Regional Geochemical Distribution and Controlling Factors of Lithium in the Sino⁃Mongolia Border Areas
-
摘要: 中蒙边界地区成矿地质条件优越,资源潜力巨大,是国际、国内地学研究和勘查的热点地区.锂能已被国际上公认为未来新能源的发展方向,锂矿成为关键性战略矿产资源调查和研究的热点.随着我国锂资源需求日益增加,了解其在土壤圈中的浓度和分布对缓解我国锂资源短缺问题至关重要. 依托中蒙边界1︰100万地球化学填图数据,探讨了汇水域沉积物中锂的地球化学参数、区域地球化学分布特征以及影响因素. 中蒙边界地区汇水域沉积物锂元素中位值和平均值分别是22.50×10-6和24.46×10-6;阿尔泰构造带、阿尔泰南缘弧盆系锂含量最高,区域浓集系数分别是1.38、1.26,是锂的富集优势区;锂的区域地球化学分布主要受地质背景、成土母岩控制,地理景观、黏土含量、矿床分布等也制约着锂的分布模式. 根据85%累积频率,圈定出74个锂地球化学异常区,其中23个锂地球化学异常达到地球化学省规模,根据锂地球化学异常分布模式为该区寻找锂等稀有金属矿床提供了重要选区. 研究填补了中蒙边界地区锂地球化学分布的空白,为两国边境地区锂等稀有金属矿床对比提供基础数据,为缓解中国锂资源短缺优选了勘查靶区.Abstract: The Sino⁃Mongolia border areas are advantage in ore⁃forming geological conditions and have huge resource potentials, which make them the hotspot for international and domestic geoscience research and exploration. Lithium energy has been recognized as the developing trend of future new energy, and lithium ore has become a hotspot in the investigation and research of strategic mineral resources.With the ever⁃increasing demand for lithium, understanding its concentration and distribution in thepedosphere is essential for alleviating the lithium shortage in China.Based on the 1︰1 million geochemical mapping data of the Sino⁃Mongolia border areas, this paper discusses the geochemical parameters, regional geochemical distribution and influencing factors of lithium in the catchment sediments. The median and average values of lithium in the catchment sediments are 22.50×10-6 and 24.46×10-6, respectively. The Altay tectonic belt and the arc basin system at the Altay southern margin have the highest lithium contents, with the regional concentration coefficients of 1.38 and 1.26, respectively, which are the preponderant regions of lithium enrichment. The regional geochemical distribution of lithium is mainly controlled by the geological background, while the geographical landscape, clay content, and mineral deposit distribution can also restrict the distribution patterns of lithium. Based on the 85% cumulative frequency, 74 lithium geochemical anomalies are delineated, of which 23 lithium geochemical anomalies reach the scale of geochemical province. These anomalies provide the important selection areas for exploring lithium and other rare metal deposits in this area. The paper fills the gap in the lithium geochemical distribution study and provides important data for the comparison of rare metal deposits in the Sino⁃Mongolia border areas, and delineates prospecting targets for alleviating the Li shortage in China.
