Stream Runoff Formation and Hydrological Regulation Mechanism in Mountainous Alpine Regions: A Review
-
摘要: 高寒山区河道径流的形成与水文调节机制是认识流域水资源形成与转化过程,以及预测气候变化下流域水文过程响应规律的基础. 通过分析国内外相关文献,从高寒山区河道径流的水分来源及其气候变化下的影响机制、高寒山区不同类型下垫面对河道径流的调节机制、高寒山区不同类型地下水对河道径流的调节机制三个方面综述其研究进展,总结问题与不足,发现气候变化是影响高寒山区河道径流形成过程的主导因素,探究水文输入、下垫面、地下水等次要影响因素与气候变化之间的响应规律是揭示高寒山区河道径流水文调节机制的关键科学问题,并提出未来研究的总体趋势和改进建议,为高寒山区河道径流形成机制及其对气候变化的响应规律研究提供参考依据.Abstract: The formation and regulation mechanism of stream runoff in mountainous alpine regions is the basis of understanding the formation mechanism and transformation process of water resources in basins and predicting the response of hydrological processes in alpine watersheds to climate change. By analyzing relevant literature on hydrological processes in cold regions, we reviewed their research progress from the following three aspects: (1) the water source of stream runoff in mountainous alpine regions and its influence mechanism under climate change, (2) the regulation mechanism of stream runoff on different underlying surfaces in mountainous alpine regions, (3) the regulation mechanism of groundwater on stream runoff in mountainous alpine regions. We found that climate change was the dominant factor affecting the formation process of stream runoff in mountainous alpine regions. Moreover, the response relationship between the secondary influencing factors of stream runoff formation (such as hydrological inputs, underlying surfaces, groundwater) and climate change in mountainous alpine regions is the key to revealing the regulation mechanism of stream runoff. We proposed the future research trend and suggestions for improvement, providing a theoretical basis for the runoff formation mechanism and its response to climate change in the mountainous alpine regions.
-
Key words:
- mountainous alpine regions /
- stream runoff /
- runoff formation /
- hydrological regulation /
- climate change /
- hydrogeology
-
图 1 祁连山“多年冻土+季节冻土”型流域产、汇流过程的概念模型(改绘自常启昕, 2019)
Fig. 1. The conceptual model of the mechanism of runoff formation in alpine-gorge catchments of Qilian Mountains, composed of "permafrost" and "seasonally frozen ground"
图 2 冻土消融期和冻结期两种情景下河水与浅层地下水交互关系变化概念图(改绘自Ma et al., 2017)
Fig. 2. Conceptual diagram of the interaction between river water and shallow groundwater under two scenarios of frozen period and thawed period
图 3 高寒山区孔隙含水层类型分类概念示意图(改绘自Ma et al., 2017)
Fig. 3. Schematic diagram of classification of porous aquifers in mountainous alpine regions
表 1 高寒山区孔隙含水层的水力特征
Table 1. Hydraulic characteristics of porous aquifers in mountainous alpine regions
类别 沉积厚度(m) 沉积成因 沉积物组成 孔径和连通性 含水层类型 第Ⅰ类 5~30 冰碛和岩屑堆 无分选的角砾和巨砾 具有高连通性的大孔径 以潜水为主 第Ⅱ类 5~30 冰碛和冰川沉积 分选性很差的次棱角状的泥质砾石 具有中等连通性的大孔径 以承压为主 第Ⅲ类 20~50 冰水和冰碛沉积 分选性很差,带有不稳定性的巨石,次棱角状泥质砂砾卵石 具有中等连通性的中-大孔径 暖季:潜水
冷季:承压 -
[1] An, Z.H., Sun, Z.Y., Hu, Y.L., et al., 2018. Export of Dissolved Organic Carbon in Streams Draining Permafrost-Dominated Areas: A Review. Geological Science and Technology Information, 37(1): 204-211 (in Chinese with English abstract). [2] Bales, R.C., Molotch, N.P., Painter, T.H., et al., 2006. Mountain Hydrology of the Western United States. Water Resources Research, 42(8): W08432. https://doi.org/10.1029/2005wr004387 [3] Baraer, M., McKenzie, J.M., Mark, B.G., et al., 2009. Characterizing Contributions of Glacier Melt and Groundwater during the Dry Season in a Poorly