Carbonate Reservoirs Characteristics and Hydrocarbon Accumulation in Beikang Basin, Southern South China Sea
-
摘要: 在南海扩张过程中微板块断裂、碰撞、拼接的构造背景下,南海南部中新世以来发育碳酸盐岩台地及生物礁,经过后期成岩改造形成了大量碳酸盐岩储层并蕴藏着丰富的油气资源.为了了解该海域碳酸盐岩储层的发育特征和成因机制,以北康盆地高精度二维地震资料为基础并结合邻区岩心、薄片资料,对该区域碳酸盐岩储层发育的类型、储集空间、成岩作用以及控制因素开展了系统研究.结果表明,南海南部碳酸盐岩储层类型多且储集空间丰富,主要有两类,分别为礁滩储层和不整合面岩溶储层;发育多种孔隙类型,包括原生孔隙和次生孔隙,以次生孔隙为主,包括铸模孔、粒内溶孔、粒间溶孔和晶内溶孔等. 该区域碳酸盐岩储集空间主要受白垩化作用、溶蚀作用和白云岩化的建设性改造,并且主要受构造、沉积、古气候和流体活动因素的控制.北康盆地碳酸盐岩可以作为良好的储层,并具有良好的油气成藏条件,能形成“下生上储”的碳酸盐岩油气藏.Abstract: In the context of the fracture, collision, and splicing of microplates during the expansion of the South China Sea, carbonate platforms and reefs have developed in the southern South China Sea since the Miocene. After later diagenetic transformation, a large number of carbonate reservoirs have been formed and contain rich hydrocarbon resources. In order to understand the development characteristics and genetic mechanism of carbonate reservoirs in this area, a systematic study was carried out on the types, storage spaces, diagenesis and control factors of carbonate reservoirs in this area based on high-precision 2D seismic data and combined with core and thin section data. The analysis shows that there are many types of carbonate reservoirs in the southern part of the South China Sea, and there are mainly three types, namely reef and shoal reservoir, karst reservoir and dolomite reservoir. A variety of pore types are developed, including primary pore and secondary pore, which is dominated by secondary pore, including mold pore, intracrystalline dissolved pore, intergranular pore and intracrystalline pore. The carbonate reservoir space in this region is mainly reconstructed by chalkization, dissolution and dolomization. The development of carbonate reservoirs is mainly controlled by tectonic, sedimentary, paleoclimate and fluid activities, and can be used as a good reservoir. The Beikang Basin has favorable hydrocarbon conditions and can form carbonate hydrocarbon reservoirs with "lower generation and upper storage".
-
图 7 南海南部南康台地碳酸盐岩白垩化作用形成大量孔隙(据Rahman et al., 2011)
Fig. 7. The carbonate rocks of the Nankang platform in the southern South China Sea formed a large number of pores through chalkization(from Rahman et al., 2011)
图 8 曾母盆地南康台地碳酸盐岩储层储集空间类型及特征
据Zampetti et al.(2003)和Vahrenkamp et al.(2004). a. 亮晶生物碎屑灰岩,Jintan-3井,1 682.75 m,见大的生物碎粒内溶孔与小的粒内溶孔呈网状相连;b. 亮晶生物碎屑灰岩,Jintan-3井,1 830 m,泥质含量少,见生物碎屑内的结构空腔;c. 亮晶生物碎屑灰岩,发育生物礁碎屑的粒内溶孔;d. 细晶白云岩,见残余阴影,粒间孔和粒间溶孔发育;e. 泥晶颗粒灰岩,裂缝中见亮晶方解石胶结;f. 亮晶颗粒灰岩,见缝合线及次生溶孔
Fig. 8. The types and characteristics of carbonate reservoirs at Nankang platform of Zengmu Basin
图 9 南海南部曾母盆地南康台地白云石特征(据Wilson et al., 2013)
Fig. 9. The characteristics of dolomite formed by recrystallization of Nankang platform at Zengmu Basin in southern South China Sea(from Wilson et al., 2013)
图 10 南海南部曾母盆地南康台地Mega碳酸盐台地及流体活动(据Vahrenkamp et al., 2004修改)
Fig. 10. Mega carbonate platform and fluid flow at Nankang platform of Zengmu Basin in the southern South China Sea (modified after Vahrenkamp et al., 2004)
-