-
Key words:
- Lithium /
- concentration /
- spatial distribution /
- catchment sediments /
- Sino-Mongolia border areas /
- geochemistry
-
图 1 中蒙边界地球化学填图采样点位与工区构造单元、地理景观示意图
Fig. 1. Map of the working area showing the sampling sites, tectonic units and geomorphologic landscapes
图 3 中蒙边界地区不同构造单元内锂含量箱图
1~12构造单元名称同图 1
Fig. 3. Lithium boxplots of catchment sediments collected from different tectonic belts across the China⁃Mongolia boundary
图 6 中蒙边界地区地质图(据李俊建等, 2021修改)
Fig. 6. Geological map of the China⁃Mongolia boundary(modified after Li et al., 2021)
图 8 中蒙边界地区不同构造单元锂区域浓集系数(RCC)对比图
1~12构造单元名称同图 1
Fig. 8. Comparison map of Lithium regional concentration coefficients for the different tectonic belts the across China⁃Mongolia boundary
图 9 同一构造单元内不同地理景观区以及同一地理景观不同构造单元的锂含量变化
a. 阿尔泰南缘弧盆系构造单元,a1. 该单元内山地景观区,a2. 该单元内半荒漠景观区;b. Baruun Urt-Hutag Uul-东乌旗-阿尔山弧盆带构造单元,b1. 该单元内草原景观,b2. 该单元内半干旱草原景观;c. 半荒漠景观区,c1. 该单元内东西准噶尔弧盆系构造单元,c2. 该单元内准噶尔地块构造单元,c3. 该单元内戈壁阿尔泰弧盆系构造单元;d. 草原景观区,d1. 该单元内Ereen Davaa-额尔古纳微陆块构造单元,d2. 该单元内Baruun Urt-Hutag Uul-东乌旗-阿尔山弧盆带构造单元,d3. 该单元内Sulinheer-满都拉-霍林郭勒弧盆系构造单元
Fig. 9. Lithium contents in different geographical landscape in the same tectonic unit and different tectonic unit in the same geographical landscape
表 1 中蒙边界地区不同构造单元内汇水域沉积物锂地球化学参数(10-6)
Table 1. Lithium geochemical parameters of catchment sediments collected from different tectonic belts across the China⁃Mongolia boundary(10-6)
统计单元 样品数 最小值 2.5%分位数 25%分位数 平均值 50%分位数 75%分位数 97.5%分位数 最大值 标准差 RCC 全区 10 505 1.03 12.67 18.31 24.46 22.50 28.18 47.73 400.10 10.10 — 1 760 10.53 15.32 24.74 32.14 30.98 37.54 55.95 125.80 11.20 1.38 2 311 11.27 14.08 22.51 32.79 28.27 36.14 67.30 400.10 26.35 1.26 3 1 038 1.03 13.16 17.91 23.03 21.81 25.84 42.80 77.00 7.71 0.97 4 171 4.09 12.95 21.16 25.88 25.08 29.39 46.33 65.67 8.18 1.11 5 614 8.31 11.14 14.74 18.50 17.62 20.98 30.66 49.22 5.16 0.78 6 1 421 7.64 11.15 15.94 20.01 18.56 22.17 39.02 63.78 6.83 0.82 7 892 8.58 14.25 17.94 22.83 20.82 25.41 42.55 67.93 7.75 0.93 8 750 10.23 15.38 21.27 26.76 24.98 29.79 48.48 110.26 9.17 1.11 9 2 979 9.07 13.57 19.50 25.26 23.71 29.00 47.63 158.98 9.22 1.05 10 1 333 8.82 13.79 19.10 24.89 23.37 28.60 45.73 100.58 8.57 1.04 11 66 7.18 9.52 13.76 18.90 17.72 22.15 36.33 51.49 7.78 0.79 12 170 7.48 16.05 20.84 24.09 23.36 26.41 37.47 52.29 5.88 1.04 注:1~12代表不同构造单元,名称同图 1;1.阿尔泰构造带(样品数760件);2. 阿尔泰南缘弧盆系(样品数311件);3.东西准噶尔弧盆系(样品数1 038件);4.准噶尔地块(样品数171件);5.戈壁阿尔泰弧盆系(样品数614件);6. 北山-戈壁天山弧盆系(样品数1 421件);7. 巴音毛道-雅干-Baruun Tsohio构造带(样品数892件);8. Ereen Davaa-额尔古纳微陆块(样品数750件);9. Baruun Urt-Hutag Uul-东乌旗-阿尔山弧盆带(样品数2 979件);10. Sulinheer-满都拉-霍林郭勒弧盆系(样品数1 333件);11. 塔里木陆块(样品数66件);12. 华北陆块(样品数170件) 表 2 中蒙边界地区不同地理景观内汇水域沉积物锂地球化学参数(10-6)
Table 2. Lithium geochemical parameters of catchment sediments collected from different geomorphologic landscapes across the China⁃Mongolia boundary(10-6)