Gauged Catchment of the Cordillera Blanca (Peru). Advances in Geosciences, 22: 41-49. https://doi.org/10.5194/adgeo-22-41-2009 [4] Blume, T., Zehe, E., Bronstert, A., 2007. Rainfall-Runoff Response, Event-Based Runoff Coefficients and Hydrograph Separation. Hydrological Sciences Journal, 52(5): 843-862. https://doi.org/10.1623/hysj.52.5.843 [5] Brown, L.E., Hannah, D.M., Milner, A.M., 2006. Thermal Variability and Stream Flow Permanency in an Alpine River System. River Research and Applications, 22(4): 493-501. https://doi.org/10.1002/rra.915 [6] Caballero, Y., Jomelli, V., Chevallier, P., et al., 2002. Hydrological Characteristics of Slope Deposits in High Tropical Mountains (Cordillera Real, Bolivia). CATENA, 47(2): 101-116. https://doi.org/10.1016/S0341-8162(01)00179-5 [7] Carey, S.K., Quinton, W.L., 2004. Evaluating Snowmelt Runoff Generation in a Discontinuous Permafrost Catchment Using Stable Isotope, Hydrochemical and Hydrometric Data. Hydrology Research, 35(4/5): 309-324. https://doi.org/10.2166/nh.2004.0023 [8] Carey, S.K., Woo, M.K., 1999. Hydrology of Two Slopes in Subarctic Yukon, Canada. Hydrological Processes, 13(16): 2549-2562. https://doi.org/10.1002/(sici)1099-1085(199911)13:162549:aid-hyp938>3.0.co;2-h doi: 10.1002/(sici)1099-1085(199911)13:162549:aid-hyp938>3.0.co;2-h [9] Carey, S.K., Woo, M.K., 2000. The Role of Soil Pipes as a Slope Runoff Mechanism, Subarctic Yukon, Canada. Journal of Hydrology, 233(1/2/3/4): 206-222. https://doi.org/10.1016/S0022-1694(00)00234-1 [10] Carey, S.K., Woo, M.K., 2001. Slope Runoff Processes and Flow Generation in a Subarctic, Subalpine Catchment. Journal of Hydrology, 253(1-4): 110-129. https://doi.org/10.1016/S0022-1694(01)00478-4 [11] Carey, S.K., Woo, M.K., 2013. Hydrogeomorphic Relations among Soil Pipes, Flow Pathways, and Soil Detachments within a Permafrost Hillslope. Physical Geography, 23(2): 95-114. https://doi.org/10.2747/0272-3646.23.2.95 [12] Chang, Q.X., 2019. Water Sources of Stream Runoff in Alpine Region and Their Seasonal Variations—A Case Study of Hulugou Catchment in the Headwaters of the Heihe River(Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [13] Chang, Q.X., Ma, R., Sun, Z.Y., et al., 2018. Using Isotopic and Geochemical Tracers to Determine the Contribution of Glacier-Snow Meltwater to Streamflow in a Partly Glacierized Alpine-Gorge Catchment in Northeastern Qinghai-Tibet Plateau. Journal of Geophysical Research: Atmospheres, 123(18): 10037-10056. https://doi.org/10.1029/2018JD028683 [14] Chang, Q.X., Sun, Z.Y., Ma, R., et al., 2016. A Review of Groundwater Flow and Its Interaction with Surface Water in Permafrost Region. Advances in Science and Technology of Water Resources, 36(5): 87-94 (in Chinese with English abstract). [15] Chen, R.S., Yang, Y., Han, C.T., et al., 2014. Field Experimental Research on Hydrological Function over Several Typical Underlying Surfaces in the Cold Regions of Western China. Advances in Earth Science, 29(4): 507-514 (in Chinese with English abstract). [16] Cheng, G.D., Jin, H.J., 2013. Groundwater in the Permafrost Regions on the Qinghai-Tibet Plateau and it Changes. Hydrogeology & Engineering Geology, 40(1): 1-11 (in Chinese with English abstract). [17] Cheng, G.D., Zhao, L., Li, R., et al., 2019. Characteristic, Changes and Impacts of Permafrost on Qinghai-Tibet Plateau. Chinese Science Bulletin, 64(27): 