.85) 1.65 0 2 305°∠27° (16.50, 1.68) (15.80, 1.68) 0.70 0 3 245°∠24° (16.40, 1.57) (15.85, 1.50) 0.55 0 4 275°∠65° (16.62, 1.38) (15.00, 1.34) 2.10 0 5 100°∠25° (17.66, 1.20) (15.00, 1.40) 2.90 0 6 0°∠35° (16.75, 0.70) (16.15, 0.90) 0.60 0 7 90°∠23° (15.00, 1.10) (16.00, 0.90) 1.00 0 8 90°∠31° (16.40, 0.75) (15.90, 0.65) 0.50 0 9 90°∠32° (16.00, 0.70) (16.20, 0.45) 1.34 0 10 0°∠55° (16.45, 1.80) (17.20, 0.00) 1.90 0 … … … … … … 表 3 模型验证
Table 3. Model validation
分组 RMSE MAE MAPE R2 第一组 0.276 0.288 0.097 0.714 第二组 0.014 0.096 0.060 0.867 第三组 0.211 0.333 0.042 0.950 -
[1] Baecher, G. B., Lanney, N. A., Einstein, H. H., 1977. Statistical Description Of Rock Properties and Sampling. The 1st U. S. Symposium on Rock Mechanics, Denver. [2] Chen, J. L., Luo, W. X., Dou, B., et al., 2021. Numerical Simulation of Geothermal Field in a Three⁃Dimensional Multi⁃Fractured Geological Model of Zhuolu Basin. Bulletin of Geological Science and Technology, 40(3): 22-33 (in Chinese with English abstract). [3] Chen, X. Q., 2022. Influence of Fault Fracture Zone on Initial In⁃Situ Stress Field in Tongmai Tunnel of Sichuan⁃Tibet Traffic Corridor. Earth Science, 47(6): 2120-2129 (in Chinese with English abstract). [4] Fang, K. T., Fan, J. Q., Jin, H., et al., 1990. Statistical Analysis of Directional Data (Ⅷ). Application of Statistics and Management, 9(2): 59-65 (in Chinese with English abstract). [5] Fisher, R. A., 1953. Dispersion on the Sphere. Proceedings of the Royal Society Series A, 217: 295-305. doi: 10.1098/rspa.1953.0064 [6] Gao, J. Y., 2017. Three⁃Dimensional Model Test and Discrete Element Simulations for the Effect of Water Flow and Heat Transfer on The Temperature and Stress of Sparsely and Irregularly Fractured Rocks (Dissertation). Beijing Jiaotong University, Beijing (in Chinese with English abstract). [7] He, C., Yao, C., Yang, J. H., et al., 2019. A 3D Model for Flow in Fractured Rock Mass Based on the Equivalent Discrete Fracture Network. Chinese Journal of Rock Mechanics and Engineering, 38(S1): 2748-2759 (in Chinese with English abstract). [8] Huang, N., Jiang, Y. J., Cheng, Y. F., et al., 2021. Experimental and Numerical Study of Hydraulic Properties of Three⁃Dimensional Rough Fracture Networks Based on 3D Printing Technology. Rock and Soil Mechanics, 42(6): 1659-1668, 1680 (in Chinese with English abstract). [9] Li, D. W., Liu, J., Chen, L., et al., 2020. Optimization of 3D Discrete Fracture Network Modeling Technique and It's Application. Chinese Journal of Underground Space and Engineering, 16(5): 1476-1483 (in Chinese with English abstract). [10] Li, S. W., 2012. Research of the Characteristics, Mechanics and Stability of Large Toppling Rockmass on the Right Rank of Damsite of Lancang River Wunonglong Hydropower Station (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract). [11] Liu, B., 2020. Research on Rock Block Development Law of Highway Slope in Beijing Area (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [12] Liu, Q. S., Kang, Y. S., Liu, X. Y., 2011. Analysis of Stress Field and Coupled Thermo⁃Mechanical Simulation of Single⁃Fracture Freezed Rock Masses. Chinese Journal of Rock