[1] Ding, W. W., 2021. Continental Margin Dynamics of South China Sea: From Continental Break⁃Up to Seafloor Spreading. Earth Science, 46(3): 790-800 (in Chinese with English abstract). [2] Hutchison, C. S., 2004. Marginal Basin Evolution: The Southern South China Sea. Marine and Petroleum Geology, 21(9): 1129-1148. https://doi.org/10.1016/j.marpetgeo.2004.07.002 [3] Koša, E., 2015. Sea⁃Level Changes, Shoreline Journeys, and the Seismic Stratigraphy of Central Luconia, Miocene⁃Present, Offshore Sarawak, NW Borneo. Marine and Petroleum Geology, 59: 35-55. doi: 10.1016/j.marpetgeo.2014.07.005 [4] Li, Q. Y., Wang, P. X., Zhao, Q. H., et al., 2006. A 33 Ma Lithostratigraphic Record of Tectonic and Paleoceanographic Evolution of the South China Sea. Marine Geology, 230(3-4): 217-235. https://doi.org/10.1016/j.margeo.2006.05.006 [5] Liu, E. T., Zhao, J. X., Wang, H., et al., 2021. LA⁃ICPMS In⁃Situ U⁃Pb Geochronology of Low⁃Uranium Carbonate Minerals and Its Application to Reservoir Diagenetic Evolution Studies. Journal of Earth Science, 32(4): 872-879. https://doi.org/10.1007/s12583⁃020⁃1084⁃5 [6] Lü, C. L., 2012. Geological Evolution and Hydrocarbon Potential of Cenozoic Carbonate Platforms, Southern South China Sea (Dissertation). Institute of Oceanology, University of Chinese Academy of Sciences, Qingdao (in Chinese with English abstract). [7] Ma, Y. S., Cai, X. Y., Zhao, P. R., et al., 2010. Formation Mechanism of Deep⁃Buried Carbonate Reservoir and Its Model of Three⁃Element Controlling Reservoir: A Case Study from the Puguang Oilfield in Sichuan. Acta Geologica Sinica, 84(8): 1087-1094 (in Chinese with English abstract). [8] Madon, M., Kim, C. L., Wong, R., 2013. The Structure and Stratigraphy of Deepwater Sarawak, Malaysia: Implications for Tectonic Evolution. Journal of Asian Earth Sciences, 76: 312-333. https://doi.org/10.1016/j.jseaes.2013.04.040 [9] Menier, D., Pierson, B., Chalabi, A., et al., 2014. Morphological Indicators of Structural Control, Relative Sea⁃Level Fluctuations and Platform Drowning on Present⁃Day and Miocene Carbonate Platforms. Marine and Petroleum Geology, 58: 776-788. https://doi.org/10.1016/j.marpetgeo.2014.01.016 [10] Perrin, C., 2002. Tertiary: The Emergence of Modern Reef Ecosystems. In: Flgel, E., Kiessling, W., Golonka, J., eds., Phanerozoic Reef Patterns. SEPM Special Publication, 72: 584-621. [11] Purser, B. H., 1978. Early Diagenesis and the Preservation of Porosity in Jurassic Limestones. Journal of Petroleum Geology, 1(2): 83-94. https://doi.org/10.1111/j.1747⁃5457.1978.tb00612.x [12] Qiu, Y., Huang, W. K., Du, W. B., et al., 2021. Analysis on the Formation of the Thin Continental Crust in the South China Sea. Earth Science, 46(3): 899-915 (in Chinese with English abstract). [13] Rahman, M. H., Pierson, B. J., Wan Yusoff, W. I., 2011. Classification of Microporosity in Carbonates: Examples from Miocene Carbonate Reservoirs of Central Luconia, Offshore Sarawak, Malaysia. International Petroleum Technology Conference, Bangkok. [14] Vahrenkamp, V. C., David, F., Duijndam, P., et al., 2004. Growth Architecture, Faulting, and Karstification of a Middle Miocene Carbonate Platform, Luconia Province, Offshore Sarawak, Malaysia. AAPG Memoir, 81: 329-350. [15] Wang, H. B., Yao, B. C., Liang, J. Q., et al., 2001. Tectonic Characteristics and Division of the Beikang Basin. Marine Geology & Quaternary Geology, 21(2): 49-54 (in Chinese with English abstract). [16] Wang, L. J., Sun, Z., Yao, Y. J., et al., 2021. Development Characteristics of Nido Carbonate Platform and Its Tectonic Controls in the Southeast of South China Sea Margin. Earth Science, 46(3): 956-974 (in Chinese with English abstract). [17] Wang, L. L., Wu, N. Y., Zhou, Z. Y., et al., 2002. History of the Cenozoic Sedimentary Evolution of the Beikang Basin, Southwestern South China Sea. Geology in China, 29(1): 96-102 (in Chinese with English abstract). [18] Wilson, M. E. J., Ee Wah, E. C., Dorobek, S., et al., 2013. Onshore to Offshore Trends in Carbonate Sequence Development, Diagenesis and Reservoir Quality across a Land⁃Attached Shelf in SE Asia. Marine