2783-2795(in Chinese with English abstract). doi: 10.1360/TB-2019-0191 [18] Clow, D.W., Sueker, J.K., 2000. Relations between Basin Characteristics and Stream Water Chemistry in Alpine/Subalpine Basins in Rocky Mountain National Park, Colorado. Water Resources Research, 36(1): 49-61. https://doi.org/10.1029/1999WR900294 [19] Cochand, M., Christe, P., Ornstein, P., et al., 2019. Groundwater Storage in High Alpine Catchments and Its Contribution to Streamflow. Water Resources Research, 55(4): 2613-2630. https://doi.org/10.1029/2018WR022989 [20] Cui, Y.H., Song, Y., Su, X.L., 2017. Impacts of Climate Change in Qilian Mountain Area on Runoff in the Heihe River Basin. Yellow River, 39(5): 15-20 (in Chinese with English abstract). [21] Cuo, L., Zhang, Y.X., Zhu, F.X., et al., 2014. Characteristics and Changes of Streamflow on the Tibetan Plateau: A Review. Journal of Hydrology: Regional Studies, 2: 49-68. https://doi.org/10.1016/j.ejrh.2014.08.004 [22] Evans, S.G., Ge, S.M., Voss, C.I., et al., 2018. The Role of Frozen Soil in Groundwater Discharge Predictions for Warming Alpine Watersheds. Water Resources Research, 54(3): 1599-1615. https://doi.org/10.1002/2017WR022098 [23] Finger, D., Heinrich, G., Gobiet, A., et al., 2012. Projections of Future Water Resources and Their Uncertainty in a Glacierized Catchment in the Swiss Alps and the Subsequent Effects on Hydropower Production during the 21st Century. Water Resources Research, 48(2): W02521. https://doi.org/10.1029/2011WR010733 [24] Finger, D., Hugentobler, A., Huss, M., et al., 2013. Identification of Glacial Meltwater Runoff in a Karstic Environment and Its Implication for Present and Future Water Availability. Hydrology and Earth System Sciences, 17(8): 3261-3277. https://doi.org/10.5194/hess-17-3261-2013 [25] Ge, S., Wu, Q.B., Lu, N., et al., 2008. Groundwater in the Tibet Plateau, Western China. Geophysical Research Letters, 35(18): L18403. https://doi.org/10.1029/2008GL034809 [26] Geyer, T., Birk, S., Liedl, R., et al., 2008. Quantification of Temporal Distribution of Recharge in Karst Systems from Spring Hydrographs. Journal of Hydrology, 348(3/4): 452-463. https://doi.org/10.1016/j.jhydrol.2007.10.015 [27] Goldscheider, N., 2005. Fold Structure and Underground Drainage Pattern in the Alpine Karst System Hochifen-Gottesacker. Eclogae Geologicae Helvetiae, 98(1): 1-17. https://doi.org/10.1007/s00015-005-1143-z [28] Gremaud, V., Goldscheider, N., Savoy, L., et al., 2009. Geological Structure, Recharge Processes and Underground Drainage of a Glacierised Karst Aquifer System, Tsanfleuron-Sanetsch, Swiss Alps. Hydrogeology Journal, 17(8): 1833-1848. https://doi.org/10.1007/s10040-009-0485-4 [29] Haga, H., Matsumoto, Y., Matsutani, J., et al., 2005. Flow Paths, Rainfall Properties, and Antecedent Soil Moisture Controlling Lags to Peak Discharge in a Granitic Unchanneled Catchment. Water Resources Research, 41(12): W12410. https://doi.org/10.1029/2005WR004236 [30] Han, L., Menzel, L., 2022. Hydrological Variability in Southern Siberia and the Role of Permafrost Degradation. Journal of Hydrology, 604: 127203. https://doi.org/10.1016/j.jhydrol.2021.127203 [31] He, Y.Q., 2014. Snow Hydrological Simulation in Alpine Areas Using Remote Sensing and GIS Technologies (Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract). [32] Hood, J.L., Hayashi, M., 2015. Characterization of