• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    泸定韧性剪切带泸定段及其工程效应

    王运生 苏毅 冯卓 吴德超 王道永

    王运生, 苏毅, 冯卓, 吴德超, 王道永, 2022. 泸定韧性剪切带泸定段及其工程效应. 地球科学, 47(3): 794-802. doi: 10.3799/dqkx.2022.043
    引用本文: 王运生, 苏毅, 冯卓, 吴德超, 王道永, 2022. 泸定韧性剪切带泸定段及其工程效应. 地球科学, 47(3): 794-802. doi: 10.3799/dqkx.2022.043
    Wang Yunsheng, Su Yi, Feng Zhuo, Wu Dechao, Wang Daoyong, 2022. Luding Section of Luding Ductile Shear Zone and Its Engineering Effects. Earth Science, 47(3): 794-802. doi: 10.3799/dqkx.2022.043
    Citation: Wang Yunsheng, Su Yi, Feng Zhuo, Wu Dechao, Wang Daoyong, 2022. Luding Section of Luding Ductile Shear Zone and Its Engineering Effects. Earth Science, 47(3): 794-802. doi: 10.3799/dqkx.2022.043

    泸定韧性剪切带泸定段及其工程效应

    doi: 10.3799/dqkx.2022.043
    基金项目: 

    国家自然科学基金项目 41877235

    国家创新研究群体科学基金 41521002

    详细信息
      作者简介:

      王运生(1960-),男,教授,主要从事工程地质和地质灾害方面的教学及科研工作.ORCID:0000-0002-1774-9494.E-mail:wangys60@163.com

    • 中图分类号: P642

    Luding Section of Luding Ductile Shear Zone and Its Engineering Effects

    • 摘要:

      泸定韧性剪切带为南北向大渡河断裂中段,为川滇“Y”字构造重要组成部分.川藏铁路泸定特大桥在泸定县白日坝附近横跨泸定韧性剪切带,且左岸隧洞穿越⑤号糜棱岩带,该韧性剪切带组成及活动性直接影响重大基础工程建设.基于平硐、公路开挖剖面精细编录,配合薄片鉴定,对泸定韧性剪切带展布特征、组成特征及断裂活动性进行了研究,主要结论如下:(1)泸定韧性剪切带从西向东可区分为5个带,其中①、③、⑤为长英质糜棱岩带,②、④为糜棱岩化斜长角闪岩带,泸定韧性剪切带泸定段展布于桥位区河谷底部及左岸,总宽约1 000 m.①、③带由南向北横穿桥位区,产状N15°~20°E/NW∠55°~65°,带宽500 m,以灰色长英质糜棱岩、千糜棱岩为主,⑤带沿太阳沟-五里沟向东延伸,横穿左岸隧道,产状N43°E/NW∠54°,带宽500 m,糜棱岩为长英质糜棱岩、带状-小眼球状糜棱岩;(2)受断层带切割影响,河段构造节理密度大、组数多、期次多,岩体破碎、完整性较差;(3)泸定韧性剪切带晋宁期受韧性剪切变形影响,中生代以来受脆性破裂改造,但未形成大规模脆性破裂带,对泸定特大桥影响总体较小,工程效应主要表现为大渡河两岸隧洞进出口边坡稳定性较差及左岸洞内围岩完整性差.

       

    • 图  1  断裂分布平面图

      ①、③、⑤为长英质糜棱岩带;②、④为糜棱岩化斜长角闪岩带

      Fig.  1.  Plan view of fracture distribution

      图  2  ① 糜棱岩带实测剖面(沿公路实测)

      1.动力变质千枚岩化斜长角闪岩;2.二长花岗岩脉;3.第四纪堆积体;4.第四纪;5. SCⅡ、SCⅢ、SCⅣ:分别为第二世代、第三世代、第四世代糜棱岩片理的代号;6.节理型脆性小断层及编号;7.长英质;8. a线理;9.节理密集带;10.千糜棱岩片理;11.第二世代糜棱岩片理;12.第三世代糜棱岩片理;13.早期轴面劈理;14.构造变形分带(由强到弱):③条纹状长英质糜棱岩带,②眼球状长英质糜棱岩‒千糜棱岩带,①绿帘石化斜长角闪岩质千糜棱岩带;15.观察点号;16.平硐号

