Numerical Simulation for Data Analyses of First Gas Hydrate Trial Production Test in Shenhu Area
-
摘要: 2017年神狐海域第一次试开采成功后,许多学者应用数值模拟对试采数据进行研究,但模拟结果与实际试采数据存在偏差.为了探求原因,本研究建立了二维柱坐标系下水合物降压开采数学模型,开发了相应的程序,能够模拟渗透率等储层参数非均匀分布条件下开采过程,同时能够模拟开采井压力等动态参数对开采过程的影响.通过数值实验,得出偏差原因:(1)泥质粉砂型储层存在水敏性,水合物分解产生的淡水引起粘土膨胀,使渗透率下降;(2)须将开采井压力作为动态输入参量.据此,修正了渗透率模型,考虑了开采井压力随时间的变化,得到的模拟产气量与试采数据十分接近,使降压开采数值模拟更逼近实际情况.Abstract: After the first successful trial production in the Shenhu area of the South China Sea in 2017, many scholars have used numerical methods to simulate this process, but the simulation results have always been deviated from the data of actual trial production. In order to explore the reasons for the deviation, a mathematical model is established for depressurization discovery in a two-dimensional cylindrical coordinate system, and a corresponding program is developed in this study, to simulate not only the non-uniform distribution of reservoir parameters such as permeability and so on, but also the impact of dynamic parameter such as the wellbore pressure on the production process. Making full use of the flexibility of the autonomous program, the reasons for the deviation are obtained through numerical experiment analysis: (1) The muddy silt-type reservoir has water sensitivity, and the fresh water produced by the decomposition of hydrate causes clay swelling, which makes the permeability decrease; (2) The production well pressure must be taken as the dynamic input parameter. Based on this, the permeability model was revised, and the time-varying pressure in production well was dynamically input. The simulated gas production obtained is very close to the trial production data, making the numerical simulation of depressurization closer to the actual situation.
-
Key words:
- natural gas hydrate /
- Shenhu area /
- deviation /
- permeability /
- production well pressure /
- numerical simulation /
- petroleum geology
-
表 1 水合物藏各层中地质和物性参数
Table 1. Geological and physical parameters in each layer of hydrate reservoir
水合物藏 层厚(m) 孔隙度 渗透率(md) 水饱
和度气饱
和度水合物饱和度 水合物层 35 0.35 2.9 0.660 0.000 0.34 混合层 15 0.33 1.5 0.526 0.164 0.31 气态烃层 27 0.32 7.4 0.922 0.078 0.00 表 2 南海神狐海域第一次试采产气数据
Table 2. The production data of the first trial in Shehu area of South China Sea
生产时间(d) 日均产气量(104 m3) 累积产气量(104 m3) 8 $ 1.6 $ $ 12.5 $ 16 $ 1.0 $ $ 16.1 $ 22 $ 0.84 $ $ 18.4 $ 31 $ 0.68 $ $ 21.1 $ 42 $ 0.56 $ $ 23.5 $ 60 $ 0.52 $ $ 30.9 $ -
[1] Ahmadi, G., Ji, C., Smith, D. H., 2007. Natural Gas Production from Hydrate Dissociation: An Axisymmetric Model. Journal of Petroleum Science and Engineering, 58(1): 245-258. https://doi.org/10.1016/j.petrol.2007.01.001 [2] Clarke, M. A., Bishnoi, P. R., 2004. Determination of the Intrinsic Rate Constant and Activation Energy of CO2 Gas Hydrate Decomposition Using In-Situ Particle Size Analysis. Chemical Engineering Science, 59(14): 2983-2993. https://doi.org/10.1016/j.ces.2004.04.030 [3] Cui, Y., Lu, C., Wu, M., et al., 2018. Review of Exploration and Production Technology of Natural Gas Hydrate. Advances in Geo-Energy Research, 2(1): 53-62. https://doi.org/10.26804/ager.2018.01.05 [4] Genuchten, V. T. M., 1980. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5): 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x [5] He, Y. L., Liang, J.Q., Shi, W.Z., et al., 2022. Influence Factors and Accumulation Modes of Gas Hydrate in the South Low Uplift and Its Surrounding Area of Qiongdongnan Basin. Earth Science, 47(5): 1711-1727 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2021.207 [6] Kim, H. C., Bishnoi, P. R., Heidemann, R. A., et al., 1987. Kinetics of Methane Hydrate Decomposition. Chemical Engineering Science, 42(7): 1645-1653. https://doi.org/10.1016/0009-2509(87)80169-0 [7] Kvenvolden, K. A., 1999. Colloquium Paper: Potential Effects of Gas Hydrate on Human Welfare. Proc. Natl. Acad. Sci. USA, 96: 3420-3426. doi: 10.1073/pnas.96.7.3420 [8] Li, B., Xu, T. F., Zhang, G. B., et al., 2018a. An Experimental Study on Gas Production from Fracture-Filled Hydrate by CO2 and CO2/N2 Replacement. Energy Conversion and Management, 165: 738-747. https://doi.org/10.1016/j.enconman.2018.03.095 [9] Li, J. F., Ye, J. L., Qin, X. W., et al., 2018b. The First Offshore Natural Gas Hydrate Production Test in South China Sea. China Geology, 1(1): 5-16. https://doi.org/10.31035/cg2018003 [10] Li, S.X., Liu, J.L., Wu, D.D., et al., 2018. Numerical Study of Hydrate Depressurization Dissociation in Shenhu Area. Science Technology and Engineering, 18(24): 38-43 (in Chinese with English abstract). [11] Li, S.X., Yu, X., Li, S., et al., 2020. Prediction of Gas Production of Shenhu Hydrate Reservoir by Depressurization and Its Stimulation Treatment. China Offshore Oil and Gas, 32(6): 122-127 (in Chinese with English abstract). [12] Masuda, Y., 2002. A Field-Scale Simulation Study on Gas Productivity of Formations Containing Gas Hydrates. International Conference on Gas Hydrates, Vancouver. [13] Moridis, G. J., Kowalsky, M. B., Pruess, K., 2007. Depressurization-Induced Gas Production from Class-1 Hydrate Deposits. SPE Reservoir Evaluation & Engineering, 10(5): 458-481. https://doi.org/10.2118/97266-PA [14] Qi, Y. X., Wu, W. D., Liu, Y. F., et al., 2012. The Influence of NaCl Ions on Hydrate Structure and Thermodynamic Equilibrium Conditions of Gas Hydrates. Fluid Phase Equilibria, 325: 6-10. https://doi.org/10.1016/j.fluid.2012.04.009 [15] Sloan, E. D. J., 1998. Clathrate Hydrates of Natural Gases, Second Edition, Revised and Expanded. CRC Press, London. [16] Sun, Y. H., Ma, X. L., Guo, W., et al., 2019. Numerical Simulation of the Short- and Long-Term Production Behavior of the First Offshore Gas Hydrate Production Test in the South China Sea. Journal of Petroleum Science and Engineering, 181: 106196. https://doi.org/10.1016/j.petrol.2019.106196 [17] Wang, B., Dong, H., Liu, Y., et al., 2017. Evaluation of Thermal Stimulation on Gas Production from Depressurized Methane Hydrate Deposits. Applied Energy: S0306261917310206. https://doi.org/10.1016/j.apenergy.2017.08.005 [18] Wang, W.B., Cui, W., Xiao, J.Q., 2019. Influence of Permeability on Low Pressure Transmission in Gas Hydrate Depressurization. Energy Conservation, 38(12): 96-101 (in Chinese with