Logging Identification of High Quality Shale of Niutitang Formation and Doushantuo Formation in Western Hubei
-
摘要: 以鄂西地区为例,利用钻井、测井及测试资料,开展牛蹄塘组和陡山沱组页岩岩相类型与地质属性(总有机碳含量、孔隙度、横向渗透率、脆性及孔隙类型)关系的研究.研究结果表明:鄂西地区共发育11类岩相页岩,不同岩相页岩间存在明显的地质属性差异.结合有机质页岩特征,识别出3种优质页岩类型:硅质页岩、富泥硅质页岩和混合质页岩.优质页岩含气量明显高于非优质页岩含气量,这证实了准确的优质页岩识别结果.通过对页岩测井影响因素的分析,总结出优质页岩具有高自然伽马、高电阻率、高声波时差、高铀、低密度、低钍、低钾(四高三低)的测井响应特征,从而提出适用于在鄂西高热演化区寻找具有低热演化程度,较强生烃潜力及易开发的页岩储层测井识别方法.Abstract: With Yichang as the research area in the paper, the relationships between lithofacies and geological property of Niutitang Formation and Doushantuo Formation shale were studied by drilling, logging and testing data (geological properties includes total organic carbon content, porosity, transverse permeability, brittleness and pore type). The study shows that there are 11 types of lithological shale developed in the western Hubei, and there are obvious differences in geological properties between the different lithological shale. In combination with the characteristics of organic shale, three types of high quality shale were identified: siliceous shale, mud-rich siliceous shale, and mixed shale. The high quality shale contains significantly higher gas contents than the non-high quality shale, which confirms the accuracy of high quality shale identification results. By analyzing the influencing factors of shale logging, it is summarized that high quality shale has the logging response characteristics of high natural gamma ray, high resistivity, high acoustic time difference, high uranium, low density, low thorium and low potassium (four high values and three low values) in conventional logging curves. Thus, a logging identification method is proposed and it is suitable for finding shale reservoirs with low thermal evolution degree, strong hydrocarbon generation potential and easy development in high thermal evolution area of western Hubei.
-
图 1 研究区区域地质背景及地层综合柱状图(以阳页1井为例)
据陈孝红等(2018a)修改
Fig. 1. Regional geological background and comprehensive bar chart of strata (take well YY1 as an example)
表 1 鄂西地区各岩相页岩地质属性差异特征
Table 1. Differential characteristics of geological properties of each lithofacies shales in western Hubei
岩相类型 有机质含量(%) 孔隙度(%) 横向渗透率(mD) 脆性度 孔隙类型 富硅灰质页岩 < 2.0 2.0 < φ ≤ 4.0 ≤ 0.001 高 微裂缝和粒内孔 灰质页岩 < 2.0 4.0 < φ > 0.001 高 粒缘缝和粒内孔 富硅泥质页岩 < 2.0 2.0 < φ ≤ 4.0 ≤ 0.001 低 - 富灰/硅混合质页岩 < 2.0 0.0 < φ ≤ 2.0 ≤ 0.001 高 粒间缝和粒内孔 富硅/泥混合质页岩 2.0~4.0 2.0 < φ ≤ 4.0 ≤ 0.001 低 - 富灰硅质页岩 > 4.0 0.0 < φ ≤ 2.0 ≤ 0.001 高 有机质孔、粒内孔和粒缘缝 混合质页岩 > 4.0 2.0 < φ ≤ 4.0 > 0.001 高 - 硅质页岩 > 4.0 2.0 < φ ≤ 4.0 > 0.001 高 有机质孔、粒间缝和粒间孔 富泥硅质页岩 2.0~4.0 2.0 < φ ≤ 4.0 > 0.001 高 有机质孔 表 2 鄂西地区优质页岩测井响应特征
Table 2. Logging response characteristics of high quality shale in western Hubei
测井曲线 曲线特征 影响因素 自然伽马 高值,一般高于100 API,局部存在低值 泥质含量、有机质含量 电阻率 相对的高值 干酪根或油气含量;黏土矿物含量; 有机质石墨化程度 声波时差 明显增大,较高,呈周波跳跃 干酪根或油气含量;页理发育程度 铀 高值 有机质含量 密度 中低值 有机质含量 钍 低值 重矿物含量 钾 低值 黏土矿物含量 表 3 优质页岩与非优质页岩测井响应特征值域
Table 3. Logging response characteristics of high quality shale and non-high quality shale
页岩类型 自然伽马(API) 声波时差(μs·m-1) 密度(g·cm-3) 电阻率
(Ω·m)铀
(%)钍
(mg·kg-1)钾