统计单元 样品数 最小值 25%分位数 平均值 中位值 75%分位数 最大值 标准差 RCC 全区 10 505 1.03 18.31 24.46 22.50 28.18 400.10 10.10 — 山地 760 10.25 24.63 32.89 30.84 37.79 400.10 17.20 1.37 草原 311 9.07 20.38 25.75 24.37 29.43 158.98 8.72 1.08 半干旱草原 1 038 7.48 18.98 24.74 22.70 27.90 100.58 9.36 1.01 半荒漠 171 1.03 16.79 21.59 20.16 24.61 77.00 7.44 0.90 表 3 大陆地壳和岩石中锂含量(10-6)
Table 3. Lithium concentrations in continental crust and rocks(10-6)
锂含量 参考文献 地壳 大陆地壳 20 Taylor and McLenan(1985) 大陆地壳 13 Taylor and McLenan (1985) 大陆地壳 18 Wedepohl(1995) 大陆地壳 16 Rudnick and Gao(2003) 中国东部大陆地壳 17 Yan and Chi(2005) 岩石 中国酸性岩 19 Yan and Chi(2005) 中国中性岩 13 Yan and Chi(2005) 中国基性岩 11 Yan and Chi(2005) 中国超基性岩 4 Yan and Chi(2005) 中国花岗岩 19 Yan and Chi(2005) 中国流纹岩 15 Yan and Chi(2005) 中国闪长岩 12.6 Yan and Chi(2005) 中国安山岩 14 Yan and Chi(2005) 中国辉长岩 10 Yan and Chi(2005) 中国辉绿岩 11 Yan and Chi(2005) 中国玄武岩 12 Yan and Chi(2005) 中国砂岩 25 Yan and Chi(2005) 中国泥(页)岩 38 Yan and Chi(2005) 中国碳酸盐岩含泥灰岩和泥云岩 10.5 Yan and Chi(2005) 中国石灰岩 9.5 Yan and Chi(2005) 中国白云岩 8 Yan and Chi(2005) 中国硅质岩 11 Yan and Chi(2005) 中国板岩 35 Yan and Chi(2005) 中国千枚岩 33 Yan and Chi(2005) 中国片岩 28 Yan and Chi(2005) 中国片麻岩 14 Yan and Chi(2005) 中国大理岩 8.6 Yan and Chi(2005) 表 4 Li与Al2O3, Fe2O3, MgO, MnO, Corg, TC, K2O, CaO, SiO2, Na2O相关性分析
Table 4. Correlation analysis (R) between Li and Al2O3, Fe2O3, MgO, MnO, Corg, TC, K2O, CaO, SiO2, Na2O
Li Al2O3 Fe2O3 MgO MnO Corg TC CaO K2O Na2O SiO2 R 0.282 0.208 0.334 0.244 0.253 0.302 0.149 0.079 -0.205 -0.366 -
[1] Anderson, M. A., Bertsch, P. M., Miller, W. P., 1988. The Distribution of Lithium in Selected Soils and Surface Waters of the Southeastern U. S. A. . Applied Geochemistry, 3(2): 205-212. https://doi.org/10.1016/0883⁃2927(88)90008⁃x [2] Bradley, D. C., 2011. Secular Trends in the Geologic Record and the Supercontinent Cycle. Earth⁃Science Reviews, 108(1/2): 16-33. https://doi.org/10.1016/j.earscirev.2011.05.003 [3] Bu, J. J., He, W. H., Zhang, K. X., et al., 2020. Evolution of the Paleo⁃Asian Ocean: Evidences from Paleontology and Stratigraphy. Earth Science, 45(3): 711-727 (in Chinese with English abstract). [4] Carranza, E. J. M., 2010. Catchment Basin Modelling of Stream Sediment Anomalies Revisited: Incorporation of EDA and Fractal Analysis. Geochemistry: Exploration, Environment, Analysis, 10(4): 365-381. https://doi.org/10.1144/1467⁃7873/09⁃224 [5] Chen, C., Lee, C. T. A., Tang, M., et al., 2020. Lithium Systematics in Global Arc Magmas and the Importance of Crustal Thickening for Lithium Enrichment. Nature Communications, 11(1): 5313. https://doi.org/10.1038/s41467⁃020⁃19106⁃z [6] Doe, B. R., 1991. Source Rocks and the Genesis of Metallic Mineral Deposits. Global Tectonics and Metallogeny, 4(1/2): 13-20. https://doi.org/10.1127/gtm/4/1991/13 [7] Kashin, V. K., 2019. Lithium in Soils and Plants of Western Transbaikalia. Eurasian Soil Science, 52(4): 