Mechanics and Engineering, 30(2): 217-223 (in Chinese with English abstract). [13] Liu, Z., 2017. Experimental Investigation on Seepage and Solute Transport in A Disc Fracture Network (Dissertation). Liaoning Technical University, Fuxin (in Chinese with English abstract). [14] Long, J. C. S., Gilmour, P., Witherspoon, P. A., 1985. A Model for Steady Fluid Flow in Random Three⁃Dimensional Networks of Disc⁃Shaped Fractures. Water Resources Research, 21(8): 1105-1115. https://doi.org/10.1029/WR021i008p01105 [15] Long, J. C. S., Remer, J. S., Wilson, C. R., et al., 1982. Porous Media Equivalents for Networks of Discontinuous Fractures. Water Resources Research, 18(3): 645-658. https://doi.org/10.1029/WR018i003p00645 [16] Martinelli, M., Bistacchi, A., Mittempergher, S., et al., 2020. Damage Zone Characterization Combining Scan⁃Line and Scan⁃Area Analysis on a km⁃Scale Digital Outcrop Model: The Qala Fault (Gozo). Journal of Structural Geology, 140: 104144. https://doi.org/10.1016/j.jsg.2020.104144 [17] Pan, G. T., Ren, F., Yin, F. G., et al., 2020. Key Zones of Oceanic Plate Geology and Sichuan⁃Tibet Railway Project. Earth Science, 45(7): 2293-2304 (in Chinese with English abstract). [18] Romano, V., Bigi, S., Carnevale, F., et al., 2020. Hydraulic Characterization of a Fault Zone from Fracture Distribution. Journal of Structural Geology, 135: 104036. https://doi.org/10.1016/j.jsg.2020.104036 [19] Smeraglia, L., Mercuri, M., Tavani, S., et al., 2021. 3D Discrete Fracture Network (DFN) Models of Damage Zone Fluid Corridors within a Reservoir⁃Scale Normal Fault in Carbonates: Multiscale Approach Using Field Data and UAV Imagery. Marine and Petroleum Geology, 126: 104902. https://doi.org/10.1016/j.marpetgeo.2021.104902 [20] Wang, L. Q., 2013. The Selection and Improvement of K⁃Means's Initial Clustering Centers (Dissertation). Northeastern University, Shenyang (in Chinese with English abstract). [21] Wang, L. Q., Wang, B. D., Li, G. M., et al., 2021. Major Progresses of Geological Survey and Research in East Tethys: An Overview. Sedimentary Geology and Tethyan Geology, 41(2): 283-296 (in Chinese with English abstract). [22] Wang, S., 2013. Research on Distribution Model of Joint Orientations and Its Application to Joint Set Clustering and Rock Slope Uncertainty Analysis (Dissertation). Nanjing University, Nanjing (in Chinese with English abstract). [23] Wang, W., Fu, H., Xing, L. X., et al., 2021. Crack Propagation Behavior of Carbonatite Geothermal Reservoir Rock Mass Based on Extended Finite Element Method. Earth Science, 46(10): 3509-3519 (in Chinese with English abstract). [24] Wang, X. L., Crosta, G. B., Clague, J. J., et al., 2021. Fault Controls on Spatial Variation of Fracture Density and Rock Mass Strength within the Yarlung Tsangpo Fault Damage Zone (Southeastern Tibet). Engineering Geology, 291: 106238. https://doi.org/10.1016/j.enggeo.2021.106238 [25] Wu, J., Zhou, Z. F., Li, M. W., et al., 2019. Advance on the Methods for Predicting Water Inflow into Tunnels. Journal of Engineering Geology, 27(4): 890-902 (in Chinese with English abstract). [26] Xia, L., 2011. Rock Blocks in the Rock Arround