(%)优质页岩 > 150 > 200 > 2.6 > 3 000 > 8.5 > 7.8 > 1.7 非优质页岩 < 100 < 200 < 2.6 < 3 000 < 8.5 < 7.8 < 1.7 -
[1] Bai, L. H., Shi, W. Z., Zhang, X. M., et al., 2021. Characteristics of Permian Marine Shale and Its Sedimentary Environment in Xuanjing Area, South Anhui Province, Lower Yangtze Area. Earth Science, 46(6): 2204-2217 (in Chinese with English abstract). [2] Chen, Q., Zhang, J., Tang, X., et al., 2016. Relationship between Pore Type and Pore Size of Marine Shale: An Example from the Sinian-Cambrian Formation, Upper Yangtze Region, South China. International Journal of Coal Geology, 158: 13-28. doi: 10.1016/j.coal.2016.03.001 [3] Chen, X., Chen, L., Shu, J., et al., 2021. Evaluation of Shale Reservoir Quality by Geophysical Logging for Shuijingtuo Formation of Lower Cambrian in Yichang Area, Central Yangtze. Journal of Earth Science, 32(4): 766-777. doi: 10.1007/s12583-020-1051-1 [4] Chen, X., Chen, Q., Zhen, Y. Y., et al., 2018. Circumjacent Distribution Pattern of the Lungmachian Graptolitic Black Shale (Early Silurian) on the Yichang Uplift and Its Peripheral Region. Science in China (Series D: Earth Sciences), 48(9): 1198-1206 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG201809004.htm [5] Chen, X. H., Wang, C. S., Liu, A., et al., 2017. The Discovery of the Shale Gas in the Cambrian Shuijingtuo Formation of Yichang Area, Hubei Province. Geology in China, 44(1): 188-189 (in Chinese). [6] Chen, X. H., Wei, K., Zhang, B. M., et al., 2018a. Main Geological Factors Controlling Shale Gas Reservior in the Cambrian Shuijingtuo Formation in Yichang of Hubei Province as Well as Its and Enrichment Patterns. Geology in China, 45(2): 207-226 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201802002.htm [7] Chen, X. H., Zhang, B. M., Zhang, G. T., et al., 2018b. High Shale Gas Industry Flow Obtained from the Ordovician Wufeng Formation and the Silurian Longmaxi Formation of Yichang Area, Hubei Province. Geology in China, 45(1): 199-200 (in Chinese). [8] Chen, X. H., Zhang, G. T., Hu, Y., 2016. Deposit Environment of the Ediacaran Doushantuo Formation in Yichang Area, Western Hubei Province, China and Its Geological Significance for Shale Gas. Geology and Mineral Resources of South China, 32(2): 106-116 (in Chinese with English abstract). [9] Dong, T., He, S., Chen, M., et al., 2019. Quartz Types and Origins in the Paleozoic Wufeng-Longmaxi Formations, Eastern Sichuan Basin, China: Implications for Porosity Preservation in Shale Reservoirs. Marine and Petroleum Geology, 106: 62-73. doi: 10.1016/j.marpetgeo.2019.05.002 [10] Gai, H. F., Li, T. F., Wang, X., et al., 2020. Methane Adsorption Characteristics of Overmature Lower Cambrian Shales of Deepwater Shelf Facies in Southwest China. Marine and Petroleum Geology, 120: 104565. https://doi.org/10.1016/j.marpetgeo.2020.104565 [11] Gao, J., Li, Y. Q., He, S., et al., 2021. Exploration Discovery of Shale Gas and Its Indicative Significance to Mineralization of MVT Lead-Zinc Deposit in Yichang Area, West Hubei. Earth Science, 46(6): 2230-2245 (in Chinese with English abstract). [12] Huang, T., Cao, L. N., Cai, J. J., et al., 