359-369. https://doi.org/10.1134/s1064229319040094 [8] Kempe, U., Möckel, R., Graupner, T., et al., 2015. The Genesis of Zr⁃Nb⁃REE Mineralisation at Khalzan Buregte (Western Mongolia) Reconsidered. Ore Geology Reviews, 64: 602-625. https://doi.org/10.1016/j.oregeorev.2014.05.003 [9] Keller, G., 2008. Cretaceous Climate, Volcanism, Impacts, and Biotic Effects. Cretaceous Research, 29(5/6): 754-771. https://doi.org/10.1016/j.cretres.2008.05.030 [10] Kesler, S. E., Gruber, P. W., Medina, P. A., et al., 2012. Global Lithium Resources: Relative Importance of Pegmatite, Brine and other Deposits. Ore Geology Reviews, 48(B10): 55-69. https://doi.org/10.1016/j.oregeorev.2012.05.006 [11] Li, J. J., Tang, W. L., Fu, C., et al., 2016. The Division of Metallogenic Belts in Sino⁃Mongolian Border Area. Geological Bulletin of China, 35(4): 461-487 (in Chinese with English abstract). [12] Li, J. J., Zhang, F., Ren J. P., et al., 2015. Tectonic Units in China⁃Mongolia Border Area and Their Fundamental Characteristics. Geological Bulletin of China, 34(4): 636-662 (in Chinese with English abstract). [13] Li, J. J., Orolmaa., D., 2021. Geological Map of the China⁃Mongolian Boundary Areas. : Geological Publishing House, Beijing (in Chinese). [14] Li, J. K., Zou, T. R., Liu, X. F., et al., 2015. The Metallogenetic Regularities of Lithium Deposits in China. Acta Geologica Sinica⁃English Edition, 89(2): 652-670. https://doi.org/10.1111/1755⁃6724.12453 [15] Liu, H. L., Nie, L. S., Wang, X. Q., et al., 2018. Regional Geochemistry of Lithium in the Altay Area across the Boundary of China and Mongolia. Geoscience, 32(3): 493-499 (in Chinese with English abstract). [16] Liu, H. L., Nie, L. S., Shojin, D., et al., 2020. Background Values of 69 Elements in Catchment Sediments of the China: Mongolia Boundary Region. Earth Science Frontiers, 27(3): 202-221 (in Chinese with English abstract). [17] Liu, H. L., Wang, X. Q., Zhang, B. M., et al., 2020. Concentration and Distribution of Lithium in Catchment Sediments of China: Conclusions from the China Geochemical Baselines Project. Journal of Geochemical Exploration, 215(4): 106540. https://doi.org/10.1016/j.gexplo.2020.106540 [18] Liu, Y. J., Cao, L. M., Li, Z. L., et al., 1984. Geochemistry of Elements. Science Press, Beijing (in Chinese). [19] Mao, J. W., Yang, Z. X., Xie, G. Q., et al., 2019. Critical Minerals: International Trends and Thinking. Mineral Deposits, 38(4): 689-698 (in Chinese with English abstract). [20] Ma, Z., Li, J. W., 2018. Analysis of China's Lithium Resources Supply System: Status, Issues and Suggestions. China Mining Magazine, 27(10): 1-7 (in Chinese with English abstract). [21] Munk, L., Hynek, S., Bradley, D., et al., 2016. Rare Earth and Critical Elements in Ore Deposits. In: Philip, L. V., Murray, W. H., Lithium, B., eds., A Global Perspective. Society of Economic