the Underground Powerhouse of Three⁃Gorges Project (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [27] Xiong, K. Z., Ren, Z. Y., Zhao, Y. L., et al., 2021. Identification of Dangerous Rock Structural Planes and Fracture Network Model in Danxia Landform Based on UAV Aerial Survey: A Case Study at Simianshan Scenic Area of Chongqing. The Chinese Journal of Geological Hazard and Control, 32(5): 62-69 (in Chinese with English abstract). [28] Ye, M., 2014. Line Element Model for Fluid Flow in Three Dimensional Fracture Network and Its Modification (Dissertation). North China Electric Power University, Beijing (in Chinese with English abstract). [29] Yin, F. G., Tang, Y., Xu, B., 2021. Cenozoic Strike Slip Orogeny in Sanjiang Area, Southwestern China. Sedimentary Geology and Tethyan Geology, 41(1): 1-14 (in Chinese with English abstract). [30] Yin, Q., 2017. Experimental Study on Hydraulic Properties of Fractured Rock Mass in Complex Stress State (Dissertation). China University of Mining and Technology, Xuzhou (in Chinese with English abstract). [31] Yin, T. C., Chen, Q. F., 2020. Simulation⁃Based Investigation on the Accuracy of Discrete Fracture Network (DFN) Representation. Computers and Geotechnics, 121: 103487. https://doi.org/10.1016/j.compgeo.2020.103487 [32] Zhan, J. W., 2019. Research on Fine Descriptive Method of Geometric Characteristics of Complex Rock Mass Structures (Dissertation). Jilin University, Changchun (in Chinese with English abstract). [33] Zhang, H. W., 2019. Shear⁃Seepage⁃Heat Transfer Characteristics of Rock Fractures and a Fault EGS System (Dissertation). China University of Mining and Technology, Xuzhou (in Chinese with English abstract). [34] Zhang, W., 2013. Research of Evaluation Methods for Rock Mass Structures in the Wudongde Hydropower Reservoir Region (Dissertation). Jilin University, Changchun (in Chinese with English abstract). [35] Zhang, W., Han, B., Sun, H. L., et al., 2020. Non⁃Contact Collection and 3D Fracture Network Modelling for High⁃Steep Rock Slopes. Journal of Engineering Geology, 28(2): 221-231 (in Chinese with English abstract). [36] Zhang, Y., Ning, L. B., Yin, F., et al., 2020. New Method of Field Measurement and Calculation for Volumetric Fracture Rate of Rock Mass. Journal of Engineering Geology, 28(1): 10-18 (in Chinese with English abstract). [37] Zhao, J. J., Xie, M. L., Yu, J. L., et al., 2019. Experimental Study on Mechanical Properties and Damage Evolution of Fractured Rock under Freezing⁃Thawing Action. Journal of Engineering Geology, 27(6): 1199-1207 (in Chinese with English abstract). [38] Zheng, J., Deng, J. H., Wei, J. B., 2015. An Improved Method of Goodness⁃of⁃Fit Test for Fisher Distribution to Discontinuity Orientations. Chinese Journal of Rock Mechanics and Engineering, 34(8): 1561-1568 (in Chinese with English abstract). [39] Zhou, H. T., 2017. Study on the Pressure Seepage Evolution Characteristics and Hydraulic Mechanism of Fractured Rock Mass (Dissertation). China University of Mining and Technology, Xuzhou (in Chinese with English abstract). [40] Zhu, J. Y., 2013. Research and Application of K⁃Means Algorithm (Dissertation). Dalian University of Technology, Dalian (in Chinese with English abstract). [41] 陈金龙, 罗文行, 窦斌, 等, 2021. 