      Fig.  2.  ①Measured section of ductile shear zone (measured along the highway)

      图  3  ⑤ 糜棱岩带实测剖面

      1.斜长角闪质千糜棱岩;2.片麻状二长花岗岩;3.崩坡积物;4.长英质集合体或“σ”旋转斑;5. a线理;6.SCⅠ、SCⅣ:分别为第一世代、第四世代糜棱岩片理的代号;7.第一世代片麻理千糜棱岩片理(SCⅠ);8.第二世代糜棱岩片理(SCⅡ);9.第三世代糜棱岩片理(SCⅢ);10.晚期脆性剪切面理或挤压带;11.变形强度分带:(1)眼球状千糜棱岩‒无根褶皱,长大拉伸线理;(2)小眼球‒条带状糜棱岩无根褶皱带;(3)强片理化‒条纹状长英质糜棱岩‒生长线理化带;12..断层及分支断层:⑤糜棱岩带,③糜棱岩带,①糜棱岩带;13.观察点号

      Fig.  3.  ⑤Measured section of ductile shear zone

      图  4  泸定韧性剪切带典型照片

      a.①糜棱岩带;b.③糜棱岩带;c.⑤糜棱岩带;d.④糜棱岩化斜长角闪岩

      Fig.  4.  Typical photos of the Luding ductile shear zone

      图  5  糜棱岩显微特征

      a.斜长石碎斑书斜构造;b.斜长石碎斑及相对位移的叶理

      Fig.  5.  Microscopical character of the mylonite

      图  6  挤压破碎带

      Fig.  6.  Squeeze crush zone

      图  7  NE及NW向结构面上擦痕

      Fig.  7.  Scratches on the NE and NW-facing structural surface

      图  8  泸定河段长大结构面走向玫瑰花图

      Fig.  8.  The rose diagram of the long and large structural surface in the Luding river section

      图  9  泸定河段长大结构面赤平投影

      Fig.  9.  Stereographic projection of the long structural plane in the Luding river section