Snowmelt Flux and Groundwater Storage in an Alpine Headwater Basin. Journal of Hydrology, 521: 482-497. https://doi.org/10.1016/j.jhydrol.2014.12.041 [33] Houston, J., 2002. Groundwater Recharge through an Alluvial Fan in the Atacama Desert, Northern Chile: Mechanisms, Magnitudes and Causes. Hydrological Processes, 16(15): 3019-3035. https://doi.org/10.1002/hyp.1086 [34] Huang, L., Zheng, C.M., Liu, J., et al., 2012. Application of Distributed Temperature Sensing to Study Groundwater-Surface Water Interactions in the Heihe River Basin. Hydrogeology & Engineering Geology, 39(2): 1-6 (in Chinese with English abstract). [35] Huang, Y., Mao, W.Q., Wang, X.Y., et al., 2020. Temporal and Spatial Distribution of Precipitation in the Qilian Mountain and Its Surrounding Areas in Recent 39 Years. Journal of Arid Meteorology, 38(4): 527-534 (in Chinese with English abstract). [36] Immerzeel, W.W., Lutz, A.F., Andrade, M., et al., 2020. Importance and Vulnerability of the World's Water Towers. Nature, 577(7790): 364-369. https://doi.org/10.1038/s41586-019-1822-y [37] Jansson, P., Hock, R., Schneider, T., 2003. The Concept of Glacier Storage: A Review. Journal of Hydrology, 282(1/2/3/4): 116-129. https://doi.org/10.1016/S0022-1694(03)00258-0 [38] Kane, D.L., Hinzman, L.D., Benson, C.S., et al., 1989. Hydrology of Imnavait Creek, an Arctic Watershed. Ecography, 12(3): 262-269. https://doi.org/10.1111/j.1600-0587.1989.tb00845.x [39] Käser, D., Hunkeler, D., 2016. Contribution of Alluvial Groundwater to the Outflow of Mountainous Catchments. Water Resources Research, 52(2): 680-697. https://doi.org/10.1002/2014WR016730 [40] Katsuyama, M., Tani, M., Nishimoto, S., 2010. Connection between Streamwater Mean Residence Time and Bedrock Groundwater Recharge/Discharge Dynamics in Weathered Granite Catchments. Hydrological Processes, 24(16): 2287-2299. https://doi.org/10.1002/hyp.7741 [41] King, A.C., Raiber, M., Cox, M.E., et al., 2017. Comparison of Groundwater Recharge Estimation Techniques in an Alluvial Aquifer System with an Intermittent/Ephemeral Stream (Queensland, Australia). Hydrogeology Journal, 25(6): 1759-1777. https://doi.org/10.1007/s10040-017-1565-5 [42] Lan, Y.C., Wu, Y.Q., Kang, E.S., et al., 2001. Response of Runoff from the Northern Slope of the Qilian Mountain to Global Climatic Changes. Journal of Lanzhou University, 37(4): 125-132 (in Chinese with English abstract). [43] Langston, G., Hayashi, M., Roy, J.W., 2013. Quantifying Groundwater-Surface Water Interactions in a Proglacial Moraine Using Heat and Solute Tracers. Water Resources Research, 49(9): 5411-5426. https://doi.org/10.1002/wrcr.20372 [44] Larkin, R.G., Sharp Jr, M., 1992. On the Relationship between River-Basin Geomorphology, Aquifer Hydraulics, and Ground-Water Flow Direction in Alluvial Aquifers. Geological Society of America Bulletin, 104(12): 1608-1620. https://doi.org/10.1130/0016-7606(1992)1041608:otrbrb>2.3.co;2 doi: 10.1130/0016-7606(1992)1041608:otrbrb>2.3.co;2 [45] Lauber, U., Kotyla, P., Morche, D., et al., 2014. Hydrogeology of an Alpine Rockfall Aquifer System and Its Role in Flood Attenuation and Maintaining Baseflow. Hydrology and Earth System Sciences, 18(11): 4437-4452. https://doi.org/10.5194/hess-18-4437-2014 [46] Li, B.F., Chen, Y.N., Chen, Z.S., et al., 2012. The Effect of Climate Change during Snowmelt Period on Streamflow in the Mountainous