Geological and Geomorphic Evidence for Late Quaternary Activity of the Bianba-Luolong Fault on the Western Boundary of the Bangong-Nujiang Suture
-
摘要:
边坝-洛隆断裂为班公湖-怒江缝合带东南段的西界断裂,正在规划建设中的川藏铁路穿经了该断裂.研究该断裂的晚第四纪活动性对认识缝合带的发展演化历史以及青藏高原东南缘现今构造变形的动力学机制具有重要意义,也直接关系到川藏铁路的规划建设和工程地震安全.边坝-洛隆断裂沿线记录有1642-1654年洛隆M≥7地震和1791-1804年边坝M 63/4地震,然而,由于缺少明确的地质地貌证据,关于边坝-洛隆断裂是否为全新世活动断裂至今仍存在较大争议.基于遥感影像解译和野外地质地貌调查,结合14C加速质谱(AMS)测年技术,笔者在八宿县城和洛隆县城一带获得了多个断错晚更新世-全新世地层的剖面,揭示边坝-洛隆断裂为一条全新世活动断裂,活动性质以左旋走滑为主,其最新一次活动发生在(3 310±30)a BP之后,可能对应1642-1654年洛隆M≥7地震事件.调查结果也显示,边坝-洛隆断裂晚第四纪活动的地表形迹非常不连续,其几何展布与班公湖-怒江缝合带的早期边界断裂并不完全一致,似乎暗示缝合带晚第四纪以来的活动可能正在发生新的演化.
Abstract:The Bianba-Luolong fault, which runs through the Sichuan-Tibet Railway under planning and construction, is the western boundary fault of the southeastern section of the Bangong-Nujiang suture. The Late Quaternary activity of the fault is of great significance for understanding the development and evolution history of the suture and researching the dynamics of the present tectonic deformation in SE Tibetan Plateau, and is also directly related to the planning and construction of the Sichuan-Tibet Railway and the safety of engineering earthquake. Historical records show that two large earthquakes, the 1642-1654 Luolong M ≥7 earthquake and the 1791-1804 Bianba M 63/4 earthquake, have occurred on the Bianba-Luolong fault. However, whether the fault has been seismically active in the Holocene remains a subject of debate due to poor research and lack of reliable geologic and geomorphological evidence. In this study, we focus on the Late Quaternary activity of the Bianba-Luolong fault based on interpretation of remote sensing imagery, analysis of field fault outcrops, faulted landforms and chronological measurement of 14C samples. It is suggested that the Bianba-Luolong fault is an active Holocene fault, and the main movement of the fault is sinistral strike-slip. Specifically, the latest faulting event occurred after (3 310±30) a BP, which possibly corresponds to the 1642-1654 Luolong M ≥7 earthquake. Survey results also show that the surface traces of the Bianba-Luolong fault activity is significantly discontinuous during the Late Quaternary, which is not completely consistent with the previous boundary fault of the Bangong-Nujiang suture, suggesting that the activity of suture zone may be undergoing a new evolution since the Late Quaternary.
-
Key words:
- Bianba-Luolong fault /
- fault outcrops /
- Holocene activity /
- Bangong-Nujiang suture /
- Sichuan-Tibet Railway /
- seismology
-
图 1 边坝‒洛隆断裂及其邻近地区活动构造简图
图a据Li et al.(2019)略有修改;AKMS. 阿尼玛卿‒昆仑‒木孜塔格缝合带;JS. 金沙江缝合带;BNS. 班公湖‒怒江缝合带;YZS. 雅鲁藏布江缝合带;ATF. 阿尔金断裂;KF. 喀喇昆仑断裂;MFT. 主前缘逆冲断裂;图b阴影区指示班公湖‒怒江缝合带(BNS);F1. 嘉黎断裂;F2. 边坝‒洛隆断裂;F3. 羊达‒亚许断裂;F4. 怒江断裂;F5. 澜沧江断裂
Fig. 1. Active tectonic map of the Bianba-Luolong fault and its adjacent regions
-
[1] Allégre, C. J., Courtillot, V., Tapponnier, P., et al., 1984. Structure and Evolution of the Himalaya-Tibet Orogenic Belt. Nature, 307(5946): 17-22. https://doi.org/10.1038/307017a0 [2] Chang, C. F., Chen, N. S., Coward, M. P., et al., 1986. Preliminary Conclusions of the Royal Society and Academia Sinica 1985 Geotraverse of Tibet. Nature, 323(6088): 501-507. https://doi.org/10.1038/323501a0 [3] Chen, F. H., Dong, G. H., Zhang, D. J., et al., 2015. Agriculture Facilitated Permanent Human Occupation of the Tibetan Plateau after 3 600 B.P. Science, 347(6219): 248-250. https://doi.org/10.1126/science.1259172 [4] Deng, Q. D., Ran, Y. K., Yang, X. P., et al., 2007. Active Tectonics Map of China (1: 4 000 000). Seismological Press, Beijing (in Chinese). [5] Dewey, J. F., Shackleton, R. M., Chang, C. F., et al., 1988. The Tectonic Evolution of the Tibetan Plateau. Philosophical Transactions of the Royal Society of London a Mathematical Physical & Engineering Sciences, 327(1594): 379-413. https://doi.org/10.1098/rsta.1988.0135 [6] Department of Earthquake Disaster Prevention, State Seismological Bureau, 1995. Catalogue of Historical Strong Earthquakes in China (23rd Century B.C. to 1911). Seismological Press, Beijing (in Chinese). [7] Gao, M. T., Chen, G. X., Xie, F. R., et al., 2015. Seismic Parameter Zoning Map of China: GB18306-2015. Standards Press of China, Beijing (in Chinese). [8] Jin, S., Sheng, Y., Liang, H. D., et al., 2019. Lithospheric Electrical Structure along Shenzha-Shuanghu Profile in Tibetan Plateau and Its Significance. Earth Science, 44(6): 1773-1783 (in Chinese with English abstract). [9] Kapp, P., DeCelles, P. G., Gehrels, G. E., et al., 2007. Geological Records of the Lhasa-Qiangtang and Indo-Asian Collisions in the Nima Area of Central Tibet. Geological Society of America Bulletin, 119(7/8): 917-933. https://doi.org/10.1130/b26033.1 [10] Li, S., Yin, C. Q., Guilmette, C., et al., 2019. Birth and Demise of the Bangong-Nujiang Tethyan Ocean: A Review from the Gerze Area of Central Tibet. Earth-Science Reviews, 198: 102907. https://doi.org/10.1016/j.earscirev.2019.102907 [11] Science and Technology Committee of the Tibetan Autonomous Region, 1982. Records of Historical Earthquakes of Tibet. People's Press of the Tibet, Lhasa (in Chinese). [12] Tang, F. T., You, H. C., Liang, X. H., et al., 2019. A Discussion on Seismogenic Fault of the Milin MS6.9 Earthquake, Tibet, and Its Tectonic Attributes. Acta Geoscientica Sinica, 40(1): 213-218 (in Chinese with English abstract). [13] Wei, W. B., Jin, S., Ye, G. F., et al., 2006. Features of the Faults in Center and North Tibetan Plateau: Based on Results of INDEPTH (Ⅲ)-MT. Earth Science, 31(2): 257-265 (in Chinese with English abstract). [14] Wu, J. L., Liu, W., Yin, X. K., et al., 2021. Geochronology, Zircon Hf Isotope and Geochemistry of Volcanic Rocks from Shamuluo Formation in Western Banggongco-Nujiang Suture Zone, North Tibet. Earth Science, 46(2): 444-459 (in Chinese with English abstract). [15] Yin, A., Harrison, T. M., 2000. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 28: 211-280. https://doi.org/10.1146/annurev.earth.28.1.211 [16] Zeng, Q. G., Wang, B. D., Xiluo, L., et al., 2020. Suture Zones in Tibetan and Tethys Evolution. Earth Science, 45(8): 2735-2763 (in Chinese with English abstract). [17] 邓起东, 冉勇康, 杨晓平, 等, 2007. 中国活动构造图(1: 400万). 北京: 地震出版社. [18] 国家地震局震害防御司, 1995. 中国历史强震目录(公元前23世纪-公元1911年). 北京: 地震出版社. [19] 高孟潭, 陈国星, 谢富仁, 等, 2015. 中国地震动参数区划图: GB18306-2015. 北京: 中国标准出版社. [20] 金胜, 盛跃, 梁宏达, 等, 2019. 青藏高原申扎-双湖剖面岩石圈电性结构特征及其含义. 地球科学, 44(6): 1773-1783. doi: 10.3799/dqkx.2019.015 [21] 西藏自治区科学技术委员会, 1982. 西藏地震史料汇编. 拉萨: 西藏人民出版社. [22] 唐方头, 尤惠川, 梁小华, 等, 2019. 西藏米林6.9级地震发震断层判定及其构造属性讨论. 地球学报, 40(1): 213-218. [23] 魏文博, 金胜, 叶高峰, 等, 2006. 西藏高原中、北部断裂构造特征: INDEPTH(Ⅲ)-MT观测提供的依据. 地球科学, 31(2): 257-265. doi: 10.3321/j.issn:1000-2383.2006.02.017 [24] 吴建亮, 刘文, 尹显科, 等, 2021. 藏北班公湖-怒江缝合带西段沙木罗组火山岩年代学、Hf同位素及地球化学特征. 地球科学, 46(2): 444-459. doi: 10.3799/dqkx.2020.104 [25] 曾庆高, 王保弟, 西洛郎杰, 等, 2020. 西藏的缝合带与特提斯演化. 地球科学, 45(8): 2735-2763. doi: 10.3799/dqkx.2020.152