2019. Experimental Investigation on Rock Structure and Chemical Properties of Hard Brittle Shale under Different Drilling Fluids. Journal of Petroleum Science and Engineering, 181: 106185. https://doi.org/10.1016/j.petrol.2019.106185 [13] Leng, Y., Zhao, D. F., Guo, Y. H., et al., 2019. The Application Status of Shale Gas Reservoir Logging Evaluation. Unconventional Oil & Gas, 6(6): 117-123 (in Chinese with English abstract). [14] Li, A., Ding, W. L., Zhang, G. L., et al., 2016. Reservoir Characteristics of Marine Shale in the Malong Block of Eastern Yunnan Province and Comparison Analysis. Earth Science Frontiers, 23(2): 176-189 (in Chinese with English abstract). [15] Li, J. B., Wang, M., Lu, S. F., et al., 2020. A New Method for Predicting Sweet Spots of Shale Oil Using Conventional Well Logs. Marine and Petroleum Geology, 113(C): 104097. https://doi.org/10.1016/j.marpetgeo.2019.104097 [16] Liu, C., Yin, G. Z., Li, M. H., et al., 2019. Shale Permeability Model Considering Bedding Effect under True Triaxial Stress Conditions. Journal of Natural Gas Science and Engineering, 68: 102908. https://doi.org/10.1016/j.jngse.2019.102908 [17] Liu, L., 2017. Fine Logging Evaluation of Shale Gas Reservoir in the Weiyuan-Changning Area (Dissertation). Southwest Petroleum University, Chengdu (in Chinese with English abstract). [18] Lu, Y. B., Hao, F., Lu, Y. C., et al., 2020. Lithofacies and Depositional Mechanisms of the Wufeng-Longmaxi Organic-Rich Shales in the Upper Yangtze Area, South China. AAPG Bulletin, 104 (1): 97-129. [19] Meng, Z. P., Guo, Y. S., Liu, W., 2015. Relationship between Organic Carbon Content of Shale Gas Reservoir and Logging Parameters and Its Prediction Model. Journal of China Coal Society, 40(2): 247-253 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTXB201502003.htm [20] Pang, F., Zhang, Z. H., Zhang, J. F., et al., 2020. Progress and Prospect on Exploration and Development of Shale Gas in the Yangtze River Economic Belt. Earth Science, 45(6): 2152-2159 (in Chinese with English abstract). [21] Wang, C., Zhang, B. Q., Shu, Z. G., et al., 2018. Lithofacies Types and Reservoir Characteristics of Marine Shales of the Wufeng Formation-Longmaxi Formation in Fuling Area, the Sichuan Basin. Oil & Gas Geology, 39(3): 485-497 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT201803007.htm [22] Wang, D. Y., Yao, J., Chen, Z. X., et al., 2019a. Image-Based Core-Scale Real Gas Apparent Permeability from Pore-Scale Experimental Data in Shale Reservoirs. Fuel, 254: 115596. https://doi.org/10.1016/j.fuel.2019.06.004 [23] Wang, X. Q., Zhu, Y. M., Lash, G. G., et al., 2019b. Multi-Proxy Analysis of Organic Matter Accumulation in the Upper Ordovician-Lower Silurian Black Shale on the Upper Yangtze Platform, South China. Marine and Petroleum Geology, 103: 473-484. doi: 10.1016/j.marpetgeo.2019.03.013 [24] Wang, Y., Wang, L., Wang, J., et al., 2019c. Multiscale Characterization of Three-Dimensional Pore Structures in a Shale Gas Reservoir: A Case Study of the Longmaxi Shale in Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 66: 