Geologists, 18: 339-365. [22] Nie, F. J., Jiang, S. H., Bai, D. M., et al., 2010. Types and Temporal⁃Spatial Distribution of Metallic Deposits in Southern Mongolia and Its Neighboring Areas. Acta Geoscientica Sinica, 31(3): 267-288 (in Chinese with English abstract). [23] Reimann, C., de Caritat, P., 2012. New Soil Composition Data for Europe and Australia: Demonstrating Comparability, Identifying Continental⁃Scale Processes and Learning Lessons for Global Geochemical Mapping. Science of The Total Environment, 416(12): 239-252. https://doi.org/10.1016/j.scitotenv.2011.11.019 [24] Rudnick, R. L., Gao, S., 2003. The Composition of the Continental Crust. In: Holland, H. D., Condie, K., eds., Treatise on Geochemistry. Elsevier Pergamom, Amsterdam, 1-64. [25] Taylor, S. R., McLenan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publications, London, 312. [26] Tian, M., Wang, X. Q., Nie, L. S., et al., 2018. Recognition of Geochemical Anomalies Based on Geographically Weighted Regression: A Case Study Across the Boundary Areas of China and Mongolia. Journal of Geochemical Exploration, 190(4): 381-389. https://doi.org/10.1016/j.gexplo.2018.04.003 [27] Tomurtogoo, O., 2006. Tectonic Framework of Mongolia. In: Tomurhuu, D., Natal'in, B., Ya, A., eds., 2006. Structural and Tectonic Correlation across the Central Asian Orogenic Collage: Implications for Continental Growth and Intracontinental Deformation. Mongolian University of Science and Tectonology Press, Ulaanbaatar, 18-20. [28] Wang, D. H., 2019. Study on Critical Mineral Resources: Significance of Research, Determination of Types, Attributes of Resources, Progress of Prospecting, Problems of Utilization, and Direction of Exploitation. Acta Geologica Sinica, 93(6): 1189-1209 (in Chinese with English abstract). [29] Wang, H. Z., He, G. Q., Zhang, S. H., 2006. The Geology of China and Mongolia. Earth Science Frontiers, 13(6): 1-13 (in Chinese with English abstract). [30] Wang, T., Huang, H., Song, P., et al., 2020. Studies of Crustal Growth and Deep Lithospheric Architecture and New Issues: Exemplified by the Central Asian Orogenic Belt (Northern Xinjiang). Earth Science, 45(7): 2326-2344 (in Chinese with English abstract). [31] Wang, X. Q., Chi, Q. H., Liu, H. Y., et al., 2007. Wide⁃Spaced Sampling for Delineation of Geochemical Provinces in Desert Terrains, Northwestern China. Geochemistry: Exploration, Environment, Analysis, 7(2): 153-161. https://doi.org/10.1144/1467⁃7873/07⁃124 [32] Wang, X. Q., Liu, H. L., Wang, W., et al., 2020. Geochemical Abundance and Spatial Distribution of Lithium in China: Implications for Potential Prospects. Acta Geoscientica Sinica, 41(6): 797-806 (in Chinese with English abstract). [33] Wang, X. Q., Shen, W. J., Zhang, B. M., et al., 2007. Relationship of Geochemical Blocks and Ore Districts: Examples from Eastern