Areas of Northwest China. Acta Geographica Sinica, 67(11): 1461-1470 (in Chinese with English abstract). [47] Li, Y., Wang, J.L., Jin, M.G., et al., 2021. Hydrodynamic Characteristics of Jinan Karst Spring System Identified by Hydrologic Time-Series Data. Earth Science, 46(7): 2583-2593 (in Chinese with English abstract). [48] Liu, F.J., Williams, M.W., Caine, N., 2004. Source Waters and Flow Paths in an Alpine Catchment, Colorado Front Range, United States. Water Resources Research, 40(9): W09401. https://doi.org/10.1029/2004WR003076 [49] Liu, J., Liu, T., Huang, Y., et al., 2017. Simulation and Analysis of the Hydrological Processes in the Yarkant River Basin Based on Remote Sensing Data. Progress in Geography, 36(6): 753-761 (in Chinese with English abstract). doi: 10.18306/dlkxjz.2017.06.010 [50] Liu, J.T., Han, X.L., Liu, J.L., et al., 2019. Understanding of Critical Zone Structures and Hydrological Connectivity: A Review. Advances in Water Science, 30(1): 112-122(in Chinese with English abstract). [51] Lu, N., Godt, J.W., 2013. Hillslope Hydrology and Stability. Cambridge University Press, Cambridge. https://doi.org/10.1017/cbo9781139108164 [52] Lyon, S.W., Destouni, G., 2010. Changes in Catchment-Scale Recession Flow Properties in Response to Permafrost Thawing in the Yukon River Basin. International Journal of Climatology, 30(14): 2138-2145. https://doi.org/10.1002/joc.1993 [53] Ma, R., Sun, Z.Y., Chang, Q.X., et al., 2021. Control of the Interactions between Stream and Groundwater by Permafrost and Seasonal Frost in an Alpine Catchment, Northeastern Tibet Plateau, China. Journal of Geophysical Research: Atmospheres, 126(5): e2020JD033689. https://doi.org/10.1029/2020JD033689 [54] Ma, R., Sun, Z.Y., Hu, Y.L., et al., 2017. Hydrological Connectivity from Glaciers to Rivers in the Qinghai-Tibet Plateau: Roles of Suprapermafrost and Subpermafrost Groundwater. Hydrology and Earth System Sciences, 21(9): 4803-4823. https://doi.org/10.5194/hess-21-4803-2017 [55] Maloszewski, P., Stichler, W., Zuber, A., et al., 2002. Identifying the Flow Systems in a Karstic-Fissured-Porous Aquifer, the Schneealpe, Austria, by Modelling of Environmental 18O and 3H Isotopes. Journal of Hydrology, 256(1/2): 48-59. https://doi.org/10.1016/S0022-1694(01)00526-1 [56] McClymont, A.F., Hayashi, M., Bentley, L.R., et al., 2010. Groundwater Flow and Storage within an Alpine Meadow-Talus Complex. Hydrology and Earth System Sciences, 14(6): 859-872. https://doi.org/10.5194/hess-14-859-2010 [57] McClymont, A.F., Hayashi, M., Bentley, L.R., et al., 2012. Locating and Characterising Groundwater Storage Areas within an Alpine Watershed Using Time-Lapse Gravity, GPR and Seismic Refraction Methods. Hydrological Processes, 26(12): 1792-1804. https://doi.org/10.1002/hyp.9316 [58] Meybeck, M., Green, P., Vörösmarty, C., 2001. A New Typology for Mountains and other Relief Classes. Mountain Research and Development, 21(1): 34-45. https://doi.org/10.1659/0276-4741(2001)021[0034:antfma]2.0.co;2 [59] Millares, A., Polo, M.J., Losada, M.A., 2009. The Hydrological Response of Baseflow in Fractured Mountain Areas. Hydrology and Earth System Sciences, 13(7): 1261-1271. https://doi.org/10.5194/hess-13-1261-2009 [60] Mueller, M.H., Weingartner, R., Alewell, C., 2013. Importance of Vegetation, Topography and Flow Paths for Water Transit Times of Base Flow in Alpine