207-216. doi: 10.1016/j.jngse.2019.04.009 [25] Wang, P., Jiang, Z., Yin, L., et al., 2017. Lithofacies Classification and Its Effect on Pore Structure of the Cambrian Marine Shale in the Upper Yangtze Platform, South China: Evidence from FE-SEM and Gas Adsorption Analysis. Journal of Petroleum Science & Engineering, 156: 307-321. [26] Wang, Q. T., Wang, T. L., Liu, W. P., et al., 2019. Relationships among Composition, Porosity and Permeability of Longmaxi Shale Reservoir in the Weiyuan Block, Sichuan Basin, China. Marine and Petroleum Geology, 102: 33-47. doi: 10.1016/j.marpetgeo.2018.12.026 [27] Wang, R., Ding, W., Wang, X., et al., 2016. Logging Identification for the Lower Cambrian Niutitang Shale Reservoir in the Upper Yangtze Region, China: A Case Study of the Cengong Block, Guizhou Province. Journal of Natural Gas Geoscience, 1(3): 231-241. doi: 10.1016/j.jnggs.2016.08.004 [28] Wang, Y., Liu, L., Zheng, S., et al., 2019. Full-Scale Pore Structure and Its Controlling Factors of the Wufeng-Longmaxi Shale, Southern Sichuan Basin, China: Implications for Pore Evolution of Highly Overmature Marine Shale. Journal of Natural Gas Science and Engineering, 67: 134-146. doi: 10.1016/j.jngse.2019.04.020 [29] Wang, Y. X., Xu, S., Hao, F., et al., 2019. Geochemical and Petrographic Characteristics of Wufeng-Longmaxi Shales, Jiaoshiba Area, Southwest China: Implication for Organic Matter Differential Accumulation. Mar. Pet. Geol., 102: 138-154. doi: 10.1016/j.marpetgeo.2018.12.038 [30] Wu, L. Y., Hu, D. F., Lu, Y. C., et al., 2016. Advantageous Shale Lithofacies of Wufeng Formation Longmaxi Formation in Fuling Gas Field of Sichuan Basin, SW China. Petroleum Exploration and Development, 43(2): 208-217. doi: 10.1016/S1876-3804(16)30024-6 [31] Xu, S., Gou, Q. Y., Hao, F., et al., 2020. Shale Pore Structure Characteristics of the High and Low Productivity Wells, Jiaoshiba Shale Gas Field, Sichuan Basin, China: Dominated by Lithofacies or Preservation Condition?. Marine and Petroleum Geology, 114: 104211. doi: 10.1016/j.marpetgeo.2019.104211 [32] Yan, L., 2019. Comprehensive Logging Evaluation Technology and Application Research for Marine Shale Gas in Southern Sichuan (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract). [33] Yang, W., He, S., Iglauer, S., et al., 2019. Porosity Characteristics of Different Lithofacies in Marine Shale: A Case Study of Neoproterozoic Sinian Doushantuo Formation in Yichang Area, China. Journal of Petroleum Science and Engineering, 187(23): 106856. [34] Zheng, D. Y., Wu, S. X., Hou, M. C., 2021. Fully Connected Deep Network: An Improved Method to Predict TOC of Shale Reservoirs from Well Logs. Marine and Petroleum Geology, 132: 105205. doi: 10.1016/j.marpetgeo.2021.105205 [35] Zhou, S. L., Yin, S., Wang, F. Q., et al., 2017. Experimental Analysis of the Effect of Stress on Shale Reservoir Brittleness and Its Application. Petroleum Drilling Techniques, 45(3): 113-120 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYZT201703023.htm [36] Zhu, L. Q., Zhou, X. Q., Zhang, C. M., 2021. Rapid Identification of High-Quality