涿鹿盆地三维多裂隙地质模型地温场数值模拟. 地质科技通报, 40(3): 22-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202103003.htm [42] 陈兴强, 2022. 断层破碎带对川藏交通廊道通麦隧道初始地应力场影响. 地球科学, 47(6): 2120-2129. doi: 10.3799/dqkx.2021.263 [43] 方开泰, 范剑青, 金辉, 等, 1990. 方向数据的统计分析(Ⅷ). 数理统计与管理, 9(2): 59-65. https://www.cnki.com.cn/Article/CJFDTOTAL-SLTJ198901015.htm [44] 高俊义, 2017. 稀疏不规则裂隙岩体水流‒传热对温度和应力影响的三维模型试验与离散元模拟研究(博士学位论文). 北京: 北京交通大学. [45] 何忱, 姚池, 杨建华, 等, 2019. 基于等效离散裂隙网络的三维裂隙岩体渗流模型. 岩石力学与工程学报, 38(S1): 2748-2759. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S1015.htm [46] 黄娜, 蒋宇静, 程远方, 等, 2021. 基于3D打印技术的复杂三维粗糙裂隙网络渗流特性试验及数值模拟研究. 岩土力学, 42(6): 1659-1668, 1680. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202106019.htm [47] 李冬伟, 刘健, 陈亮, 等, 2020. 三维裂隙网络建模技术修正及其工程应用. 地下空间与工程学报, 16(5): 1476-1483. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE202005025.htm [48] 李树武, 2012. 澜沧江乌弄龙水电站坝址右岸大型倾倒体变形特征、成因机制及稳定性研究(博士学位论文). 成都: 成都理工大学. [49] 刘博, 2020. 北京地区公路边坡岩石块体发育规律研究(硕士学位论文). 北京: 中国地质大学. [50] 刘泉声, 康永水, 刘小燕, 2011. 冻结岩体单裂隙应力场分析及热‒力耦合模拟. 岩石力学与工程学报, 30(2): 217-223. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201102002.htm [51] 刘竹, 2017. 圆盘裂隙网络渗流及溶质运移实验研究(硕士学位论文). 阜新: 辽宁工程技术大学. [52] 潘桂棠, 任飞, 尹福光, 等, 2020. 洋板块地质与川藏铁路工程地质关键区带. 地球科学, 45(7): 2293-2304. doi: 10.3799/dqkx.2020.070 [53] 王龙强, 2013. K均值聚类算法初始聚类中心的选取与改进(硕士学位论文). 沈阳: 东北大学. [54] 王立全, 王保弟, 李光明, 等, 2021. 东特提斯地质调查研究进展综述. 沉积与特提斯地质, 41(2): 283-296. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD202102014.htm [55] 王双, 2013. 节理产状概率模型研究及其在产状分组和岩坡不确定分析中的应用(硕士学位论文). 南京: 南京大学. [56] 王伟, 付豪, 邢林啸, 等, 2021. 基于扩展有限元法的碳酸盐岩地热储层岩体裂缝扩展行为. 地球科学, 46(10): 3509-3519. doi: 10.3799/dqkx.2021.005 [57] 吴建, 周志芳, 李鸣威, 等, 2019. 隧洞涌水量预测计算方法研究进展. 工程地质学报, 27(4): 890-902. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201904023.htm [58] 夏露, 2011. 三峡工程地下电站厂房岩石块体研究(博士学位论文). 北京: 中国地质大学. [59] 熊开治, 任志远, 赵亚龙, 等, 2021. 基于无人机航测的丹霞地貌区危岩结构面识别与三维裂隙网络模型: 以重庆四面山景区为例. 中国地质灾害与防治学报, 32(5): 62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202105007.htm [60] 叶茂, 2014. 三维裂隙网络线单元渗流模型及其校正(硕士学位论文). 北京: 华北电力大学. [61] 尹福光, 唐渊, 徐波, 2021. 西南三江地区新生代走滑造山. 沉积与特提斯地质, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD202101001.htm [62] 尹乾, 2017. 复杂受力状态下裂隙岩体渗透特性试验研究(博士学位论文). 徐州: 中国矿业大学. [63] 占洁伟, 2019. 复杂岩体结构的几何特征精细描述方法研究(博士学位论文). 长春: 吉林大学. [64] 张洪伟, 2019. 裂隙岩体剪切‒渗流‒传热特性及断层地热开发研究(博士学位论文). 徐州: 中国矿业大学. [65] 张文, 2013. 乌东德水电站库区岩体结构评价方法研究(博士学位论文). 长春: 吉林大学. [66] 张文, 韩博, 孙昊林, 等, 2020. 高陡岩质斜坡的结构面非接触式采集技术与三维裂隙网络模拟研究. 工程地质学报, 28(2): 221-231. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202002004.htm [67] 张杨, 宁立波, 尹峰, 等, 2020. 岩体体裂隙率野外测量及计算方法的研究. 工程地质学报, 28(1): 10-18. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202001002.htm [68] 赵建军, 解明礼, 余建乐, 等, 2019. 冻融作用下含裂隙岩石力学特性及损伤演化规律试验研究. 工程地质学报, 27(6): 1199-1207. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201906001.htm [69] 郑俊, 邓建辉, 魏进兵, 2015. 不连续面产状Fisher分布拟合度检验方法的改进. 岩石力学与工程学报, 34(8): 1561-1568. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201508008.htm [70] 周海涛, 2017. 裂隙岩体承压渗流演化特征及其水力学机制研究(博士学位论文). 徐州: 中国矿业大学. [71] 朱建宇, 2013. K均值算法研究及其应用(硕士学位论文). 大连: 大连理工大学.