Headwater Catchments. Hydrology and Earth System Sciences, 17(4): 1661-1679. https://doi.org/10.5194/hess-17-1661-2013 [61] Muir, D.L., Hayashi, M., McClymont, A.F., 2011. Hydrological Storage and Transmission Characteristics of an Alpine Talus. Hydrological Processes, 25(19): 2954-2966. https://doi.org/10.1002/hyp.8060 [62] Otto, J.C., Schrott, L., Jaboyedoff, M., et al., 2009. Quantifying Sediment Storage in a High Alpine Valley (Turtmanntal, Switzerland). Earth Surface Processes and Landforms, 34(13): 1726-1742. https://doi.org/10.1002/esp.1856 [63] Pan, Z., Sun, Z.Y., Ma, R., et al., 2018. Isotopic Investigation of Rainfall-Runoff Generation in an Alpine Catchment in Headwater Regions of Heihe River, Northeast Qinghai-Tibet Plateau. Earth Science, 43(11): 4226-4236 (in Chinese with English abstract). [64] Paznekas, A., Hayashi, M., 2016. Groundwater Contribution to Winter Streamflow in the Canadian Rockies. Canadian Water Resources Journal / Revue Canadienne Des Ressources Hydriques, 41(4): 484-499. https://doi.org/10.1080/07011784.2015.1060870 [65] Qu, C., 2017. Yao Tandong: Love the Glacier and Guard the Pure Land. Invention & Innovation, (3): 20-21 (in Chinese with English abstract). [66] Quinton, W.L., Gray, D.M., Marsh, P., 2000. Subsurface Drainage from Hummock-Covered Hillslopes in the Arctic Tundra. Journal of Hydrology, 237(1/2): 113-125. https://doi.org/10.1016/S0022-1694(00)00304-8 [67] Quinton, W.L., Marsh, P., 1998. The Influence of Mineral Earth Hummocks on Subsurface Drainage in the Continuous Permafrost Zone. Permafrost and Periglacial Processes, 9(3): 213-228. https://doi.org/10.1002/(SICI)1099-1530(199807/09)9:3213:AID-PPP285>3.0.CO;2-E doi: 10.1002/(SICI)1099-1530(199807/09)9:3213:AID-PPP285>3.0.CO;2-E [68] Quinton, W.L., Shirazi, T., Carey, S.K., et al., 2005. Soil Water Storage and Active-Layer Development in a Sub-Alpine Tundra Hillslope, Southern Yukon Territory, Canada. Permafrost and Periglacial Processes, 16(4): 369-382. https://doi.org/10.1002/ppp.543 [69] Rhodes, K.A., Proffitt, T., Rowley, T., et al., 2017. The Importance of Bank Storage in Supplying Baseflow to Rivers Flowing through Compartmentalized, Alluvial Aquifers. Water Resources Research, 53(12): 10539-10557. https://doi.org/10.1002/2017WR021619 [70] Sass, O., 2006. Determination of the Internal Structure of Alpine Talus Deposits Using Different Geophysical Methods (Lechtaler Alps, Austria). Geomorphology, 80(1/2): 45-58. https://doi.org/10.1016/j.geomorph.2005.09.006 [71] Sass, O., Wollny, K., 2001. Investigations Regarding Alpine Talus Slopes Using Ground-Penetrating Radar (GPR) in the Bavarian Alps, Germany. Earth Surface Processes and Landforms, 26(10): 1071-1086. https://doi.org/10.1002/esp.254 [72] Schrott, L., Hufschmidt, G., Hankammer, M., et al., 2003. Spatial Distribution of Sediment Storage Types and Quantification of Valley Fill Deposits in an Alpine Basin, Reintal, Bavarian Alps, Germany. Geomorphology, 55(1/2/3/4): 45-63. https://doi.org/10.1016/S0169-555X(03)00131-4 [73] Shen, S., Song, C.Q., Cheng, C.X., et al., 2020. The Coupling Impact of Climate Change on Streamflow Complexity in the Headwater Area of the Northeastern Tibetan Plateau across Multiple Timescales. Journal of Hydrology, 588: 124996. https://doi.org/10.1016/j.jhydrol.2020.124996 [74] Somers, L.D., McKenzie, J.M., 2020. A Review of Groundwater in High