Tianshan Metallogenic Belt, Xinjiang, China. Earth Science Frontiers, 14(5): 116-123 (in Chinese with English abstract). doi: 10.1016/S1872-5791(07)60040-2 [34] Wang, X. Q., Xu, S. F., Chi, Q. H., et al., 2013. Gold Geochemical Provinces in China: A Micro⁃ and Nano⁃Scale Formation Mechanism. Acta Geologica Sinca, 87(1), 1-8 (in Chinese with English abstract). doi: 10.1111/1755-6724.12026 [35] Wedepohl, K. H., 1995. The Composition of the Continental Crust. Mineralogical Magazine, 58A(2): 959-960. https://doi.org/10.1180/minmag.1994.58a.2.234 [36] Wen, H. J., Luo, C. G., Du, S. J., et al., 2020. Carbonate⁃Hosted Clay⁃Type Lithium Deposit and Its Prospecting Significance. Chinese Science Bulletin, 65(1): 53-59 (in Chinese with English abstract). doi: 10.1360/TB-2019-0179 [37] Xie, X. J, Cheng, Z. Z., Zhang, L. S., 2008. Geochemical Atlas of Southern China. Geological Publishing House, Beijing (in Chinese). [38] Xie, X. J., Liu, D. W., Xiang, Y. C., et al., 2002. Geochemical Blocks: Development of Concept and Methodology. Geology in China, 29(3): 225-233 (in Chinese with English abstract). [39] Xu, Y. F., Wang, X. F., Hu, C. Y., et al., 2018. Prospecting Potential of Rare Metal and 1: 50 000 Stream Sediment Geochemical Characteristics in Jiajika Area in Sichuan Province. Metal Mine, 47(2): 121-130 (in Chinese with English abstract). [40] Xu, Z. Q., Wang, R. C., Zhao, Z. B., et al., 2018. On the Structural Backgrounds of the Large⁃Scale "Hard⁃Rock Type" Lithium Ore Belts in China. Acta Geologica Sinica, 92(6): 1091-1106 (in Chinese with English abstract). [41] Xu, Z. Q., Fu, X. F., Zhao, Z. B., et al., 2019. Discussion on Relationships of Gneiss Dome and Metallogenic Regularity of Pegmatite⁃Type Lithium Deposits. Earth Science, 2019, 44(5): 1452-1463 (in Chinese with English abstract). [42] Xue, Y. Y., Liu, H. Y., Sun, W. D., 2021. The Geochemical Properties and Enrichment Mechanism of Lithium. Geotectonica et Metallogenia, 45(6): 1202-1215 (in Chinese with English abstract). [43] Yan, M. C., Chi, Q. H., 2005. The Chemical Composition of the Continental Crust and Rocks in the Eastern Part of China. Science Press, Beijing, 171 (in Chinese). [44] Zhai, M. G., Wu, F. Y., Hu, R., Z., et al., 2019. Critical Metal Mineral Resources: Current Research Status and Scientific Issues. Bulletin of National Natural Science Foundation of China, (2): 106-111 (in Chinese with English abstract). [45] Zhang, Q., Bai, J. F., Wang, Y., 2012. Analytical Scheme and Quality Monitoring System for China Geochemical Baselines. Earth Science Frontiers, 19(3): 33-42 (in Chinese with English abstract). [46] Zou, T. R., Li, Q. C., 2006. Rare and Rare Earth Metallic Deposits in Xinjiang, China. Geological Publishing House, Beijing (in Chinese). [47] 卜建军, 何卫红, 张克信, 等, 2020. 古亚洲洋的演化: 来自古生物地层学方面的证据. 地球科学, 45(3): 711-727. doi: 10.3799/dqkx.2019.068 [48] 李俊建, 唐文龙, 付超, 等, 2016. 