Marine Shale Gas Reservoirs Based on the Oversampling Method and Random Forest Algorithm. Artificial Intelligence in Geosciences, 2: 76-81. https://doi.org/10.1016/J.AIIG.2021.12.001 [37] Zhu, Y. Q., Wang, X. Z., Feng, M. Y., et al., 2016. Lithofacies Classification and Its Relationship with Reservoir of the Lower Paleozoic Wufeng-Longmaxi Formation in the Eastern Sichuan Basin. Lithologic Reservoirs, 28(5): 59-66 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YANX201605007.htm [38] Zou, C. N., Dong, D. Z., Wang, Y. M., et al., 2015. Shale Gas in China: Characteristics, Challenges and Prospects (Ⅰ). Petroleum Exploration and Development, 42(6): 689-701 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SKYK201506002.htm [39] Zou, C. N., Dong, D. Z., Wang, Y. M., et al., 2016. Shale Gas in China: Characteristics, Challenges and Prospects (Ⅱ). Petroleum Exploration and Development, 43(2): 166-178 (in Chinese with English abstract). [40] 白卢恒, 石万忠, 张晓明, 等, 2021. 下扬子皖南宣泾地区二叠系海相页岩特征及其沉积环境. 地球科学, 46(6): 2204-2217. doi: 10.3799/dqkx.2020.372 [41] 陈旭, 陈清, 甄勇毅, 等, 2018. 志留纪初宜昌上升及其周缘龙马溪组黑色笔石页岩的圈层展布模式. 中国科学(D辑: 地球科学), 48(9): 1198-1206. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201809006.htm [42] 陈孝红, 王传尚, 刘安, 等, 2017. 湖北宜昌地区寒武系水井沱组探获页岩气. 中国地质, 44(1): 188-189. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201701014.htm [43] 陈孝红, 危凯, 张保民, 等, 2018a. 湖北宜昌寒武系水井沱组页岩气藏主控地质因素和富集模式. 中国地质, 45(2): 207-226. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201802002.htm [44] 陈孝红, 张保民, 张国涛, 等, 2018b. 湖北宜昌地区奥陶系五峰组‒志留系龙马溪组获页岩气高产工业气流. 中国地质, 45(1): 199-200. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201801021.htm [45] 陈孝红, 张国涛, 胡亚, 2016. 鄂西宜昌地区埃迪卡拉系陡山沱组页岩沉积环境及其页岩气地质意义. 华南地质与矿产, 32(2): 106-116. doi: 10.3969/j.issn.1007-3701.2016.02.002 [46] 高键, 李英强, 何生, 等, 2021. 鄂西宜昌地区页岩气勘探发现对MVT铅锌矿成矿的指示意义. 地球科学, 46(6): 2230-2245. doi: 10.3799/dqkx.2020.186 [47] 冷玥, 赵迪斐, 郭英海, 等, 2019. 页岩气储层测井评价技术研究与应用现状. 非常规油气, 6(6): 117-123. doi: 10.3969/j.issn.2095-8471.2019.06.019 [48] 李昂, 丁文龙, 张国良, 等, 2016. 滇东地区马龙区块筇竹寺组海相页岩储层特征及对比研究. 地学前缘, 23(2): 176-189. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602021.htm [49] 刘璐, 2017. 威远‒长宁构造页岩气储层测井精细评价(硕士学位论文). 成都: 西南石油大学. [50] 孟召平, 郭彦省, 刘尉, 2015. 页岩气储层有机碳含量与测井参数的关系及预测模型. 煤炭学报, 40(2): 247-253. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201502003.htm [51] 庞飞, 张作衡, 张君峰, 等, 2020. 长江经济带页岩气勘探开发进展及建议. 地球科学, 45(6): 2152-2159. doi: 10.3799/dqkx.2020.061 [52] 王超, 张柏桥, 舒志国, 等, 2018. 四川盆地涪陵地区五峰组‒龙马溪组海相页岩岩相类型及储层特征. 石油与天然气地质, 39(3): 485-497. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201803007.htm [53] 颜磊, 2019. 川南海相页岩气测井综合评价技术及应用研究(博士学位论文). 成都: 成都理工大学. [54] 周顺林, 尹帅, 王凤琴, 等, 2017. 应力对泥页岩储层脆性影响的试验分析及应用. 石油钻探技术, 45(3): 113-120. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZT201703023.htm [55] 朱逸青, 王兴志, 冯明友, 等, 2016. 川东地区下古生界五峰组‒龙马溪组页岩岩相划分及其与储层关系. 岩性油气藏, 28(5): 59-66. doi: 10.3969/j.issn.1673-8926.2016.05.007 [56] 邹才能, 董大忠, 王玉满, 等, 2015. 中国页岩气特征、挑战及前景(一). 石油勘探与开发, 42(6): 689-701. doi: 10.11698/PED.2015.06.01 [57] 邹才能, 董大忠, 王玉满, 等, 2016. 中国页岩气特征、挑战及前景(二). 石油勘探与开发, 43(2): 166-178. doi: 10.11698/PED.2016.02.02