Mountain Environments. Wiley Interdisciplinary Reviews: Water, 7(6): e1475. https://doi.org/10.1002/wat2.1475 [75] Song, C.L., Wang, G.X., Sun, X.Y., et al., 2021. River Runoff Components Change Variably and Respond Differently to Climate Change in the Eurasian Arctic and Qinghai-Tibet Plateau Permafrost Regions. Journal of Hydrology, 601: 126653. https://doi.org/10.1016/j.jhydrol.2021.126653 [76] Song, Q., 2013. Response of Runoff to Environment Change in the West of Tianshan Mountain(Dissertation). Xinjiang Agricultural University, Urumqi (in Chinese with English abstract). [77] Su, T.X., 2021. Research on the Impact of Vegetation Dynamics on Streamflow and Ecology in the Upper Heihe River Basin (Dissertation). Lanzhou University, Lanzhou (in Chinese with English abstract). [78] Tague, C., Grant, G., Farrell, M., et al., 2008. Deep Groundwater Mediates Streamflow Response to Climate Warming in the Oregon Cascades. Climatic Change, 86(1-2): 189-210. https://doi.org/10.1007/s10584-007-9294-8 [79] Veettil, B. K., Kamp, U., 2021. Glacial Lakes in the Andes under a Changing Climate: A Review. Journal of Earth Science, 32(6): 1575-1593. https://doi.org/10.1007/s12583-020-1118-z [80] Wang, J.Y., Wang, Y.H., Li, X., et al., 2006. Water Situation and Runoff Production in the Pailugou Basin of Qilian Mountains. Journal of Glaciology and Geocryology, 28(1): 62-69 (in Chinese with English abstract). [81] Wang, Z.J., Zhou, H., Qi, L.X., et al., 2020. Method for Characterizing Structure and Hydrological Response in Karst Water Systems: A Case Study in Y-M System in Three Gorges Area. Earth Science, 45(12): 4512-4523 (in Chinese with English abstract). [82] Wetzel, K.F., 2003. Runoff Production Processes in Small Alpine Catchments within the Unconsolidated Pleistocene Sediments of the Lainbach Area (Upper Bavaria). Hydrological Processes, 17(12): 2463-2483. https://doi.org/10.1002/hyp.1254 [83] Woo, M.K., 2012. Permafrost Hydrology. Springer Science & Business Media, Berlin Heidelberg. 519. https://doi.org/10.1007/978-3-642-23462-0 [84] Woo, M.K., Kane, D.L., Carey, S.K., et al., 2008. Progress in Permafrost Hydrology in the New Millennium. Permafrost and Periglacial Processes, 19(2): 237-254. https://doi.org/10.1002/ppp.613 [85] Woo, M.K., Steer, P., 1982. Occurrence of Surface Flow on Arctic Slopes, Southwestern Cornwallis Island. Canadian Journal of Earth Sciences, 19(12): 2368-2377. https://doi.org/10.1139/e82-206 [86] Xu, J.J., Qu, X., Zeng, Z.Y., et al., 2021. River Runoff Simulation and Analysis for Typical Basins Based on High-Resolution Brightness Temperature Observations. Advances in Water Science, 32(6): 877-889 (in Chinese with English abstract). [87] Xu, X.D., Lu, C.G., Shi, X.H., et al., 2008. World Water Tower: an Atmospheric Perspective. Geophysical Research Letters, 35(20): L20815. https://doi.org/10.1029/2008GL035867 [88] Yang, D.Q., Kane, D.L., Hinzman, L.D., et al., 2002. Siberian Lena River Hydrologic Regime and Recent Change. Journal of Geophysical Research: Atmospheres, 107(D23): ACL14-1. https://doi.org/10.1029/2002JD002542 [89] Yao, Y.Y., Zheng, C.M., Andrews, C.B., et al., 2021. Role of Groundwater in Sustaining Northern Himalayan Rivers. Geophysical Research Letters, 48(10): e2020GL092354. https://doi.org/10.1029/2020GL092354 [90] Zhang, J.S., Xu, M., Zhang, Q., et al., 2022. Estimating Groundwater Runoff Modulus Method Based on Remote Sensing in Mountainous Areas of Southeast Tibet. Earth Science, 47(2): 642-651 (in Chinese with English abstract). [91] Zhang, Z.Q., Wang, L.X., Yu, X.X., et al., 2001. Impacts of Forest Vegetation on Runoff Generation Mechanisms: A Review. Journal of Natural Resources, 16(1): 79-84 (in Chinese with English abstract). [92] Шепелёв, В. В., 2014. Supramafrost Waters in the Cryolithozone. China Water & Power Press, Beijing (in Chinese). [93] Шепелёв, В. В., 2014. 