中蒙边界地区成矿区带划分. 地质通报, 35(4): 461-487. doi: 10.3969/j.issn.1671-2552.2016.04.001 [49] 李俊建, 张锋, 任军平, 等, 2015. 中蒙边界地区构造单元划分. 地质通报, 34(4): 636-662. doi: 10.3969/j.issn.1671-2552.2015.04.006 [50] 李俊建, Orolmaa, D., 2021. 中蒙边界地区地质图. 北京: 地质出版社. [51] 刘汉粮, 聂兰仕, 王学求, 等, 2018. 中蒙跨境阿尔泰构造带稀有元素锂区域地球化学分布. 现代地质, 32(3): 493-499. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201803007.htm [52] 刘汉粮, 聂兰仕, Davaa, Shojin, 等, 2020. 中蒙边界地区汇水域沉积物69种元素的背景值. 地学前缘, 27(3): 202-221. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202003020.htm [53] 刘英俊, 曹励明, 李兆麟, 等, 1984. 元素地球化学. 北京: 科学出版社. [54] 毛景文, 杨宗喜, 谢桂青, 等, 2019. 关键矿产——国际动向与思考. 矿床地质, 38(4): 689-698. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201904001.htm [55] 马哲, 李建武, 2018. 中国锂资源供应体系研究: 现状、问题与建议. 中国矿业, 27(10): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKA201810001.htm [56] 聂凤军, 江思宏, 白大明, 等, 2010. 蒙古国南部及邻区金属矿床类型及其时空分布特征. 地球学报, 31(3): 267-288. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201003004.htm [57] 王登红, 2019. 关键矿产的研究意义、矿种厘定、资源属性、找矿进展、存在问题及主攻方向. 地质学报, 93(6): 1189-1209. doi: 10.3969/j.issn.0001-5717.2019.06.003 [58] 王鸿祯, 何国琦, 张世红, 2006. 中国与蒙古之地质. 地学前缘, 13(6): 1-13. doi: 10.3321/j.issn:1005-2321.2006.06.003 [59] 王涛, 黄河, 宋鹏, 等, 2020. 地壳生长及深部物质架构研究与问题: 以中亚造山带(北疆地区)为例. 地球科学, 45(7): 2326-2344. doi: 10.3799/dqkx.2020.172 [60] 王学求, 刘汉粮, 王玮, 等, 2020. 中国锂矿地球化学背景与空间分布: 远景区预测. 地球学报, 41(6): 797-806. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB202006006.htm [61] 王学求, 申武军, 张必敏, 等, 2007. 地球化学块体与大型矿集区的关系—以东天山为例. 地学前缘, 14(5): 116-123. doi: 10.3321/j.issn:1005-2321.2007.05.012 [62] 王学求, 徐善法, 迟清华, 等, 2013. 中国金的地球化学省及其成因的微观解释. 地质学报, 87(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201301001.htm [63] 温汉捷, 罗重光, 杜胜江, 等, 2020. 碳酸盐黏土型锂资源的发现及意义. 科学通报, 65(1): 53-59. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202001009.htm [64] 谢学锦, 程志中, 张立生, 2008. 中国西南地区76种元素地球化学图集. 北京: 地质出版社. [65] 谢学锦, 刘大文, 向运川, 等, 2002. 地球化学块体——概念和方法学的发展. 中国地质, 29(3): 225-233. doi: 10.3969/j.issn.1000-3657.2002.03.001 [66] 徐云峰, 王显峰, 胡朝云, 等, 2018. 四川甲基卡地区1∶5万水系沉积物地球化学特征及稀有金属找矿远景. 金属矿山, 47(2): 121-130. https://www.cnki.com.cn/Article/CJFDTOTAL-JSKS201802024.htm [67] 许志琴, 王汝成, 赵中宝, 等, 2018. 试论中国大陆"硬岩型"大型锂矿带的构造背景. 地质学报, 92(6): 1091-1106. doi: 10.3969/j.issn.0001-5717.2018.06.001 [68] 许志琴, 付小芳, 赵中宝, 等, 2019. 片麻岩穹窿与伟晶岩型锂矿的成矿规律探讨. 地球科学, 44(5): 1452-1463. doi: 10.3799/dqkx.2019.042 [69] 薛颖瑜, 刘海洋, 孙卫东, 2021. 锂的地球化学性质与富集机理. 大地构造与成矿学, 45(6): 1202-1215. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK202106009.htm [70] 翟明国, 吴福元, 胡瑞忠, 等, 2019. 战略性关键金属矿产资源: 现状与问题. 中国科学基金, (2): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJJ201902002.htm [71] 张勤, 白金峰, 王烨, 2012. 地壳全元素配套分析方案及分析质量监控系统. 地学前缘, 19(3): 33-42. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203004.htm [72] 邹天人, 李庆昌, 2006. 中国新疆稀有及稀土金属矿床. 北京: 地质出版社. -
dqkxzx-47-8-2795-附表.docx