and Petroleum Geology, 45: 349-376. https://doi.org/10.1016/j.marpetgeo.2013.03.011 [19] Wu, S. G., Zhang, X. Y., 2015. Response of Cenozoic Carbonate Platform on Tectonic Evolution in the Conjugated Margin of South China Sea. Earth Science, 40(2): 234-248 (in Chinese with English abstract). [20] Wu, X. C., Wang, Q. F., 2010. Chalky Texture Diagenetic Environments and Genesis of Carbonate Rocks. Journal of Palaeogeography, 12(1): 1-16 (in Chinese with English abstract). [21] Wu, X. C., Wang, Q. F., Chen, S. Z., et al., 2011. Considering Controls on Development and Distribution of Reef Reservoirs in South China Sea from the Hydrocarbon Accumulation Potential of Tertiary Reefs in the World. China Offshore Oil and Gas, 23(4): 218-224 (in Chinese with English abstract). [22] Xie, S. P., Chang, C. H., Xie, Q., et al., 2007. Intraseasonal Variability in the Summer South China Sea: Wind Jet, Cold Filament, and Recirculations. Journal of Geophysical Research: Oceans, 112(C10): 1-11. https://doi.org/10.1029/2007JC004238 [23] Xie, S. P., Xie, Q., Wang, D. X., et al., 2003. Summer Upwelling in the South China Sea and Its Role in Regional Climate Variations. Journal of Geophysical Research: Oceans, 108(C8): 1-13. https://doi.org/10.1029/2003JC001867 [24] Xie, X. N., Zhang, C., Ren, J. Y., et al., 2011. Effects of Distinct Tectonic Evolutions on Hydrocarbon Accumulation in Northern and Southern Continental Marginal Basins of South China Sea. Chinese Journal of Geophysics, 54(12): 3280-3291 (in Chinese with English abstract). [25] Xu, H., Lu, Y. C., Shi, H. S., et al., 2009. High⁃Precision Organic Reef Sequence Stratigraphy of Beikang Basin and Sequence Evolution Model of Neogene Organic Reefs in Nansha Islands Sea Area. Journal of Tropical Oceanography, 28(2): 48-54 (in Chinese with English abstract). [26] Yan, W., Zhang, G. X., Zhang, L., et al., 2018a. Seismic Responses and Distribution Characteristics of the Miocene Carbonate Platforms in the Beikang Basin of Southern South China Sea. Marine Geology & Quaternary Geology, 38(6): 118-126 (in Chinese with English abstract). [27] Yan, W., Zhang, G. X., Zhang, L., et al., 2018b. Focused Fluid Flow Systems and Their Implications for Hydrocarbon Accumulations on the Southern Margin of South China Sea. Geology in China, 45(1): 39-47 (in Chinese with English abstract). [28] Yang, M. H., Zhang, H. H., Liao, Z. B., et al., 2015. Petroleum Systems of the Major Sedimentary Basins in Nansha Sea Waters (South China Sea). Earth Science Frontiers, 22(3): 48-58 (in Chinese with English abstract). [29] Yang, Z., Zhang, G. X., Zhang, L., et al., 2017. The Style and Hydrocarbon Prospects of Reefs in the Beikang Basin, Southern South China Sea. Geology in China, 44(3): 428-438 (in Chinese with English abstract). [30] Zampetti, V., Schlager, W., van Konijnenburg, J. H., et al., 2003. Depositional History and Origin of Porosity in a Miocene Carbonate Platform of Central Luconia, Offshore Sarawak. Bulletin of the Geological Society of Malaysia, 47: 139-152. https://doi.org/10.7186/bgsm47200311 [31] Zampetti, V., Schlager, W., van Konijnenburg, J. H., et al., 2004. Architecture and Growth History of a Miocene Carbonate Platform from 3D Seismic Reflection Data; Luconia Province, Offshore Sarawak, Malaysia. Marine and Petroleum Geology, 21(5): 517-534. https://doi.org/10.1016/j.marpetgeo.2004.01.006 [32] Zhang, G. C., Tang, W., Xie, X. J., et al., 2017. Petroleum Geological Characteristics of Two Basin Belts in Southern Continental Margin in South China Sea. Petroleum Exploration and Development, 44(6): 849-859 (in Chinese with English abstract). [33] Zhang, G. C., Zhu, W. L., Mi, L. J., et al., 2010. The Theory of Hydrocarbon Genernation Controlled by Source Rock and Heat from Circle Distribution of Outside⁃Oil Fields and Inside⁃Gas Fields in South China Sea. Acta Sedimentologica Sinica, 28(5): 987-1005 (in Chinese with English abstract). [34] Zhang, G. X., Bai, Z. L., 1998. The Characteristics of Structural Styles and Their Influences on Oil and Gas Accumulation of the Wan'an Basin in the Southwestern South China Sea. Experimental Petroleum Geology, 20(3): 210-216 (in Chinese with English abstract). [35] Zhang, L., Wang, L. L., Yi, H., 2003. The Formation and Evolution of Beikang Basin. China Offshore Oil and Gas (Geology), 17(4): 245-248 (in Chinese with English abstract). [36] Zhang, Q., Lü, F. L., He, X. S., et al., 2018. Progress and Enlightenment of Oil and Gas Exploration in the South China Sea in Recent Five Years. China Petroleum Exploration, 23(1): 54-61 (in Chinese with English abstract). [37] 丁巍伟, 2021. 南海大陆边缘动力学: 从陆缘破裂到海底扩张. 地球科学, 46(3): 790-800. doi: 10.3799/dqkx.2020.303 [38] 吕彩丽, 2012. 南沙海区新生代碳酸盐岩台地形成演化及油气意义(博士学位论文). 青岛: 中国科学院研究生院(海洋研究所). [39] 马永生, 蔡勋育, 赵培荣, 等, 2010. 深层超深层碳酸盐岩优质储层发育机理和"三元控储"模式: 以四川普光气田为例. 地质学报, 84(8): 1087-1094. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201008002.htm [40] 邱燕, 黄文凯, 杜文波, 等, 2021. 南海边缘海减薄陆壳成因剖析. 地球科学, 46(3): 899-915. doi: 10.3799/dqkx.2020.393 [41] 王宏斌, 姚伯初, 梁金强, 等, 2001. 北康盆地构造特征及其构造区划. 海洋地质与第四纪地质, 21(2): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ200102011.htm [42] 王利杰, 孙珍, 姚永坚, 等, 2021. 南海东南部陆缘Nido灰岩发育特征及其构造控制因素. 地球科学, 46(3): 956-974. doi: 10.3799/dqkx.2021.009 [43] 王嘹亮, 吴能友, 周祖翼, 等, 2002. 南海西南部北康盆地新生代沉积演化史. 中国地质, 29(1): 96-102. doi: 10.3969/j.issn.1000-3657.2002.01.016 [44] 吴时国, 张新元, 2015. 南海共轭陆缘新生代碳酸盐台地对海盆构造演化的响应. 地球科学, 40(2): 234-248. doi: 10.3799/dqkx.2015.017 [45] 吴熙纯, 王权锋, 2010. 碳酸盐岩白垩状结构成岩环境及成因. 古地理学报, 12(1): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201001003.htm [46] 吴熙纯, 王权锋, 陈斯忠, 等, 2011. 从世界第三纪生物礁的油气储集潜能看中国南海生物礁储层发育和分布的控制因素. 中国海上油气, 23(4): 218-224. doi: 10.3969/j.issn.1673-1506.2011.04.002 [47] 解习农, 张成, 任建业, 等, 2011. 南海南北大陆边缘盆地构造演化差异性对油气成藏条件控制. 地球物理学报, 54(12): 3280-3291. doi: 10.3969/j.issn.0001-5733.2011.12.026 [48] 许红, 陆永潮, 施和生, 等, 2009. 南沙群岛海域北康盆地生物礁高精度层序地层学及其新近纪生物礁层序演化模式. 热带海洋学报, 28(2): 48-54. doi: 10.3969/j.issn.1009-5470.2009.02.008 [49] 鄢伟, 张光学, 张莉, 等, 2018a. 南海南部北康盆地中新世碳酸盐台地地震响应及分布特征. 海洋地质与第四纪地质, 38(6): 118-126. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201806012.htm [50] 鄢伟, 张光学, 张莉, 等, 2018b. 南海南部陆缘地质流体类型及其油气成藏意义. 中国地质, 45(1): 39-47. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201801005.htm [51] 杨明慧, 张厚和, 廖宗宝, 等, 2015. 南海南沙海域主要盆地含油气系统特征. 地学前缘, 22(3): 48-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201503005.htm [52] 杨振, 张光学, 张莉, 等, 2017. 南海南部北康盆地生物礁的类型及油气勘探前景. 中国地质, 44(3): 428-438. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201703003.htm [53] 张功成, 唐武, 谢晓军, 等, 2017. 南海南部大陆边缘两个盆地带油气地质特征. 石油勘探与开发, 44(6): 849-859. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201706003.htm [54] 张功成, 朱伟林, 米立军, 等, 2010. "源热共控论": 来自南海海域油气田"外油内气"环带有序分布的新认识. 沉积学报, 28(5): 987-1005. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201005018.htm [55] 张光学, 白志琳, 1998. 南海西南部万安盆地构造样式特征、成因及找油意义. 石油实验地质, 20(3): 210-216. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD803.001.htm [56] 张莉, 王嘹亮, 易海, 2003. 北康盆地的形成与演化. 中国海上油气(地质), 17(4): 245-248. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200304004.htm [57] 张强, 吕福亮, 贺晓苏, 等, 2018. 南海近5年油气勘探进展与启示. 中国石油勘探, 23(1): 54-61. doi: 10.3969/j.issn.1672-7703.2018.01.006