寒区冻结层上水. 北京: 中国水利水电出版社, 128. [94] 安志宏, 孙自永, 胡雅璐, 等, 2018. 多年冻土区河流溶解性有机碳输出的研究进展. 地质科技情报, 37(1): 204-211. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201801028.htm [95] 常启昕, 2019. 高寒山区河道径流水分来源及其季节变化规律: 以黑河上游葫芦沟流域为例(博士学位论文). 武汉: 中国地质大学. [96] 常启昕, 孙自永, 马瑞, 等, 2016. 冻土区地下水流过程及其与地表水转化关系研究进展. 水利水电科技进展, 36(5): 87-94. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSD201605020.htm [97] 陈仁升, 阳勇, 韩春坛, 等, 2014. 高寒区典型下垫面水文功能小流域观测试验研究. 地球科学进展, 29(4): 507-514. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201404011.htm [98] 程国栋, 金会军, 2013. 青藏高原多年冻土区地下水及其变化. 水文地质工程地质, 40(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201301007.htm [99] 程国栋, 赵林, 李韧, 等, 2019. 青藏高原多年冻土特征、变化及影响. 科学通报, 64(27): 2783-2795. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201927005.htm [100] 崔延华, 宋悦, 粟晓玲, 2017. 祁连山区气候变化对黑河出山径流的影响. 人民黄河, 39(5): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-RMHH201705005.htm [101] 何咏琪, 2014. 基于遥感及GIS技术的寒区积雪水文模拟研究(硕士学位论文). 兰州: 兰州大学. [102] 黄丽, 郑春苗, 刘杰, 等, 2012. 分布式光纤测温技术在黑河中游地表水与地下水转换研究中的应用. 水文地质工程地质, 39(2): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG201202003.htm [103] 黄颖, 毛文茜, 王潇雅, 等, 2020. 近39a祁连山及其周边地区降水量时空分布特征. 干旱气象, 38(4): 527-534. https://www.cnki.com.cn/Article/CJFDTOTAL-GSQX202004001.htm [104] 蓝永超, 仵彦卿, 康尔泗, 等, 2001. 祁连山北麓出山径流对气候变化的响应. 兰州大学学报, 37(4): 125-132. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK200104023.htm [105] 李宝富, 陈亚宁, 陈忠升, 等, 2012. 西北干旱区山区融雪期气候变化对径流量的影响. 地理学报, 67(11): 1461-1470. https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201211007.htm [106] 李严, 王家乐, 靳孟贵, 等, 2021. 运用水文时间序列分析识别济南泉域岩溶发育特征. 地球科学, 46(7): 2583-2593. doi: 10.3799/dqkx.2020.236 [107] 刘蛟, 刘铁, 黄粤, 等, 2017. 基于遥感数据的叶尔羌河流域水文过程模拟与分析. 地理科学进展, 36(6): 753-761. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201706010.htm [108] 刘金涛, 韩小乐, 刘建立, 等, 2019. 山坡表层关键带结构与水文连通性研究进展. 水科学进展, 30(1): 112-122. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201901013.htm [109] 潘钊, 孙自永, 马瑞, 等, 2018. 黑河上游高寒山区降雨-径流形成过程的同位素示踪. 地球科学, 43(11): 4226-4236. doi: 10.3799/dqkx.2018.552 [110] 屈辰, 2017. 姚檀栋: 情系冰川守净土. 发明与创新·大科技, (3): 20-21. https://www.cnki.com.cn/Article/CJFDTOTAL-FMGX201703010.htm [111] 宋倩, 2013. 天山西部山区径流过程对变化环境的响应研究(硕士学位论文). 乌鲁木齐: 新疆农业大学. [112] 苏同宣, 2021. 黑河上游植被动态对径流变化和生态的影响研究(硕士学位论文). 兰州: 兰州大学. [113] 王金叶, 王彦辉, 李新, 等, 2006. 祁连山排露沟流域水分状况与径流形成. 冰川冻土, 28(1): 62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT200601008.htm [114] 王泽君, 周宏, 齐凌轩, 等, 2020. 岩溶水系统结构和水文响应机制的定量识别方法: 以三峡鱼迷岩溶水系统为例. 地球科学, 45(12): 4512-4523. doi: 10.3799/dqkx.2020.261 [115] 许继军, 屈星, 曾子悦, 等, 2021. 基于高精度遥感亮温的典型流域河道径流模拟分析. 水科学进展, 32(6): 877-889. https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ202106007.htm [116] 张家森, 许模, 张强, 等, 2022. 基于遥感技术估算藏东南山区地下水径流模数方法. 地球科学, 47(2): 642-651. doi: 10.3799/dqkx.2021.034 [117] 张志强, 王礼先, 余新晓, 等, 2001. 森林植被影响径流形成机制研究进展. 自然资源学报, 16(1): 79-84. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX200101014.htm