    • [1] Benmokrane, B., Ballivy, G., 1991. Five-Year Monitoring of Load Losses on Prestressed Cement-Grouted Rock Anchors. Canadian Geotechnical Journal, 28(5): 668-677. https://doi.org/10.1139/t91-081
      [2] Deng, H., Zhong, C. Y., Wu, L. Z., et al., 2021. Process Analysis of Causes of Luanshigang Landslide in the Dadu River, China. Environmental Earth Sciences, 80: 737. https://doi.org/10.1007/s12665-021-10069-y
      [3] Feng, Y. B., Jiang, Y. M., 2000. Active Tectonic of the East Part of Sichuan-Yunnan Block. Earthquake Research in Sichuan, (1-2): 5-23 (in Chinese with English abstract).
      [4] Li, H. W., Wu, D. C., 2014. The Main Structural Features and Activity of the Dadu River Fault Zone. Journal of Yangtze University (Natural Science Edition), 11(10): 61-63 (in Chinese).
      [5] Pan, G. T., Ren, F., Yi, F. G., et al., 2020. Key Zones of Oceanic Plate Geology and Sichuan-Tibet Railway Project. Earth Science, 45(7): 2293-2304 (in Chinese with English abstract).
      [6] Ramsay, J. G., 1980. Shear Zone Geometry: A Review. Journal of Structural Geology, 2(1-2): 83-89. https://doi.org/10.1016/0191-8141(80)90038-3
      [7] Sichuan Bureau of Geology and Mineral Resources, 1991. Regional Geology of Sichuan Province. Geological Publishing House, Beijing, 606-609 (in Chinese).
      [8] Tang, R. C., 1993. Active Faults and Earthquakes in Sichuan. Seismological Press, Beijing (in Chinese).
      [9] Wang, Y. S., Cheng, W. Q., Liu, J. W., 2022. Analysis of the Forming Process and Mechanisms of Geo-Hazards in Luding Section of the Sichuan-Tibet Railway. Earth Science, 47(3): 950-958 (in Chinese with English abstract).
      [10] Xu, Z. Q., Zhang, J. X., Xu, H. F., et al., 1997. Ductile Shear Zones and Dynamics of Mountain Chains in Major Chinese Continents. Geological Publishing House, Beijing (in Chinese).
      [11] Zeng, J. H., Deng, Z. W., Zhu, K. J., 2013. Regional Structural Stability Analysis of Dagangshan Hydropower Station, Dam Safety and New Technology Application. China Water & Power Press, Beijing, 159-165 (in Chinese).
      [12] Zhang, S. S., Kang, X. B., Xu, M., et al., 2019. Research on the Dam Foundation Pit Hydrogeological Problems in Dadu River Deep Overburden Layer Area. 2019 International Conference on Oil & Gas Engineering and Geological Sciences, Dalian.
      [13] Zhao, D. J., 2005. The Assessment and Zonation of Regional Crustal Stability in the Dagangshan Hydropower Station of the Dadu River (Dissertation). Chengdu University of Technology, Chengdu (in Chinese with English abstract).
      [14] Zhao, T., Xie, C. L., Xiang, B. W., et al., 2019. Deformation Process and Mechanism of the Brittle-Ductile Transition Zone: Evidence from the Southern Segment of the Tan-Lu Fault Zone. Geotectonica et Metallogenia, 43(1): 17-32 (in Chinese with English abstract).
      [15] Zhou, R. J., Lei, J. C., Li, X. G., et al., 2000. Geological and Geomorphological Criteria for the Activity of the Dadu River Fault Since the Late Quaternary. In: Chen, Y. T., ed., Abstracts Collection of Papers of the Eighth Academic Conference of Seismological Society of China. Seismological Press, Beijing, 70 (in Chinese with English abstract).
      [16] 冯元保, 蒋远明, 2000. 川滇块体东缘的活动构造. 四川地震, (1-2): 5-23. https://www.cnki.com.cn/Article/CJFDTOTAL-SCHZ2000Z1001.htm
      [17] 李鸿巍, 吴德超, 2014. 大渡河断裂带主要构造特征及活动性分析. 长江大学学报(自科版), 11(10): 61-63. doi: 10.3969/j.issn.1673-1409(y).2014.10.027
      [18] 潘桂棠, 任飞, 尹福光, 等, 2020. 洋板块地质与川藏铁路工程地质关键区带. 地球科学, 45(7): 2293-2304. doi: 10.3799/dqkx.2020.070
      [19] 四川省地质矿产局, 1991. 四川省区域地质志. 北京: 地质出版社, 606-609.
      [20] 唐荣昌, 1993. 四川活动断裂与地震. 北京: 地震出版社.
      [21] 王运生, 程万强, 刘江伟, 2022. 川藏铁路廊道泸定段地质灾害孕育过程及成灾机制分析. 地球科学, 47(3): 950-958. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202203015.htm
      [22] 许志琴, 张建新, 徐惠芬, 等, 1997. 中国主要大陆山链韧性剪切带及动力学. 北京: 地质出版社.
      [23] 曾金华, 邓忠文, 朱可俊, 2013. 大岗山水电站区域构造稳定性分析-大坝安全及新技术应用. 北京: 中国水利水电出版社, 159-165.
      [24] 赵德军, 2005. 大渡河大岗山水电站区域地壳稳定性分区与评价(硕士学位论文). 成都: 成都理工大学.
      [25] 赵田, 谢成龙, 向必伟, 等, 2019. 脆-韧性转换带变形过程与机制: 以郯庐断裂带南段为例. 大地构造与成矿学, 43(1): 17-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201901002.htm
      [26] 周荣军, 雷建成, 黎小刚, 等, 2000. 晚第四纪以来大渡河断裂活动性的地质地貌判据. 见: 陈运泰, 主编, 中国地震学会第八次学术大会论文摘要集. 北京: 中国地震出版社, 70.
    • 加载中
    图(9)
    计量
    • 文章访问数:  367
    • HTML全文浏览量:  47
    • PDF下载量:  71
    • 被引次数: 0
    出版历程
    • 收稿日期:  2021-12-20
    • 刊出日期:  2022-03-25

    目录

      /

      返回文章
      返回