English abstract) [19] Wang, W.B., Liu, X., Cui, W., et al., 2021. Numerical Simulation on Depressurization Production of Natural Gas Hydrate. Chinese Journal of Geophysics, 64(6): 2097-2107 (in Chinese with English abstract) [20] Wang, X.J., Jin, J.P., Guo, Y.Q., et al., 2021. The Characteristics of Gas Hydrate Accumulation and Quantitative Estimation in the North Slope of South China Sea. Earth Science, 46(3): 1038-1057 (in Chinese with English abstract). [21] Yamamoto, K., Wang, X. X., Tamaki, M., et al., 2019. The Second Offshore Production of Methane Hydrate in the Nankai trough and Gas Production Behavior from a Heterogeneous Methane Hydrate Reservoir. RSC Advances, 9(45): 25987-26013. https://doi.org/10.1039/C9RA00755E [22] Ye, J.L., Qin, X.W., Xie, W.W., et al., 2020. Main Progress of the Second Gas Hydrate Trial Production in the South China Sea. Geology in China, 47(3): 557-568 (in Chinese with English abstract). [23] Yu, T., Guan, G. Q., Abudula, A., et al., 2019.3D Visualization of Fluid Flow Behaviors during Methane Hydrate Extraction by Hot Water Injection. Energy, 188(C): 116110. https://doi.org/10.1016/j.energy.2019.116110 [24] Yu, T., Guan, G. Q., Wang, D., et al., 2021. Numerical Investigation on the Long-Term Gas Production Behavior at the 2017 Shenhu Methane Hydrate Production Site. Applied Energy, 285: 116466. https://doi.org/10.1016/j.apenergy.2021.116466 [25] Zhang, J., Sun, Q., Wang, Z., et al., 2021. Prediction of Hydrate Formation and Plugging in the Trial Production Pipes of Offshore Natural Gas Hydrates. Journal of Cleaner Production, 316(4): 128262. https://doi.org/10.1016/j.jclepro.2021.128262 [26] Zhang, L. X., Yang, L., Wang, J. Q., et al., 2017. Enhanced CH4 Recovery and CO2 Storage via Thermal Stimulation in the CH4/CO2 Replacement of Methane Hydrate. Chemical Engineering Journal, 308: 40-49. https://doi.org/10.1016/j.cej.2016.09.047 [27] Zhang, R., Zang, S.B., Ren, X.J., 2012. Low Permeability Reservoir Water Sensitivity Damage Factor Analysis. Inner Mongolia Petrochemical Industry, 38(21): 15-17 (in Chinese with English abstract). [28] 李淑霞, 刘佳丽, 武迪迪, 等, 2018. 神狐海域水合物藏降压开采的数值模拟. 科学技术与工程, 18(24): 38-43. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201824006.htm [29] 李淑霞, 于笑, 李爽, 等, 2020. 神狐水合物藏降压开采产气量预测及增产措施研究. 中国海上油气, 32(6): 122-127. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202006015.htm [30] 何玉林, 梁金强, 石万忠, 等, 2022. 琼东南盆地南部低凸起及其周缘区天然气水合物富集影响因素和成藏模式. 地球科学, 45(5): 1711-1727. doi: 10.3799/dqkx.2021.207 [31] 王文博, 崔伟, 肖加奇, 2019. 天然气水合物降压开采中渗透率对低压传递的影响. 节能, 38(12): 96-101 https://www.cnki.com.cn/Article/CJFDTOTAL-JNJN201912033.htm [32] 王文博, 刘晓, 崔伟, 等, 2021. 天然气水合物降压开采数值模拟研究. 地球物理学报, 64(6): 2097-2107. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202106019.htm [33] 王秀娟, 靳佳澎, 郭依群, 等, 2021. 南海北部天然气水合物富集特征及定量评价. 地球科学, 46(3): 1038-1057. doi: 10.3799/dqkx.2020.321 [34] 叶建良, 秦绪文, 谢文卫, 等, 2020. 中国南海天然气水合物第二次试采主要进展. 中国地质, 47(3): 557-568. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202003002.htm [35] 张蕊, 臧士宾, 任晓娟, 2012. 低渗储层岩石水敏性损害因素分析. 内蒙古石油化工, 38(21): 15-17. https://www.cnki.com.cn/Article/CJFDTOTAL-NMSH201221008.htm